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Abstract: In this paper, an efficient meta-heuristic satin bowerbird optimization (SBO) algorithm is
presented for congestion management (CM) in the deregulated power system. The main objective of
CM is to relieve congestion in the transmission lines using a generation rescheduling-based approach,
while satisfying all the constraints with minimum congestion cost. The SBO is a nature-inspired
algorithm, developed based on the ‘male-attracts-the-female for breeding’ principle of the specialized
stick structure mechanism of satin birds. The proposed approach is effectively tested on small and
large test systems, namely, modified IEEE 30-bus, modified IEEE 57-bus, and IEEE 118-bus test
systems. The constraints like line loading, line limits, generator limits, and bus voltage impact, etc.,
are incorporated into this study. The proposed technique gives superior results with regards to
congestion cost and losses compared with various recent optimization algorithms.

Keywords: congestion management; deregulation; optimal power flow; generator rescheduling;
satin bowerbird optimizer

1. Introduction

The electric power industry is switching over from being vertically integrated into being a
deregulated utility. The vertical utility system has common control over all the transmissions,
distributions, and generations in the power system. In a deregulated utility system, the transmission,
distribution, and generation systems work independently of the environment and, thus, it becomes
a challenge for independent system operators (ISOs) to manage [1]. Congestion management (CM)
plays a vital role in the deregulated electricity market environment. The power flowing through the
transmission network is limited by the voltage, thermal, and stability limits. Whenever constraints
imposed by the operation and physical limits of the transmission network become active, it is said to
be Congestion. Congestion occurs in the transmission network due to natural hazards, transmission
line failure due to miss-operation, and all the market participants purchasing the power from the
cheapest sources of the area at the same time. To relieve the congestion in overloaded lines, various
methods and approaches are used, as given in [2,3]. To manage the operation of transmission systems
in a deregulated power system based on optimal power flow (OPF), price–area congestion control and
a transaction-based model CM problem have been analyzed in depth [4]. In [5], a thorough study has
been done of a CM problem solution, based on re-dispatch and a unified framework for a mathematical
representation of the market dispatch in various electricity markets all over the world. Phase-shifters
and multi-tap transformers can assist in avoiding the difficulty of congestion without re-dispatching
generation from the preferred schedules of transactions. The effect of contingency-imposed limits
on CM, by an independent system operator (ISO), to lesser adjustments to the preferred schedules
to overcome the congestion in the system, has also been analyzed [6]. Mathematical models of
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evolutionary approaches solved zonal congestion based on sensitivity indices, which are termed as
Real-power and Reactive-power Transmission Congestion Distribution Factors [7]. The rescheduling
of generators for CM with a three block structure, offered by the generating companies (GENCOs), has
been analyzed and carried out for a hybrid power market considering constant impedance, current,
and power [8]. In [9], an efficient particle swarm optimization (PSO) was made use of for the real-power
rescheduling of generators for CM in a deregulated environment. Use of the random search method
(RSM) for solving various optimization problems has been analyzed [10]. Rescheduling of generators
for CM with flexible AC transmission system flexible alternating current transmission system (FACTS)
in a deregulated electricity market has been evaluated [11]. In [12], a real-coded genetic algorithm
(RCGA) was used to locate the optimal generation rescheduling for CM in a deregulated environment.
Nature-inspired algorithms based on swarm intelligence [13], like the firefly algorithm [14], flower
pollination algorithm [15], bat algorithm [16], etc., have exhibited their worth and, consequently,
become popular and broadly used by scholars. In [17], a novel symbiotic organism search (SOS)
algorithm was the focus. It is based on the symbiotic interactions of organisms coexisting in an
ecosystem. The key advantages of the SOS algorithm compared with other meta-heuristic algorithms
are the fast convergence rate, the shorter computational time, and the fact that no specific parameters
are required. This paper puts forth an SBO algorithm, for CM to lessen the losses and congestion cost
of the system by a generator rescheduling method.

1.1. Inspiration of SBO

The proposed new optimization algorithms effectively solve CM problems with various
contingency case studies by changing the real-power of the generators with less cost. The major
inspiration behind the introduction of this work is as follows:

(a) SBO provides competitive or slightly better performance compared with other bio-inspired
algorithms in a stand test function;

(b) SBO has good exploitation capabilities, which optimize the solution through small and reasonable
changes in variables;

(c) SBO performs with real-world data sets, unlike other bio-inspired algorithms; and
(d) SBO focuses on the best solution while constantly searching for new solutions in the search space.

1.2. Objective of the Present Work

The main purpose of this work is documented below:

(a) SBO algorithm tool effectively minimizes the changing generator real-power rescheduling cost;
(b) Effectively relieves the congestion in overloaded lines with different contingency cases; and
(c) Minimizes the losses indifferent contingencies of the test system cases.

2. Mathematical Problem Formulation

The mathematical formulation of the CM problem with minimum cost is stated in Equation (1) [9]:

Minimize Ct = ∑j∈Ng
(CtG∆P+

Gj + DtG∆P−Gj)$/h (1)

where Zt, CtG, DtG, Ng, ∆P+
Gj, and ∆P−Gj represent the total cost of changing the generator real-power

output ($/h),the total number of generators, the incremental/decremental price bid by the generator
company ($/MWh), the real-power increment of the jth generator (MW), and the real-power decrement
of the jth generator (MW), respectively.
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2.1. Equality Constraints

The mathematical formulation of the equality constraints corresponds to the CM representation.
The power flow equations are stated by the following equations (Equations (2)–(5)) [18].

PGk − PDk = ∑
j

∣∣Vj
∣∣|Vk|

∣∣∣Ykj

∣∣∣ cos(δk − δj − θkj); j = 1, 2, . . . , Nb, (2)

QGk −QDk = ∑
j

∣∣Vj
∣∣|Vk|

∣∣∣Ykj

∣∣∣ sin(δk − δj − θkj); j = 1, 2, . . . , Nb, (3)

PGk = Pc
Gk + ∆P+

Gk − ∆P−Gk; k = 1, 2, . . . , Ng, (4)

PDj = Pc
Dj; j = 1, 2, . . . , Nd, (5)

where PGk and QGk represent the generated real and reactive powers at the kth bus; PDk and QDk
represent the real and reactive load powers at the kth bus; Vj and Vk represent the voltages at the jth
bus and kth bus; δj and δk represent the bus voltage angle at the jth and kth buses; θkj is the admittance
angle of the line connecting the kth and jth buses; Nb, Ng, Nd are the number of used buses, generators
and loads, respectively; and Pc

Gk and Pc
Dj are the real-power produced by the kth generator and the

real-power consumed by the jth load, respectively. Equations (2) and (3) note the real and reactive
powers at each node, whereas (4) and (5) note the market clearing price.

2.2. Inequality Constraints

The operational and physical limits of the generators, transmission lines, and transformers-as
stated by the following equations-are-

Pmin
Gk ≤ PGk ≤ Pmax

Gk , ∀k ∈ Ng (6)

Qmin
Gk ≤ QGk ≤ Qmax

Gk , ∀k ∈ Ng (7)

(PGk − Pmin
Gk ) = ∆Pmin

Gk ≤ ∆PGk ≤ ∆Pmax
Gk = (Pmax

Gk − PGk) (8)

Vmin
n ≤ Vn ≤ Vmax

n , ∀k ∈ Nl (9)

Pij ≤ Pmax
ij (10)

where the superscript ‘min’ represents the minimum and ‘max’ represents the maximum values of the
respective parameters; Ng represents the number of generators and Nl represents the number of lines.

3. Satin Bowerbird Optimization (SBO)

The SBO algorithm is bio-inspired by theprinciple of themale-attracting-the-female for breeding
the male bowerbird attracts the female with the construction of a specialized bower. This optimization
algorithm is new in terms of application toa power system but, in [19], its unimodal and multimodal
standard test functions were tested. It showed better performance compared with other optimization
techniques such as the Antlion algorithm (ALO), Firefly algorithm (FA), Artificial bee colony algorithm
(ABC), Particle swarm optimization algorithm (PSO) and Genetic algorithm (GA).

3.1. Introduction of SBO

Satin bowerbirds live in the rainforest and mesic forest in Australia. They are closely related to the
other bowerbirds. Mainly, they live in a particular local area throughout their lives. During autumn
and winter seasons, they leave their forest environment and move into open woodlands to eat fruits
and pests. However, during the breeding season, they flock together in small groups, inhabiting
territories which they apparently occupy year after year.
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Male satin bowerbirds construct specialized stick structures called bowers, where male bowerbirds
attract the female by dancing and by making a noble bower and decking the surrounding area.
The bowers are decorated with flowers, berries, feathers, etc. [20]. Males compete by thieving
decorations from other males and destroying the bowers of neighbors [21]. Female birds visit several
bowers before choosing a mating partner.

In the SBO algorithm, adult males begin to construct a bower with different materials on their
land during the mating season. According to the moralities of satin bowerbird life, the SBO algorithm
is structured in several stages as follows.

3.2. SBO Algorithm

3.2.1. Generating a Set of Random Bowers

The SBO algorithm begins with the creation of a random initial population, similar to
other meta-heuristic algorithms. The initial population is a set of positions for bowers. Each
position is an n-dimensional vector of parameters that must be optimized. These values are
randomly initialized so that a uniform distribution is considered between the lower and upper limit
parameters. The parameters of each bower are the same as the variables in the optimization problem.
The combination of parameters determines the attractiveness of the bower.

3.2.2. Calculating the Probability of Each Population Member

The probability is the attractiveness of a bower. A female satin bowerbird selects a bower (built)
based on its probability. Similarly, a male mimics bower building through selecting a bower based
on the probability assigned to it. This probability is calculated using Equation (11). In this equation,
Fiti is fitness of the ith solution and NB is the number of bowers. In this equation, the value of Fiti is
achieved using Equation (12).

Probi =
Fiti

∑NB
n=1 fitn

(11)

Fiti =

{
1

1+f(xi)
, f(xi) ≥ 0

1 + |f(xi)|, f(xi) < 0
(12)

In this equation, f(xi) is the value of the cost function in the ith position or ith bower. The cost
function is a function optimized by Equation (12) which has two parts. The first part calculates the
final fitness where values are greater than or equal to zero, while the second part calculates the fitness
for values less than zero. This equation has two main characteristics.

3.2.3. Elitism

Elitism is one of the important features of evolutionary algorithms. Elitism allows the best
solution(s) to be preserved at every stage of the optimization process. All birds normally build their
nests using their natural instincts. The male satin bowerbird is like all other birds in the mating season
and uses his natural instinct to build his bower and decorate it. This means that all males use materials
to decorate their bowers. However, an important factor in attracting more attention to the bower of a
particular male is his experience. This experience helps a lot in both the dramatic gestures and the
building of the bower. This means that older males can attract more attention from others to their
bowers. In other words, experienced males build better bowers, and these bowers have greater fitness
than the other bowers. In this work, the position of the best bower built by birds (best position) is
intended as the elite of the iteration. Since the position of the elite has the highest fitness, it should be
able to influence the other positions.
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3.2.4. Determining New Changes in Any Position

In each cycle of the algorithm, new changes at any bower are calculated according to Equation (13).

xnew
ik = xold

ik + λk

((xjk + xelite,k

2

)
− xold

ik

)
(13)

In this equation, xi is the ith bower or solution vector and xik is the kth member of this vector.
The value of xj is determined as the target solution among all solutions in the current iteration.
In Equation (3), value j is calculated based on probabilities derived from positions. In fact, the value j
is calculated by the roulette wheel procedure, which means that a solution having a larger probability
will have more chance to be selected as xj; xelite indicates the position of the elite, which is saved in
each cycle of the algorithm. In fact, the position of the elite is the position of a bower whose fitness
is the highest in the current iteration. The parameter λk determines the attraction power in the goal
bower. It determines the amount of step, calculated for each variable. This parameter is determined by
Equation (14).

λk =
α

1 + pj
(14)

In Equation (14), α is the greatest step size and pj is the probability obtained by Equation (11)
using the goal bower. Since the obtained probability values are between 0 and 1, the denominator of
this equation contains a sum with 1 to avoid 0 in the denominator of Equation (14). As is obvious from
Equation (14), the step size is inversely proportional to the probability of the target position. In other
words, when the probability of the target position is greater (due to the constant α), movement to
that position is more carefully done. The highest step size occurs when the probability of the target
position is 0; the step size in this case will be α. On the other hand, the lowest step size occurs when
the probability of target position is 1; the step size will then be α/2.

3.2.5. Mutation

When males are building a bower on the ground, they may be attacked by other animals or be
completely ignored. In many cases, stronger males steal materials from weaker males or may even
destroy their bowers. Therefore, at the end of each cycle of the algorithm, random changes are applied
with a certain probability. In this step, random changes are applied to xik with a certain probability.
Here, for the mutation process, a normal distribution (N) is employed with an average of xold

ik and
variance of σ2, as seen in Equation (15).

xnew
ik ∼ N(xold

ik ,σ2
)

(15)

N(xold
ik ,σ2) = xold

ik + (σ×N(0, 1)) (16)

In Equation (16), the value of σ is proportional to the space width, as calculated in Equation (17).

σ = z× (varmax − varmin) (17)

In Equation (17), varmax and varmin are the upper and lower bounds respectively assigned to the
variables; z is the percentage of the difference between the upper and lower limits and is variable.

3.2.6. Combining the Old Population and the Population Obtained from Changes

At the end of each cycle, the old population and the population obtained from changes are
evaluated. After the evaluation, these two populations are combined and sorted (based on the values
obtained from the cost function) and the new population is created according to the previously defined
number, while the others are deleted.
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3.3. Pseudocode for SBO Algorithm

Algorithm

Initialize the first population of bowers randomly
Calculate the cost of bowers
Find the best bower and assume it as elite
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4. Proposed SBO Algorithm for CM Application

In this work, the number of generators taken up has dimensions (D) for the CM problem.
The penalty functions are added to the objective function in order to construct the fitness function
by transferring inequality constraints. In the present work, during Newton–Raphson power flow,
the equality and reactive-power inequality constraints are efficiently handled, while the real-power
inequality constraints are handled during the iteration process. Other inequality constraints line power
flow and load bus voltages are considered as quadratic penalty functions. The fitness function of the
CM problem is described by the following:

Minimize ZZ = Ct + Pf1 ×∑ovli
i=1

(
Pij − Pmax

ij

)
+ Pf2 ×∑VBL

j=1

((
∆Vj

)2
j + Pmax

ij

)
+ Pf3 × (∆PG)

2 (18)

where

∆Vj =


(

Vmin
j −Vj

)
; if Vj ≤ Vmin

j ,(
Vj −Vmax

j

)
; if Vj ≤ Vmax

j ,
(19)

∆PG =

{ (
Pmin

G − PG

)
; if PG ≤ Pmin

G ,

(PG − Pmax
G ); if PG ≤ Pmax

G .
(20)

Here, ZZ is the fitness function; ovli, VBL represents set of overloaded lines, violated load bus
voltage; and Pfi(fi = 1, 2, 3) represents a large penalty factor, taken to be 10,000 throughout the
simulation procedure [9].

Computational Procedure for SBO Algorithm for CM

The following procedure is applied to the CM problem based on the above discussion.
Step 1 Initialization: Initialize the population of bowerbirds, which are a set of generations (i.e., P+

Gj

and P−Gj) constrained by the upper and lower limits of the generation to regulate the congestion.
Step 2 Fitness function evaluation: The objective function is evaluated for the bowerbird

population and the best solution is stored as elite.
Step 3 Deterministic changes: The attraction power of the bower is calculated based on

Equations (11), (12), and (14). The new solution is obtained from the older solution following
deterministic changes (13). These new solutions are the new set of values for generation rescheduling.
The solutions are implemented in the objective function, and the fitness of the solution is evaluated.
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Step 4 Mutation: Random changes are applied to the existing solutions based on a certain
probability as in Equations (15) and (16). The fitness of the obtained solution is evaluated using the
objective function.

Step 5 Elitism: For each iteration, the best solution is preserved as the “elite” solution. After the
end of the iterations, the elite solution corresponds to the solution of the problem.

5. Simulation Results and Discussion

In the present proposed work, the SBO for CM was implemented using MATLAB R2014a
software on a computer system based on an Intel core i3 Processor, with 2.20 GHz and 2 GB of
RAM. The effectiveness of the proposed approach was put to the test on various networks, namely,
a modified IEEE 30-bus system [9], modified IEEE 57-Bus test system [9], and IEEE 118-Bus test
system [22]. The load bus lower and upper voltage were taken as 0.9 p.u. and 1.1 p.u. In this algorithm,
throughout the simulation, the population size taken was 50, step size(α) was 0.94, the percentage
of the difference between the upper and lower limit z was 0.002, mutation probability (p) was 0.05,
and maximum iterations was taken as 100. The incremental/decremental price bids are exhibited in
the Appendix A in Table A1. The different test systems with different testing approaches considered
for validation of the present work and details are shown in Table 1.

Table 1. Details of simulated test systems with test cases.

Test System Test Case Contingency Considered

Modified 1A Line outage between 1 and 2
IEEE 30-bus 1B Line outage between 1 and 7 with load increase 50% at all buses

Modified 2A Lines capacity reduction from 200 to 175 MW and 50 to 35 MW between 5–6 and 6–12
IEEE 57-bus 2B Line capacity reduction from 85 to 20 MW between lines 2 and 3

IEEE 118-bus 3 Line outage between 8 and 5 with load increase of 57% at buses 11–20

The amount of electric power transmitted between the congested lines before and after CM is
given in Table 2.

Table 2. Details of congested line flow for different test systems. CM: congestion management.

Test Case Congested Lines
Line Flow, MW Specified Line

Limit, MWBefore CM After CM

1A
1–7 147.57 130 130
7–8 140.23 123.54 130

1B
1–2 314.01 130 130
2–8 97.86 61.46 65
2–9 103.66 64.39 65

2A
5–6 188.69 168.47 175
6–12 49.53 16.85 35

2B 2–3 36.60 16.78 20

3
16–17 209.24 97.65 175
30–17 580.29 496.80 500
8–30 363.52 143.08 175

5.1. Modified IEEE 30-Bus Test System

The modified IEEE 30-bus test system contains 41 transmission lines, 6 generator buses,
and 24 load buses. The total testing network real-power is 283.4 MW and reactive-power is 126.2 MVAR.
In this test system, two different cases are taken up for analysis of the proposed algorithm, viz., Cases 1A
and 1B shown in Table 1.
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In Case 1A, congestion is created in the test system by considering an outage of the line between
the buses 1 and 2. Due to the outage of the line, congestion occurs in the lines between 1–7 and
7–8. The details of the amount of line flow are shown in Table 2. For secured operation, corrective
actions are taken to alleviate these overloading lines. The proposed SBO algorithm is applied for the
minimization of congestion cost. The obtained optimal values of congestion cost by the proposed SBO
method are compared with those reported in the literature like simulated annealing(SA) [9], random
search method (RSM) [9], particle swarm optimization (PSO) [9], and firefly algorithm (FA) [23] in
Table 3. The optimal value of total congestion cost obtained using the proposed SBO algorithm was
found to be 421.58 $/h, as shown in Table 3.

Table 3. Comparison of simulation results for modified IEEE 30-bus test power system. SA: simulated
annealing; RSM: random search method; (PSO): particle swarm optimization; FA: firefly algorithm;
SBO: satin bowerbird optimization.

Variables SA [9] RSM [9] PSO [9] FA [23] SBO [Proposed]

Case 1A

TC, $/h 719.86 716.25 538.95 511.8737 421.58
∆PG1, MW −9.076 −8.808 −8.61 −8.7783 −8.59617
∆PG2, MW 3.133 2.647 10.4 15.0008 7.57019
∆PG3, MW 3.234 2.953 3.03 0.1068 0.35246
∆PG4, MW 2.968 3.063 0.02 0.0653 1.09699
∆PG5, MW 2.954 2.913 0.85 0.1734 0.56891
∆PG6, MW 2.443 2.952 −0.01 −0.6180 0.52286

TRRG, MW 23.809 23.33 22.93 24.7425 18.70758

Case 1B

TC, $/h 6068.7 5988 5335.5 5304.40 5238.93
∆PG1, MW NL NL NL −8.5798 −9.00148
∆PG2, MW NL NL NL 75.9954 62.90304
∆PG3, MW NL NL NL 0.0575 34.24745
∆PG4, MW NL NL NL 42.9944 2.05959
∆PG5, MW NL NL NL 23.8325 29.45485
∆PG6, MW NL NL NL 16.5144 23.47373

TRRG, MW 164.53 164.5 168 167.974 161.14013

TC—total cost of the congestion; TRRG—total real-power rescheduling generators; NL—not given in the literature.

The voltage magnitude was obtained after CM using SBO, and is shown in Figure 1a. It is
observed that, after CM, the voltage magnitude is within limits between 0.9 and 1.1. A comparative
graphical representation of the real-power rescheduling and congestion cost with different algorithms
is shown in Figure 1b,c. The system real-power losses reduce from 16.13 MW to 12.665 MW after
the CM.
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In Case 1B, outage of line between 1 and 7, along with the increase in load to 1.5 times as
much, causes overloading in the lines 1–2, 2–8, and 2–9. Table 2 shows the line flows in between the
overloaded lines in this case. Table 3 illustrates the results for minimization of the congestion cost
and changes in the real power of generators. A comparative graphic view of the change in real-power
of generators and total congestion cost is presented in Figure 2b,c. The cost for CM is less for the
proposed SBO method than for the other comparative methods. In addition, the total system loss is
initially 37.24 MW; after CM, it reduces to 14.59 MW. Figure 2a shows the proposed SBO method-based
variation in output voltage at all the buses after the CM.
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5.2. Modified IEEE 57-Bus Test System

The modified IEEE 57-bus test system consists of 80 transmission lines, 50 load buses,
and 7 generator buses. The total test network real-power is 1250.8 MW and the reactive-power
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is 336 MVAR. The two different cases considered for this simulation, viz., Cases 2A and 2B, are shown
in Table 1.

In Case 2A, the line limits were reduced to 175 MW and 35 MW in the lines 5–6 and 6–12, instead
of 200 MW and 50 MW. The details of the congested line flow before and after CM are provided
in Table 2. Due to this congestion, lines between 5–6 and 6–12 get overloaded and the total power
violation becomes 28.22 MW. The optimum value of the generator real-power rescheduling performed
using the proposed SBO algorithm completely alleviates the violation of the overloading lines. Table 4
shows the minimum cost achieved by the proposed SBO method compared to those achieved by
earlier algorithms. The SBO method-based bus voltages, as obtained after the application of CM,
are displayed in Figure 3a and are acceptable. The real-power rescheduling and congestion cost of
the proposed SBO method compared with that of other algorithms is shown in Figure 3b,c. Figure 3d
shows the convergence profile. The total system loss before CM was 69.64 MW; this decreased to
24.558 MW after the CM.
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Table 4. Comparison of simulation results for modified IEEE 57-bus test power system.

Variables SA [9] RSM [9] PSO [9] FA [23] SBO [Proposed]

Case 2A

TC, $/h 7114.3 7967.1 6951.9 6050.1 5773.27
∆PG1, MW 74.499 59.268 23.13 5.6351 −0.05437
∆PG2, MW 0 0 12.44 2.5230 −11.72790
∆PG3, MW −1.515 37.452 7.49 0.5098 −5.81154
∆PG4, MW 9.952 −47.39 −5.38 0.107 −45.26118
∆PG5, MW −85.92 −52.12 −81.21 −39.1514 −51.32093
∆PG6, MW 0 0 0 −35.1122 −34.86761
∆PG7, MW 0 0 39.03 62.1938 −0.53486

TRRG, MW 171.87 196.23 168.78 145.227 144.57839
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Table 4. Cont.

Variables SA [9] RSM [9] PSO [9] FA [23] SBO [Proposed]

Case 2B

TC, $/h 4072.9 3717.9 3117.6 2618.1 2084.78
∆PG1, MW NL NL NL 0.3704 0.76179
∆PG2, MW NL NL NL −27.5084 0.08662
∆PG3, MW NL NL NL 31.6294 22.04924
∆PG4, MW NL NL NL 0.3308 0.17019
∆PG5, MW NL NL NL −2.2549 −10.50832
∆PG6, MW NL NL NL −1.9354 −0.00000
∆PG7, MW NL NL NL −0.5101 16.00743

TRRG, MW 97.88 89.32 76.314 64.5393 49.58359

TC—total cost of the congestion; TRRG—total real-power rescheduled generators; NL—not given in the literature.

In Case 2B, shown in Table 1, the line limit of line 2–3 was reduced from 85 MW to 20 MW to
create line overloading. The details of the line flow data before and after CM are shown in Table 2.
The results obtained after applying the proposed SBO and other methods are listed in Table 4. Table 4
clearly shows that the cost incurred for CM is only 2084.78 $/h for the proposed SBO method, which is
the lowest among all the costs obtained so far as reported in [9]. Comparative congestion costs offered
by different algorithms and the proposed SBO method are displayed in Figure 4c. The system loss
reduces to 28.22 MW after CM as compared to 78.23 MW during congestion. Figure 4 indicates that
the proposed SBO method gives the best results after CM compared with others in the literature.
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5.3. IEEE 118-Bus Test System

The test system comprising 54 generator buses, 64 load buses, and 186 transmission lines is taken
into account in this work. In this simulation, Case 3 disconnects the line between 8 and 5 along with
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increasing the load between 11 and 20 to 1.57 times the original load in order to create contingency for
simulation purposes; this is projected in Table 1. The particulars related to the congested line flow for
this case are shown in Table 2.

The data in Table 5 list the cost of the congestion and generator real-power rescheduling obtained
by SBO algorithm compared with those of other algorithms given in literature. From Table 5, it is
made clear that overloaded lines are totally relieved by generation rescheduling with the cost of
12,336.05 $/h, which is the lowest when compared with all other optimization algorithms enlisted
in [22] such as evolutionary programming algorithm (EP), real coded genetic algorithm (RCGA),
particle swarm optimization (PSO), hybrid particle swarm optimization (HPSO), and differential
evolution (DE). The loss of the total system before CM is 277.301 MW, and is then decreased to
230.505 MW. Further, it is assessed through the tests that the SBO provides the best optimal solution in
every independent trial run and continues to be consistent even for large systems as well. The bus
voltage and convergence profile obtained after the CM are plotted in Figure 5. Figure 5a shows the
voltage magnitudes at all the buses.

Table 5. Comparison of simulation results for IEEE 118-bus test power system.EP: evolutionary
programming algorithm, RCGA: real coded genetic algorithm, PSO: particle swarm optimization,
HPSO: hybrid particle swarm optimization, DE: differential evolution.

Variables EP [22] RCGA [22] PSO [22] HPSO [22] DE [22] SBO [Proposed]

TC, $/h 42,886 17,693 17,742 17,365 16,080 12,336.05
∆PG1 38.11 26.274 24.502 11.59 6.4705 6.35066
∆PG2 0 0 0 0 0 3.45815
∆PG3 63.06 31.422 1.0259 6.568 12.295 5.01763
∆PG4 −7.48 11.349 1.3148 −0.046 −0.056 8.99506
∆PG5 −200.6 −219.3 −21.82 −207.7 −208.1 −203.28939
∆PG6 48.58 101.42 105.32 80.126 105.32 8.81232
∆PG7 0 0 0 0 0 22.22845
∆PG8 49.17 0.0029 16.815 6.0059 1.9946 0.61579
∆PG9 64.056 8.0582 23.665 −0.239 1.2884 6.78422
∆PG10 0 0 0 0 0 2.32609
∆PG11 121.51 114.69 121.51 121.51 49.697 −0.2996
∆PG12 25.918 116.31 116.31 108.06 113.29 1.06873
∆PG13 85.37 7.4155 3.0092 10.752 0.8125 0.62895
∆PG14 32.857 −0.0019 0.0177 −0.536 2.1836 4.24786
∆PG15 31.616 28.095 8.8665 11.254 89.669 12.42693
∆PG16 39.071 1.7508 7.1475 0.0731 0.7819 0.21691
∆PG17 37.552 0.0004 0.4916 −0.394 −0.041 0.49255
∆PG18 0 0 0 0 0 1.48727
∆PG19 0 0 0 0 0 0.46018
∆PG20 89.001 1.7478 6.0792 4.3096 −0.089 −0.34758
∆PG21 96.075 18.528 19.359 77.661 102.85 −1.09116
∆PG22 93.828 33.426 36.798 72.901 7.3786 −0.24492
∆PG23 0 0 0 0 0 0.36291
∆PG24 0 0 0 0 0 0.25945
∆PG25 0 0 0 0 0 1.53135
∆PG26 0 0 0 0 0 −5.89327
∆PG27 0 0 0 0 0 0.3658
∆PG28 0 0 0 0 0 −112.36346
∆PG29 0 0 0 0 0 −6.58455
∆PG30 −450.9 0 10.702 0.6525 4.904 −4.10322
∆PG31 0 0 0 0 0 0.90951
∆PG32 0 0 0 0 0 0.40333
∆PG33 0 0 0 0 0 0.17212
∆PG34 0 0 0 0 0 0.78747
∆PG35 0 0 0 0 0 0.14819
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Table 5. Cont.

Variables EP [22] RCGA [22] PSO [22] HPSO [22] DE [22] SBO [Proposed]

∆PG36 0 0 0 0 0 0.18178
∆PG37 0 0 0 0 0 −3.22489
∆PG38 0 0 0 0 0 0.32378
∆PG39 0 0 0 0 0 −0.80088
∆PG40 0 0 0 0 0 −74.35625
∆PG41 0 0 0 0 0 0.19709
∆PG42 0 0 0 0 0 0.15209
∆PG43 0 0 0 0 0 1.21754
∆PG44 0 0 0 0 0 0.13011
∆PG45 0 0 0 0 0 −0.54271
∆PG46 0 0 0 0 0 −3.72569
∆PG47 0 0 0 0 0 1.82584
∆PG48 0 0 0 0 0 0.36729
∆PG49 0 0 0 0 0 0.15896
∆PG50 0 0 0 0 0 0.99087
∆PG51 0 0 0 0 0 −0.90559
∆PG52 0 0 0 0 0 0.27131
∆PG53 0 0 0 0 0 0.78541
∆PG54 0 0 0 0 0 1.05513
TRRG 1574.9 719.8998 717.7839 720.4816 707.3281 515.98823

TC—total cost of the congestion; TRRG—total real-power rescheduled generators.
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6. Convergence Mobility and Effectiveness of SBO

To examine the performance of the SBO proposed for solving CM issues, the worth of the
convergence rate (CR) [24] was set for all the cases so as to check the convergence speed. Here, a general
scheme was adopted to search out the worth of the CR for any number of optimization algorithms in
line; the explicit adopted procedure is as follows:

(a) Run the algorithms up to the maximum of NFFE (number of fitness function evaluation) (NFFEmax);
(b) Based on convergence, determine NFFER, which is the NFFE corresponding to the minimum

objective value; and
(c) Compute the CR for the algorithm by using Equation (21).

CR =

(
1− NFFER

NFFEmax

)
× 100%, (21)

where CR ∈ [0,1] and the values of CR equal to 1 and 0 respectively specify the best and worst
convergence rate of the considered algorithm. The CR of the proposed SBO method has the highest
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average value, which clearly shows that this algorithm converges to the optimum solution faster
than other optimization algorithms shown in Figure 6. The details of parameter values of the various
algorithms are shown in Table 6.

Table 6. Parameter values of various algorithms. FFA: firefly algorithm.

PSO FFA SBO

No. of particles = 40; Inertia weight
ωmax = 0.9;ωmin = 0.4; C1 = C2 = 2

Fireflies = 40; α and γ = 0 to 1;
βo = 10

Population size = 40, step size (α) = 0.94;
z = 0.002; p = 0.05

Maximum iterations = 150 Maximum iterations = 150 Maximum iterations = 150
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7. Conclusions

A new approach for CM in an electricity market with open access is proposed in the paper.
The problem was formulated as a multi-objective function with cost and losses as major objectives
satisfying several electrical constraints. To solve this problem, Satin Bowerbird Optimization (SBO)-
a modern meta-heuristic algorithm-was employed. In addition, contingencies such as tripping lines
and overloading lines were considered. The proposed approach of utilizing SBO was compared with
contemporary algorithms such as SA, RSM, PSO, FA, EP, RCGA, HPSO, and DE as reported in the
literature, and the results depict the superiority of SBO over these algorithms. The approach was
applied successfully to the standard test systems such as the IEEE 30-bus, 57-bus, and 118-bus systems.
The comparative study clearly shows that the proposed SBO-based approach of generator rescheduling
produces less cost compared with other algorithms for all the adopted test cases. The convergence
mobility of the proposed method is the fastest among all methods. It can also be inferred from
the single-objective and multi-objective cases that the optimization of one of the objectives has a
deteriorating effect on the other objective. Hence, care must be taken while designing a solution based
on the method described in the paper.
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Appendix A

Table A1. Price bids submitted by the generator companies for modified IEEE 30-bus, modified IEEE
57-bus, and IEEE-118 bus test systems.

Bus
Number

Increment
(CtG), $/MWh

Decrement
(DtG), $/MWh

Bus
Number

Increment
(CtG), $/MWh

Decrement
(DtG,) $/MWh

Modified IEEE 30-bus test system [7]

1 22 18 4 43 37
2 21 19 5 43 35
3 42 38 6 41 39

Modified IEEE 57-bus test system [7]

1 44 41 5 42 39
2 43 39 6 44 40
3 42 38 7 44 41
4 43 37

IEEE 118-bus test system [19]

1 40 38 65 25 17
4 43 35 66 26 18
6 41 38 69 28 15
8 44 39 70 43 39

10 22 17 72 47 38
12 23 18 73 44 36
15 45 35 74 43 39
18 41 38 76 44 36
19 44 36 77 47 38
24 45 35 80 23 15
25 27 18 85 43 39
26 23 18 87 25 17
27 41 39 89 44 36
31 45 35 90 42 38
32 24 18 91 41 38
34 43 37 92 44 36
36 44 36 99 43 37
40 43 35 100 42 36
42 47 38 103 24 17
46 45 35 104 44 38
49 25 18 105 43 39
54 32 30 107 42 38
55 42 36 110 43 37
56 43 37 111 22 18
59 23 17 112 42 38
61 26 16 113 47 33
62 44 36 116 45 35
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