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Abstract: This paper proposes an effective novel cuckoo search algorithm (ENCSA) in order
to enhance the operation capacity of hydrothermal power systems, considering the constraints
in the transmission network, and especially to overcome optimal power flow (OPF) problems.
This proposed algorithm is developed on the basis of the conventional cuckoo search algorithm (CSA)
by two modified techniques: the first is the self-adaptive technique for generating the second new
solutions via discovery of alien eggs, and the second is the high-quality solutions based on a selection
technique to keep the best solutions among all new and old solutions. These techniques are able to
expand the search zone to overcome the local optimum trap and are able to improve the optimal
solution quality and convergence speed as well. Therefore, the proposed method has significant
impacts on the searching performances. The efficacy of the proposed method is investigated and
verified using IEEE 30 and 118 buses systems via numerical simulation. The obtained results are
compared with the conventional cuckoo search algorithm (CCSA) and the modified cuckoo search
algorithm (MCSA). As a result, the proposed method can overcome the OPF of hydrothermal power
systems better than the conventional ones in terms of the optimal solution quality, convergence speed,
and high success rate.

Keywords: cuckoo search algorithm (CSA); constraints in a transmission network; hydrothermal
power systems; optimal power flow

1. Introduction

Optimal power flow (OPF) is a complex problem for the operation of a power system due to
its dependence on many equality and inequality constraints, such as the limit of active and reactive
powers of electric generators, transformer tap positions, switchable capacitor banks, bus-voltage values,
and capacity of lines transmission [1]. The purpose of the OPF problem is to determine the values of
control variables and how to carry out an OPF in order to obtain all dependent variables. A solution is
considered an optimal result if it gives the minimum fuel cost for all thermal units while satisfying all
dependent variables and constraints. Normally, the OPF problem is only run for one sub-interval.
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The hydrothermal scheduling (HTS) problem is relatively different from the OPF problem since
the thermal and hydro units are included in power systems. The target of the HTS problem is to
minimize the fuel cost of the thermal units in various scheduled sub-intervals while satisfying all
constraints in the generators’ capacities, the balance of power systems, as well as limitations of water
discharge, water balance, etc. In addition, the optimal operation of hydrothermal systems is divided
into many sub-intervals, which is more complicated than a single sub-interval in the OPF problem.
Apparently, the OPF problem considers all constraints in transmission lines, but hydraulic constraints
from hydropower plants are neglected.

Practically, so far the HTS and OPF problems have been studied independently. For instance,
the HTS problem was discussed in [1–12] and the OPF problem was presented in [13–47].
However, combining the OPF and HTS problems was attempted by the authors in [48–54]; but they
only use methods belonging to the deterministic algorithms [48–53] applied in the past three decades.
In order to solve this combined problem, Newton’s is the first method applied, where IEEE systems
from 5 to 118 buses accompanied by a fixed-head short-term hydropower plant model are tested.
The study objective is only to indicate the ability of the Newton approach to deal with the complicated
problem and to satisfy all constraints such as the voltage, generation limitations on units, as well as
other constraints in transmission lines. The whole data of the test systems was not given in these
papers and the objective function values were not considered for comparisons. The two difficulties
have restricted to attract attention from researchers, leading to a small number of published papers
regarding the problem. In [49–52], the authors only considered the transmission network constraints
when dealing with the hydrothermal system scheduling problem. They have built and solved their own
problem data and their applied method could handle the problem. On the contrary, in [53], the authors
have proposed an improved particle swarm optimization (PSO) algorithm to solve the eight-bus
system; as in previous studies, the improved PSO is used in order to obtain the optimal solution for the
HTS problem while satisfying the constraints of the OPF problem. The authors of [54] have developed
a conventional cuckoo search algorithm (CCSA) for solving the hydrothermal optimal power flow
problem (HTOPF) and the performance of the conventional CSA was also compared via conventional
PSO. They supposed that the capacitor bank and tap changer were the continuous variables and the
load demands between different subintervals were identical to the given data in the OPF problem.
This assumption could help verify the effectiveness and robustness of conventional CSA compared to
the conventional PSO. However, the capacitors and tap should be the discrete variables in practice and
the load demands of different subintervals should be different. Consequently, in order to solve the
hydrothermal OPF problem, this paper proposes an effective novel cuckoo search algorithm (ENCSA)
for optimizing the operation of hydrothermal power systems, taking into account all constraints
belonging to the transmission power networks and considering the minimization of electricity and
fuel costs as the objective function. The procedure for searching CCSA [55] is constructed of five main
steps: step 1, the first update of new solutions via the theory of Lévy flights; step 2, comparison and
selection; step 3, the second update of new solutions via a mutation operation; step 4, comparison
and selection; and step 5, the determination of the best solution. Modified CSA (MCSA) [56] has
focused on the improvement in the first update of new solutions using Lévy flights, while the next
four steps have remained unchanged in MCSA. This MCSA has divided all current solutions into
two subgroups by quality, in which the first one contains lower fitness function solutions and the
second one contains higher fitness function solutions. Each solution in the first subgroup is newly
produced by using its old solution and two other ones in the group, while each solution in the second
subgroup is newly updated as in step 1 of CCSA, i.e., using an old solution and the best solution.
In addition, MCSA has suggested an adaptive value for the scaling factor, with the change depending
on the iteration. In ENCSA, we focus on improvement of steps 3 and 4, corresponding to the second
update of new solutions and the comparison and selection. In the second update of new solutions,
we propose an adaptive mutation technique by using two mutation modes simultaneously for current
solutions. Solutions far away from the so-far best solution will use a jumping step with two random
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solutions and they are newly updated. On the contrary, solutions close to the so-far best solution
will use four random solutions to produce a jumping step and solutions are sought around the so-far
best solution instead of around the current solution. In step 4, CCSA makes a comparison between
each old solution and each new solution at the same nest and keeps the better one. The selection
can cope with a mistake (i.e., a better solution at one nest can be worse in quality than another one
at other ones). For this case, CCSA omitted promising solutions. Thus, we have tackled the cons of
CCSA by suggesting a second modification: firstly, all old solutions and all new solutions are mixed
together; secondly, identical solutions are identified, and only one solution is retained, while others
are eliminated; finally, a set of the best solutions is stored for the next step of determining the best
solution. To investigate the improvement of ENCSA over CCSA and MCSA, we perform simulation
experiments on IEEE 30 and 118 buses systems. The obtained results are analyzed and compared to
those from CCSA and MCSA. More concretely, the main contribution includes the following aspects:

(i) Successfully improve the optimal solution search ability of ENCSA;
(ii) Successfully formulate a hydrothermal power system scheduling problem considering all

constraints in transmission power networks;
(iii) Successfully deal with all constraints such that they can be satisfied completely thanks to the

appropriate selection of decision variables.

This paper is divided into one appendix and six sections. Starting with an introduction in
Section 1, Section 2 covers the formulation of the hydrothermal optimal power flow problem while
Section 3 gives the proposed algorithm for optimal power flow problem of the hydrothermal power
systems. Section 4 presents an application of the proposed method to deal with the optimal power
flow problems, while simulation results are handled in Section 5 and Appendix A. Finally, conclusions
are reported in Section 6.

2. Hydrothermal Optimal Power Flow Problem Formulation

The main formulation for dealing with the optimal power flow problems of hydrothermal power
systems is as follows.

2.1. Fuel Cost Objective

The objective optimization of the considered problem is to reduce the total electricity generation
and fuel costs of all available generating units as [3]:

Min
Ng

∑
i=1

Fi(Pgi), (1)

where Fi(Pgi) is the electricity generation cost of the ith generating thermal unit and can be described
by the following second-order equation:

Fi(Pgi) = ai + biPgi + ciP2
gi. (2)

2.2. Hydrothermal System Constraints

Water availability constraints can be described as follows [4]:

M

∑
m=1

tmqj,m = Wj; j = 1, . . . , N2, (3)

where qj,m is the water discharge via hydro turbine j in subinterval m and can be calculated by:

qj,m = ahj + bhjPhj,m + cjP2
hj,m. (4)
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Generator Operating Limits: The active and reactive powers of thermal and hydro units are
constrained between their minimum and maximum values as follows:

Pgi,min ≤ Pgi ≤ Pgi,max; i = 1, . . . , Ng,
Qgi,min ≤ Qgi ≤ Qgi,max; i = 1, . . . , Ng

. (5)

Generation bus voltage limits: The operating voltage of all generators is constrained within
their boundaries:

Vgi,min ≤ Vgi ≤ Vgi,max; i = 1, . . . , Ng. (6)

2.3. Transmission Network Constraints

Power balance: The active and reactive power balance between the load and generator at each bus is
considered [13]:

Pgi − Pdi = Vi

Nb
∑

j=1
Vj
[
Gij cos(δi − δj) + Bij sin(δi − δj)

]
; i = 1, . . . , Nb,

Qgi + Qci − Qdi = Vi

Nb
∑

j=1
Vj
[
Gij sin(δi − δj)− Bij cos(δi − δj)

]
; i = 1, . . . , Nb

. (7)

Minimum and maximum limits of shunt compensators: The reactive power generated for the grid
by capacitor banks must be within the following limitations:

Qci,min ≤ Qci ≤ Qci,max; i = 1, . . . , Nc. (8)

Practically, the reactive power generated for the grid by the capacitor banks is not a continuous
variable but a discrete variable. Therefore, the exact value of the capacitor banks should follow the
equation [46]:

Qci = Qci,min + Nci · ∆Qci, (9)

where ∆Qci is the rated power of each capacitor and Nci is the selected number of capacitors among
the set of available capacitors. However, in some cases, the number of available capacitors and the
rated power are not given and only the minimum and the maximum values are given; the value Qci is
newly generated within its boundaries and then is rounded up or down to the nearest unit.

Limits of transformer tap selection: The selection of transformer taps with aim to stabilize power
network voltage but it should be one of a set of specific values of each available transformer at buses
by the model below:

Tk,min ≤ Tk ≤ Tk,max; k = 1, . . . , Nt. (10)

Similar to the capacitor banks variable, the magnitude of the load tap changer is also not a continuous
variable but a discrete variable since the tap is changing by a certain increment. This increment is also
dependent on the size of the specified transformer, as in the following equation [46]:

Tk = Tk,min + Ntk · ∆Tk. (11)

Limitations of voltage at load buses: The operating voltage of each load must be within valid range
and can be described as follows:

Vli,min ≤ Vli ≤ Vli,max; i = 1, . . . , Nd. (12)

Limitations of transmission lines: The apparent power flow in each line must be lower than the
allowable capacity of conductor, and can be calculated as follows:
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Sl ≤ Sl,max; l = 1, . . . , Nl , (13)

where Sl = max
{∣∣Sij

∣∣, ∣∣Sji
∣∣}.

2.4. Control and Dependent Variables

The sets of control and dependent variables of the HTOPF problem are shown in
Equations (14) and (15). It is clear that the control variables consist of active power of all generators at
all buses except at the slack bus, the voltage of all generators, the transformer tap, and the reactive power
of shunt capacitors. The control variables will be added into the program of power flow and then we
will obtain the dependent variables given in Equation (15). When all dependent variables can satisfy their
boundaries and the objective function can be minimized, the search process is terminated.

u =
{

Pg2, . . . , PgNg , Vg1, . . . , VgNg , T1, . . . , TNt , Qc1, . . . , QcNc

}
T , (14)

x =
{

Pg1, Qg1, . . . , QgNg , Vl1, . . . , VlNd
, Sl1, . . . , SlNl

}
T . (15)

3. The Proposed Algorithm for the Optimal Power Flow Problem of the Hydrothermal
Power Systems

This paper develops an improved version of CCSA by carrying out modifications on two existing
techniques of CCSA. For the sake of simplicity, the construction of the CCSA is first described in detail
as follows.

3.1. Conventional Cuckoo Search Algorithm

The CCSA method is constructed of two random walks and one selection operation. The three phases
can be described as follows.

Lévy flights random walk: CCSA utilizes the random walk technique based on the behavior of Lévy
flight to produce the first update of new solutions to its search procedure. For solution d, its new
solution Xnew

d is updated by using a jumping step to a nearby old solution Xd. The jumping step is
created using the so-far best solution Gbest, old solution Xd and Lévy flights random walk, as seen in
Equation (16):

Xnew
d = Xd + α0(Xd − Gbest)Lévy(β). (16)

Selective random walk: The selective random walk also plays a role similar to the mutation operation
of DE to perform the second update of new solutions for CCSA. A probability of solution replacement
Pro with the range of [0, 1] is selected to balance the old and new solutions effectively. The selective
random walk can be employed as in the following model:

Xnew
d =

{
Xd + rand.(Xrandper1 − Xranper2) i f randd < Pro

Xd otherwise
. (17)

Selection Operation: CCSA utilizes selection operation to perform a comparison between each old
solution and each new solution at each nest and retain more promising solutions to avoid accepting
worse quality solutions. The selection is based on fitness comparison, as seen in Equation (18):

Xd =

{
Xnew

d i f Fitness (Xnew
d ) < Fitness(Xd)

Xd otherwise
, d = 1, . . . ., Np. (18)

The model in Equation (18) is applied twice: first after Lévy flights random walk, and a second
time after selected random walk. However, the task of determining the best solution Gbest is carried out
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only one time at each iteration because the best solution will be used in Equation (16) at the beginning
of each iteration.

3.2. Proposed Cuckoo Search Algorithm

As described in Section 3.1, CCSA is comprised of three stages including two new solution
generations via Lévy flights and discovery of alien eggs, and selection operation. Between the two ways
for searching new solutions, the Lévy flight technique focuses on global search while discovery of alien
eggs aims to exploit a local search. Moreover, selection operation will be carried out to retain a set of
so-far dominant solutions. However, the results obtained from applications of the CCSA to different
optimization problems in different fields have indicated that the method has many weak points such
as lower-quality solutions, a slow convergence speed, and a high number of iterations. In this paper,
an effective novel cuckoo search algorithm (ENCSA) is introduced to tackle the drawbacks of CCSA
by constructing two modifications on CCSA. The first modification aims to determine a feasible local
search zone for each solution via the discovery of alien eggs while the second modification on selection
operation will enable ENCSA to select the potential solutions. The details of the improvements are
as follows.

The proposed self-adaptive technique for the second update of new solutions: In the second update
of new solutions via selective random walk, CCSA employs two arbitrary solutions to produce a
jumping step away from the old solutions for updating a new solution, as shown in Equation (17).
However, the impact of this step will be smaller and narrower since the distribution of solutions
tends to be close together and the zone near the best solution is ignored when the search process
goes to higher iterations. Furthermore, the last iterations are the improvement of solutions near the
current best solution because these solutions tend to update their position near the best solution,
while searching around the best solution is performed only one time, as the old solution is also the
best solution. This issue can lead to a local optimum and low convergence to the highest optimal
solution. The restrictions of CCSA can be overcome by employing the search strategy included in
Equations (19) and (20):

Xnew
d = Xd + rand.(Xrandper1 − Xranper2) , (19)

Xnew
d = Gbest + rand.(Xrandper1 − Xranper2 + Xrandper3 − Xranper4) . (20)

Obviously, the search methods using the models in Equations (19) and (20) are completely different
because the method of Equation (19) is to exploit a small zone around individuals while the aim of
applying Equation (20) is to reach the zone around the best solution. Thus, using Equation (20) can
produce a jump large enough in the search zone to avoid a local optimum and a fall into a zone very
close to the so-far best solution Gbest or even at the same position of the best solution. For a better
understanding, the assumptions are illustrated in Figure 1, in which Xold2 is much closer to Gbest
than Xold1, and thus Equation (19) is more appropriate for Xold1 and Equation (20) is better for the
case of Xold2. Consequently, using such two models simultaneously for the most effective impact is
important to determine an exact criterion. The criterion of small or high distance can be measured
mathematically using the fitness function value of each individual and of the best solution, as shown
in the model below:

Dd =
Fitnessd − Fitnessbest

Fitnessbest
. (21)

Equations (19) or (20) compare Dd and a predetermined tolerance (tol). If Dd is higher than tol,
it means the current solution d is far from the best one; Equation (19) should be used. Otherwise, if Dd
is equal to or lower than tol, it means the current solution d is closer to the best solution; Equation (20)
should be used instead. In the demonstration of this paper, tol is the tolerance picked from one value
in the range of [10−5–10−1]. The procedure for the self-adaptive technique for the second update of
new solutions via the discovery action of alien eggs is proposed in Table 1.
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Table 1. Self-adaptive technique for the second update of new solutions.

if randd < Pro
Calculate Dd

if Dd > tol
Xnew

d = Xd + rand.(Xrandper1 − Xranper2)

else
Xnew

d = Gbest + rand.(Xrandper1 − Xranper2 + Xrandper3 − Xranper4)

end
else

Xnew
d = Xd

end

The top solutions-based selection technique: As shown in Equation (18), after generating new
solutions in the population, at each nest the old solution and its new solution are compared to keep the
one with the better fitness function and eliminate the worse one. However, there is no guarantee that
all new solutions meet the constraints of the application, thus a retained solution is possibly not the
better of the two compared solutions. Additionally, there is a possibility that an abandoned solution
at a nest is better than a retained solution at another nest and the selection technique of CCSA could
miss some promising solutions to reach the global optimization faster because the current population
is not a set of the best candidates. To enhance the alternative technique of CCSA, we propose a new
alternative mechanism called the alternative technique-based dominant solution. It is described in
Table 2.

Table 2. The top solutions-based selection technique.

Step 1. Mix all old solutions and all new solutions
Step 2. Identify identical solutions. Keep only one and eliminate rest of identical ones
Step 3. Sort all solutions in order of ascending fitness function values
Step 4. Keep the first Np solutions

Applying the proposed high-quality selection technique can retain the best different solutions
with lower fitness function and can eliminate worse solutions. In other words, it can keep a set of
the best candidates in the population. Therefore, it can support the proposed method converges to
global optimal solutions fast and increases the probability of finding solutions meeting all constraints,
leading to a high success rate for a number of trial runs.
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4. Application of the Proposed Method to Deal with the Optimal Power Flow Problems

4.1. Initialization

There are nests Np in the population of the proposed method and each nest d will contain almost
all the control variables in Equation (13). The chosen element in each nest plays a very important role in
handling all constraints from hydropower plant reservoirs and transmission lines. Each nest includes
all control variables in Equation (13) for M − 1 subintervals, while the output power of all hydropower
plants is not included for the last subinterval M. The variables in each nest and the initialization for
each nest are as follows:

Xd,m = [Pg2, . . . , PgNg , Vg1, . . . , VgNg , Qc1, . . . , QcNc , T1, . . . , TNt ]; m = 1, . . . , M − 1, (22)

Xd,m = [Pg2, . . . , PgN1 , Vg1, . . . , VgNg , Qc1, . . . , QcNc , T1, . . . , TNt ]; m = M, (23)

Xd,m = Xmin + rand.(Xmax − Xmin); m = 1, 2, . . . , M. (24)

4.2. Calculate the Remaining Control Variables for the Last Subinterval M

All control variables are available for the first M − 1 subintervals, as shown in Equation (22).
However, all hydro generations are not given for the last subinterval. Certainly, running power flow
will be done only for the first M − 1 subintervals. Consequently, the remaining control variables are
found by calculating the water discharges for the first M − 1 subintervals qj,m (where j = 1, . . . , N2 and
m = 1, . . . , M − 1) for all hydropower plants by substituting generations into Equation (4); then using
Equation (3), the water discharges for the last subinterval Mqj,M are obtained under the conditions of
Equation (3), as follows:

qj,M = (Wj −
M−1

∑
m=1

tmqj,m)/tM; j = 1, . . . , N2. (25)

As a result, all hydro generations during the last subinterval Phj,M are determined using
Equation (4), as follows:

Phj,M =
−bhj ±

√
b2

hj − 4chj(ahj − qj,M)

2chj
. (26)

4.3. Calculate Fitness Function

All the control variables are given and the power flow can be run for all M subintervals to obtain
dependent variables, as shown in Equation (15). Then, it is necessary to calculate the fitness function
for evaluating the solution quality. The fitness function of each solution is a sum of the total electricity
generation fuel costs of all generators and the penalty terms for limitation violations of dependent
variables. The following equation can enable the calculation of such a fitness function [54]:

FT = F1 + K1
N2
∑

j=1

(
PhjM − Plim

hjM

)2
+ K2

M
∑

m=1

(
Pg1,m − Plim

g1,m

)2
+ K3

M
∑

m=1

Ng

∑
i=1

(
Qgi,m − Qlim

gi,m

)2

+K4
M
∑

m=1

Nd
∑

i=1

(
Vli − Vlim

li
)2

+ K5
M
∑

m=1

Nl
∑

l=1

(
Sl − Slim

l
)2

, (27)

where K1, K2, K3, K4, and K5 are penalty factors associated with dependent variables.
Before going on to the search procedure of the proposed method, starting with the first update of

new solutions, the best solution Gbest with the lowest fitness function is determined.
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4.4. Handling New Solutions Violating Limitations

Generate new solutions by using Lévy flights, as shown in Equation (16), and using the adaptive
selective random walk technique, as shown in Section 3.2; after each generation, all new solutions do
not always satisfy their limitations. Thus, they need to be checked and repaired in case of violation,
as below:

Xnew
d,m =


Xmax if Xnew

d,m > Xmax

Xmin if Xnew
d,m < Xmin

Xnew
d,m otherwise

m = 1, . . . , M; . (28)

4.5. Termination Criteria

The iterative algorithm will be stopped when the current iteration is equal to the predetermined
maximum value.

4.6. The Effective Novel Cuckoo Search Algorithm for the Considered Problem

The entire search process of the proposed method to the considered problem is shown in Figure 2;
below is the detailed explanation.
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5. Simulation Results

The proposed method is tested on the IEEE 30 and 118 buses power systems. In addition, CCSA
and MCSA are also implemented in these systems as a basis for comparison.

5.1. Selection of Control Parameters

In order to implement the proposed method, CCSA, and MCSA for solving the HTOPF problem,
the update probability of new solutions ranges from 0.1 to 0.9 with a step of 0.1, where the tolerance
(tol) for ENCSA is set to 10−3. In addition, the number of nests and the maximum number of iterations
for the applied methods are given in Table 3. For each study case, each method is run for 50 successful
independent trials and the success rate (SR) is calculated by dividing the 50 successful independent
runs by the total number of independent runs. The SR is also a comparison criterion to assess the
handling constraints of the applied methods.

Table 3. Selection of control parameters for the applied algorithms.

Method

System

30 Buses 118 Buses

Parameter

Np Gmax Np Gmax

CCSA 10 150 20 300
MCSA 10 150 20 300
ENCSA 10 150 20 300

5.2. Results Obtained from the IEEE 30 Buses System

The test system comprises 30 buses, among which are six-generation buses, 24-load buses,
and 41 branches. The information on the 30 IEEE buses systems, thermal units and hydro units
is taken from [54]. The optimal operation plan is carried out in 24 h, divided into two 12-h optimal
subintervals. The load of the first subinterval is fixed at values of the IEEE 30 buses system but the
load of the second is reduced to 85% of the first subinterval. The data on the hydro and thermal units
are listed Tables A1 and A2, respectively.

The results obtained from three applied methods such as minimum, average, maximum, standard
deviation, and execution time, in addition to the SR for obtaining 50 successful runs, are shown in
Table 4. As observed from this table, that ENCSA has the lowest cost of $13,655.538 while MCSA
has the second best ($13,718.230) and CCSA has the highest cost ($13,722.208). The exact comparison
indicates that ENCSA has a lower cost than CCSA and MCSA by $66.67 and $62.692, respectively.
Furthermore, ENCSA is also superior in its handling constraints over CCSA and MCSA because its
SR is approximately 100%, whereas that of CCSA and MCSA is 76% and 91%, respectively. The SR
of ENCSA is higher than that of CCSA and MCSA by approximately 22% and 7%, respectively,
due to the contribution of the proposed selection technique-based dominant solutions. This result
proves the benefit of the proposed selection technique-based dominant solutions in ENCSA, keeping
the best candidates among Np old solutions and Np new solutions, as explained in Section 3.2.
Moreover, the optimal value (lowest fuel cost) of ENCSA is the best solution among the compared
methods. According to the general compared indices, we can conclude that ENCSA is more efficient
than CCSA and MCSA when applied to solve the IEEE 30 buses system because it is superior among
the three methods in having the lowest cost (optimal solution quality) and the highest SR (ability to
deal with constraints).
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Table 4. Comparison of obtained results for the IEEE 30 buses system.

Parameter
Method

CCSA MCSA ENCSA

Pro 0.9 0.8 0.9
Min. cost ($) 13,722.208 13,718.230 13,655.538
Mean cost ($) 13,759.815 13,783.937 13,808.732
Max. cost ($) 13,815.143 14,066.094 14,548.909
Std dev. ($) 16.895 53.707 171.314

CPU time (s) 67.036 65.695 65.871
Successes rate (SR) 76% 91% 98%

Figure 3 depicts the convergence characteristics of fitness functions of the three methods.
As observed in this figure, at the iteration of 25 there is a distinction in the performance of the
ENCSA over CCSA and MCSA. In fact, at beginning iterations ENCSA obtains higher fitness function
values than both CCSA and MCSA, but later it decreases dramatically and from the iteration of
25 to the final iteration the fitness function of ENCSA is much less than that of CCSA and MCSA.
Furthermore, the improvement of the fitness functions in CCSA and MCSA is slight from the 50th
iteration onward. Thus, we can conclude that applying the self-adaptive technique in ENCSA enhances
the research ability and avoids convergence to a local optimum, while CCSA and MCSA can be easily
trapped into the local optimal.
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Summarily, ENCSA is superior to CCSA and MCSA in terms of fast convergence to a global
optimum and higher SR thanks to the contribution of the proposed self-adaptive technique as well as
the selection technique-based dominant solutions.

5.3. Obtained Results of the IEEE 118 Buses System

In this section, the IEEE 118 buses system [48], considering hydraulic constraints from reservoirs,
generation capacity constraints of generators, and constraints from transmission lines, is employed
to demonstrate the applicability of the CSA methods for dealing with a very large-scale system.
The schedule time horizon is 24 h, divided into two subintervals including a 20 h subinterval and
a 4 h subinterval. The load demand in the first subinterval is from the base case of the system and
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the load demand in the second is equal to 70% that of the first subinterval. The whole data of the
IEEE 118 buses system is taken from [48] and other information on hydro and thermal units is taken
from [54]. The data on the hydro units are given in Table A3.

The results comparison listed in Table 5 reveals that ENCSA obtained the best minimum cost,
the best standard deviation, and the highest SR ($2,818,001.70, $123,993.90, and 66%), while CCSA
yields the worst results ($3,088,459.00, $153,667.70, and 21%). The best cost and standard deviation
from ENCSA are less than those from CCSA by $270,457.30 and $29,673.80, respectively, and less
than those from MCSA by $176,590.40 and $5947.40, respectively. In addition, the SR from ENCSA
is also the best value among the three methods, at 66%. As observed in Figure 4, the performance
of ENCSA over CCSA and MCSA is outstanding, where the searching speed (change rate of fitness
values) of ENCSA is much greater than that of CCSA and MCSA for the first 60 iterations. After the
60th iteration later, the improvement still occurs in ENCSA but there is no significant improvement
in CCSA and MCSA. Clearly, the impact of the self-adaptive technique on the performance can lead
to a fast convergence to the global optimum and a high-quality solution; in addition, the impact of
selection technique-based dominant solutions on the performance can lead to higher SR in ENCSA.
Thus, we can conclude that ENCSA is the strongest method among the three compared methods due
to the lowest minimum cost, the lowest standard deviation, and the highest SR. The optimal solutions
obtained by ENCSA for the two test systems are shown in Tables 4–6.

Table 5. Comparison of obtained results for the IEEE 118 buses system.

Parameter
Method

CCSA MCSA ENCSA

Pro 0.9 0.9 0.8
Min. cost ($) 3,088,459.0 2,994,592.1 2,818,001.7
Mean cost ($) 3,358,689.2 3,216,312.3 2,961,433.3
Max. cost ($) 3,665,459.0 3,491,042.1 3,336,941.4
Std dev. ($) 153,667.7 129,941.3 123,993.9

CPU time (s) 278 286 282
SR 21% 46% 66%
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5.4. Discussion of ENCSA and Further Analysis of Results

The proposed method has been developed with the aim of overcoming the disadvantages of CCSA
such as the convergence to local optimums or near global optimums and a low SR for complicated
systems. In the first improvement of ENCSA, we open the search zone as the current solution and
the so-far best solution are close together and avoid adopting large jumping step missing promising
zone with high-quality as current solution is far away the so-far best solution. Consequently, the first
advantage of the proposed method over CCSA is to choose a suitable search zone for each considered
solution. In the second improvement of ENCSA, all old and new solutions are mixed together
and identical solutions are abandoned, keeping only one. Finally, the best Np solutions are retained.
Thus, the second advantage of ENCSA over CCSA is to retain Np different solutions with higher quality
than Np abandoned ones. As to combining the two improvements, firstly, ENCSA can converge to a
global optimum with faster speed than CCSA and secondly, ENCSA also gets a higher SR with optimal
solutions, satisfying all constraints. However, ENCSA can also cope with several disadvantages
that CCSA has not overcome, such as a high number of control parameters and the major effect of
parameters on the obtained results. In fact, CCSA has three main parameters consisting of two basic
ones of meta-heuristic algorithms—the population size (the number of nests) and the maximum
number of iterations—and one advanced control parameter, the new solution update probability in
each nest Pro. The selection of the two basic control parameters is based on experience and the trial-error
method, with a note that large-scale systems need a higher number of nests and a higher number of
iterations. The selection of Pro is not based on experience but should be set to a range from 0.1 to 0.9,
and then the best Pro is determined by evaluating the minimum fitness function and standard deviation.
On the other hand, ENCSA has one more control parameter than CCSA, which is tol. The selection
of tol is not dependent on the scale as well as the complex level of systems but should be set to a
range consisting of five values such as 10−1, 10−2, 10−3, 10−4, and 10−5. Consequently, the selection of
control parameters of ENCSA should be carefully tuned.

Further analysis of results: Derrac et al. [57] have pointed out that statistical tests should be performed
for the obtained results in order to improve performance evaluation of different meta-heuristic
algorithms, and the authors have presented the application of testing the sign and Wilcoxon rank-sum
for the pairwise comparisons among results obtained by different methods. In Sections 5.2 and 5.3,
this paper has compared the results obtained by the proposed method with CCSA and MCSA with
respect to the minimum cost, average cost, maximum cost, standard deviation, and SR. The results have
indicated that the proposed method obtained a better minimum cost and higher SR than CCSA and
MCSA for IEEE 30 and 118 buses power systems but other measures as the average cost, maximum cost,
and standard deviation of the proposed method are lower than those of CCSA and MCSA (only for the
IEEE 118 buses power system). For further investigation of the proposed method performance, we have
chosen the Wilcoxon rank-sum test and Welch’s t-test for the analysis of results of the proposed method,
CCSA, and MCSA. For implementation of the two tests on the two considered power systems, a level
of significance α = 0.05 has been considered and obtained p values can result in two different cases,
in which the first case is that p values are less than 0.05 and the second case is that p values are equal to
or higher than 0.05. In the first case, the proposed method is a significant improvement; otherwise,
the proposed method cannot provide solutions with a significant improvement over CCSA and
MCSA [57]. The p values of Welch’s t-test and Wilcoxon’s rank-sum test are reported in Tables 6 and 7,
respectively. As shown in Table 6, the p values for comparison of the proposed method with CCSA
and MCSA are approximately 0.3 for IEEE 30 buses hydrothermal power system and less than 0.05 for
IEEE 118 buses hydrothermal power system. As observed in Table 7, p values are equal to 0.184 and
0.251, respectively, for an IEEE 30 buses hydrothermal power system corresponding to the comparison
of the proposed method with CCSA and MCSA, and are 0.0298 and 0.0312, respectively, for IEEE
118 buses hydrothermal power system corresponding to the comparison of the proposed method with
CCSA and MCSA. Clearly Welch’s t-test provides a range of p values, while Wilcoxon’s rank-sum
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test provides a particular value for each comparison. In spite of the difference, such numbers present
the same results for evaluation. Both 0.184 and 0.251 are approximately equal to 0.3 and much
higher than 0.05, while 0.0298 and 0.0312 are less than 0.05. Consequently, both Welch’s t-test and
Wilcoxon’s rank-sum test point out that the proposed method is a significant improvement than CCSA
and MCSA for IEEE 118 buses hydrothermal power system; however, the same evaluation is not
seen for the IEEE 30 buses hydrothermal power system. The proposed method reached a success
rate of 98%, while CCSA and MCSA have obtained success rates of 76% and 91%, respectively; thus,
for 50 successful runs, the proposed method has executed only 51 runs while CCSA and MCSA have
executed 66 and 55 runs, respectively.

Table 6. The p values of Welch’s t-test for pairwise comparisons.

Tested System Method Size Mean Std. t df p Value

30 buses
ASCSA 50 13,808.73 171.314 NA NA NA
CCSA 50 13,759.82 16.895 2.0093251 0.08428355 ≈0.3
MCSA 50 13,783.94 53.707 2.30637854 0.01628009 ≈0.3

118 buses
ASCSA 50 2,961,433.30 123,993.9 NA NA NA
CCSA 50 3,358,689.20 153,667.7 14.2261863 1.2031E-07 <0.05
MCSA 50 3,216,312.30 129,941.3 9.50689037 1.6885E-07 <0.05

Table 7. The p values of Wilcoxon’s rank-sum test for pairwise comparisons.

Tested System Method p Value

30 buses
CCSA 0.184
MCSA 0.251

118 buses
CCSA 0.0298
MCSA 0.0312

The fitness function values obtained by the proposed method, CCSA, and MCSA over
50 successful runs are illustrated in Figures 5 and 6 for the IEEE-30 bus system and the IEEE 118 buses
system for further analysis on results. Figure 5 shows a high fluctuation of optimal solutions obtained
by the proposed method, while CCSA and MCSA have smaller fluctuations. However, many red
points of the proposed method have a lower fitness function than the black points of CCSA and
blue points of MCSA, and such red points have approximate fitness values close to the best fitness.
Clearly, the obtained results, the p-values of Welch’s t-test, and the p-values of Wilcoxon’s rank-sum
test indicate the highly unstable search ability of the proposed method for the IEEE-30 bus system.
In spite of this, the proposed method is still considered more effective than CCSA and MCSA because
it finds a better optimal solution and many such better solutions nearby, while CCSA and MCSA
cannot reach the zone near the optimal solutions of the proposed method. On the contrary, Figure 6
shows a completely different result since most red points of the proposed method have a much lower
fitness function than the black points and blue points from CCSA and MCSA; even the best black point
and the best blue point have a better fitness function than a few red points. In addition, the proposed
method has a smaller fluctuation than CCSA and MCSA. Clearly, the obtained results, the p-values
of Welch’s t-test, and the p-values of Wilcoxon’s rank-sum test can result in the same conclusion that
the proposed method outperform CCSA and MCSA in terms of the best optimal solution and the
stabilization of the search ability for the IEEE 118 buses system.
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6. Conclusions

In this paper, an effective novel cuckoo search algorithm (ENCSA) has been proposed to deal
with the optimal power flow problems of hydrothermal power systems, considering the constraints
in transmission networks. The proposed method is an improved version of the conventional CSA
in that it applies two techniques—the self-adaptive technique, which is used for the second step of
generating new solutions, and the top solutions-based selection technique to keep the best solutions
among all new and old solutions. To verify the performance of ENCSA, two tests cases have been
implemented in the IEEE 30 and 118 buses systems. The results from both test cases have proved that
ENCSA is a better method compared to CCSA and MCSA in terms of the optimal solution quality,
success rate, and convergence speed. The self-adaptive technique can enable ENCSA to overcome the
local optimum trap and the selection technique-based dominant solutions can allow ENCSA to reach a
better optimal value faster. The results indicate that the proposed ENCSA is efficient at solving the
hydrothermal optimal power flow problem.
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Nomenclature

ai, bi, ci Fuel cost coefficients of generating unit i
ahj, bhj, chj Water discharge coefficients of hydro plant j
Phj,m Power output of hydro plant j in subinterval m
Phj,max, Phj,min Maximum and minimum power output of hydro plant j
Psi,m Power output of thermal plant j in subinterval m
Psi,max, Psi,min Maximum and minimum power output of thermal plant i
qj,m Rate of water flow from hydro plant j in subinterval m
m, M Index of subinterval and the number of subintervals
tm Duration for subinterval m
Wj Volume of water available for generation by hydro unit j
Gij, Bij Transfer conductance and capacitance between bus i and bus j, respectively
Nb, Nc, Nd Number of buses, switchable capacitor and load buses
Ng, Nl, Nt Number of generating units, transmission lines and transformer with tap changing
N1 Number of thermal generators
N2 Number of hydro generators
Ng Number of all generators including thermal and hydro units
Pdi, Qdi Real and reactive power demands at bus i, respectively
Pgi, Qgi Real and reactive power outputs of generating unit i, respectively
Qci Reactive power compensation source at bus i
Sij, Sji Apparent power flow from bus i to bus j and from bus j to bus i
Sl Maximum apparent power flow in transmission line l
Tk Tap-setting of transformer branch k
Vgi, Vli Voltage magnitude at generation bus i and load bus i, respectively
Vi, di Voltage magnitude and angle at bus i, respectively
Xr1, Xr2 Two random solutions withdrawn from the population
randd A random number generated for solution d
Pa A fraction of alien eggs to be abandoned
Xd A solution corresponding to nest d
Gbest Global best nest
α0 A positive scaling factor with value in the range [0, 1]
Xmin, Xmax Minimum and maximum values of control variables
Fitnessd The fitness function of solution d
Fitnessbest Fitness function of the best solution
Tol Predetermined tolerance
Dd Fitness difference ratio between solution d and the best solution

Appendix A

Table A1. Coefficients of cost function of four thermal units of the IEEE 30 buses system.

Unit No. ai ($/h) bi ($/MWh) ci ($/MW2h)

1 0 2.00 0.00375
2 0 1.75 0.01750
3 0 1.00 0.06250
4 0 3.25 0.00834
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Table A2. Hydraulic data of hydro units of the IEEE 30 buses system.

Hydro Plant ahj (MCF/h) bhj (MCF/MWh) chj (MCF /MW2h) Wj (MCF)

1 1.980 0.306 0.000216 200
2 0.936 0.612 0.000360 400

Table A3. The data of hydro units included in the IEEE 118 buses system.

Hydro Plant Bus ahj (MCF/h) bhj (MCF/MWh) chj (MCF/(MW)2h) Wj (MCF)

1 111 1.0836 0.2159 0.000232 400
2 112 0.36 0.07197 7.73 × 10−5 120
3 113 1.0836 0.2159 0.000232 400
4 116 0.36 0.07197 7.73 × 10−5 120

Table A4. Optimal solution obtained by ENCSA method for the IEEE 30 buses system.

Parameter
Value

Subint. 1 Subint. 2

Pg1 (MW) 153.2844 149.3397
Pg2 (MW) 43.0415 42.0074
Pg5 (MW) 19.669 18.0139
Pg8 (MW) 10 10.0061
Pg11 (MW) 24.8623 16.0447
Pg13 (MW) 40 12

Vg1 (pu) 1.1 1.0857
Vg2 (pu) 1.0875 1.0657
Vg5 (pu) 1.0619 1.042
Vg8 (pu) 1.0679 1.051
Vg11 (pu) 1.0962 1.0688
Vg13 (pu) 1.0998 1.0902
T11 (pu) 1.02 1.04
T12 (pu) 1.04 0.92
T15 (pu) 1.08 1.04
T36 (pu) 0.99 1

Qc10 (MVAr) 18.9 6.3
Qc24 (MVAr) 4.3 4

Table A5. Optimal solutions for subinterval 1 of the IEEE 118 buses system obtained by ENCSA.

Parameter Value Parameter Value Parameter Value

Pg1 (MW) 19.0598 Pg100 (MW) 235.4283 Vg76 (PU) 1.0018
Pg4 (MW) 55.7638 Pg103 (MW) 29.832 Vg77 (PU) 1.0186
Pg6 (MW) 0.5868 Pg104 (MW) 12.5777 Vg80 (PU) 1.0244
Pg8 (MW) 62.9104 Pg105 (MW) 0.8445 Vg85 (PU) 1.0879
Pg10 (MW) 385.1619 Pg107 (MW) 57.3857 Vg87 (PU) 1.0535
Pg12 (MW) 77.7162 Pg110 (MW) 6.0031 Vg89 (PU) 1.0854
Pg15 (MW) 10.2586 Pg111 (MW) 72.9236 Vg90 (PU) 0.9988
Pg18 (MW) 4.4213 Pg112 (MW) 68.6941 Vg91 (PU) 1.0322
Pg19 (MW) 9.2522 Pg113 (MW) 79.4957 Vg92 (PU) 1.0691
Pg24 (MW) 4.8536 Pg116 (MW) 61.6715 Vg99 (PU) 1.0311
Pg25 (MW) 186.0854 Vg1 (PU) 0.9717 Vg100 (PU) 1.0313
Pg26 (MW) 268.4305 Vg4 (PU) 1.0146 Vg103 (PU) 1.0283
Pg27 (MW) 22.7964 Vg6 (PU) 0.9955 Vg104 (PU) 0.9969
Pg31 (MW) 4.9791 Vg8 (PU) 1.0072 Vg105 (PU) 0.9941
Pg32 (MW) 23.0057 Vg10 (PU) 1.0498 Vg107 (PU) 1.0015
Pg34 (MW) 0.9164 Vg12 (PU) 0.9811 Vg110 (PU) 1.0588
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Table A5. Cont.

Parameter Value Parameter Value Parameter Value

Pg36 (MW) 4.7562 Vg15 (PU) 1.0167 Vg111 (PU) 1.0884
Pg40 (MW) 56.9505 Vg18 (PU) 1.0366 Vg112 (PU) 1.0684
Pg42 (MW) 20.769 Vg19 (PU) 1.0353 Vg113 (PU) 1.0202
Pg46 (MW) 16.9152 Vg24 (PU) 1.0402 Vg116 (PU) 1.0196
Pg49 (MW) 196.975 Vg25 (PU) 1.0208 T8 (pu) 0.98
Pg54 (MW) 0.0539 Vg26 (PU) 1.0601 T32 (pu) 0.9
Pg55 (MW) 9.424 Vg27 (PU) 0.9739 T36 (pu) 1
Pg56 (MW) 76.0762 Vg31 (PU) 1.007 T51 (pu) 0.92
Pg59 (MW) 133.4323 Vg32 (PU) 0.98 T93 (pu) 1
Pg61 (MW) 142.7216 Vg34 (PU) 1.0501 T95 (pu) 1.09
Pg62 (MW) 4.2606 Vg36 (PU) 1.0388 T102 (pu) 1.05
Pg65 (MW) 338.6671 Vg40 (PU) 1.0447 T107 (pu) 1.02
Pg66 (MW) 332.8104 Vg42 (PU) 1.0837 T127 (pu) 0.97
Pg69 (MW) 434.6983 Vg46 (PU) 1.0036 Qc5 (MVAr) −33.3
Pg70 (MW) 1.1097 Vg49 (PU) 1.018 Qc34 (MVAr) 3.4
Pg72 (MW) 0.1819 Vg54 (PU) 1.0582 Qc37 (MVAr) −18.5
Pg73 (MW) 0.3883 Vg55 (PU) 1.0561 Qc44 (MVAr) 7
Pg74 (MW) 21.8734 Vg56 (PU) 1.0555 Qc45 (MVAr) 4.2
Pg76 (MW) 2.0134 Vg59 (PU) 1.0069 Qc46 (MVAr) 3.7
Pg77 (MW) 61.773 Vg61 (PU) 1.0225 Qc48 (MVAr) 1.9
Pg80 (MW) 406.4545 Vg62 (PU) 1.0384 Qc74 (MVAr) 0.7
Pg85 (MW) 22.9793 Vg65 (PU) 1.0196 Qc79 (MVAr) 18.5
Pg87 (MW) 4.1302 Vg66 (PU) 0.9934 Qc82 (MVAr) 0
Pg89 (MW) 164.3211 Vg69 (PU) 0.994 Qc83 (MVAr) 0.2
Pg90 (MW) 47.9289 Vg70 (PU) 1.0475 Qc105 (MVAr) 20
Pg91 (MW) 27.7547 Vg72 (PU) 1.0438 Qc107 (MVAr) 1.7
Pg92 (MW) 32.9663 Vg73 (PU) 1.0643 Qc110 (MVAr) 1
Pg99 (MW) 15.4033 Vg74 (PU) 1.0157 -

Table A6. Optimal solutions for subinterval 2 of the IEEE 118 -buses system obtained by ENCSA.

Parameter Value Parameter Value Parameter Value

Pg1 (MW) 8.5778 Pg100 (MW) 164.7772 Vg76 (PU) 1.0114
Pg4 (MW) 5.5039 Pg103 (MW) 24.7425 Vg77 (PU) 0.9729
Pg6 (MW) 97.5555 Pg104 (MW) 3.1914 Vg80 (PU) 0.9698
Pg8 (MW) 31.8538 Pg105 (MW) 2.1724 Vg85 (PU) 0.9591
Pg10 (MW) 278.4146 Pg107 (MW) 68.9825 Vg87 (PU) 0.9531
Pg12 (MW) 57.9114 Pg110 (MW) 99.9985 Vg89 (PU) 0.9666
Pg15 (MW) 4.6559 Pg111 (MW) 38.254 Vg90 (PU) 1.008
Pg18 (MW) 16.1638 Pg112 (MW) 17.6654 Vg91 (PU) 1.0387
Pg19 (MW) 0.6935 Pg113 (MW) 1.5754 Vg92 (PU) 0.9926
Pg24 (MW) 7.3221 Pg116 (MW) 54.8051 Vg99 (PU) 1.0387
Pg25 (MW) 125.5236 Vg1 (PU) 0.9559 Vg100 (PU) 1.004
Pg26 (MW) 262.3018 Vg4 (PU) 1.0163 Vg103 (PU) 0.9808
Pg27 (MW) 4.2622 Vg6 (PU) 0.9937 Vg104 (PU) 0.9744
Pg31 (MW) 1.9636 Vg8 (PU) 1.0183 Vg105 (PU) 0.9894
Pg32 (MW) 53.1329 Vg10 (PU) 0.9984 Vg107 (PU) 1.0007
Pg34 (MW) 0.763 Vg12 (PU) 0.9844 Vg110 (PU) 1.011
Pg36 (MW) 0.0233 Vg15 (PU) 1.0946 Vg111 (PU) 1.0458
Pg40 (MW) 39.9631 Vg18 (PU) 1.0531 Vg112 (PU) 0.952
Pg42 (MW) 9.4247 Vg19 (PU) 1.0939 Vg113 (PU) 1.0726
Pg46 (MW) 15.8308 Vg24 (PU) 0.9841 Vg116 (PU) 1.0523
Pg49 (MW) 81.5138 Vg25 (PU) 1.0359 T8 (pu) 0.95
Pg54 (MW) 0.217 Vg26 (PU) 0.9543 T32 (pu) 0.94
Pg55 (MW) 11.059 Vg27 (PU) 1.0132 T36 (pu) 0.99
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Table A6. Cont.

Parameter Value Parameter Value Parameter Value

Pg56 (MW) 0 Vg31 (PU) 1.0137 T51 (pu) 1.01
Pg59 (MW) 121.5805 Vg32 (PU) 1.0459 T93 (pu) 1.08
Pg61 (MW) 124.1151 Vg34 (PU) 1.0788 T95 (pu) 1.08
Pg62 (MW) 0.8983 Vg36 (PU) 1.0677 T102 (pu) 0.98
Pg65 (MW) 59.4265 Vg40 (PU) 1.0986 T107 (pu) 1.06
Pg66 (MW) 285.8251 Vg42 (PU) 1.0881 T127 (pu) 1.08
Pg69 (MW) 406.1577 Vg46 (PU) 1.0272 Qc5 (MVAr) −40
Pg70 (MW) 1.5995 Vg49 (PU) 1.0583 Qc34 (MVAr) 11.3
Pg72 (MW) 0.2329 Vg54 (PU) 1.0871 Qc37 (MVAr) −22
Pg73 (MW) 3.7515 Vg55 (PU) 1.087 Qc44 (MVAr) 0
Pg74 (MW) 99.9542 Vg56 (PU) 1.0808 Qc45 (MVAr) 8.7
Pg76 (MW) 1.9594 Vg59 (PU) 1.0141 Qc46 (MVAr) 9.3
Pg77 (MW) 8.1114 Vg61 (PU) 0.9962 Qc48 (MVAr) 0.2
Pg80 (MW) 17.8145 Vg62 (PU) 0.9999 Qc74 (MVAr) 9.4
Pg85 (MW) 4.3697 Vg65 (PU) 1.0195 Qc79 (MVAr) 2.1
Pg87 (MW) 5.0134 Vg66 (PU) 1.0264 Qc82 (MVAr) 7.6
Pg89 (MW) 316.5723 Vg69 (PU) 0.9637 Qc83 (MVAr) 9.5
Pg90 (MW) 1.1845 Vg70 (PU) 1.0143 Qc105 (MVAr) 19.3
Pg91 (MW) 1.5896 Vg72 (PU) 0.95 Qc107 (MVAr) 5.3
Pg92 (MW) 0.6171 Vg73 (PU) 0.95 Qc110 (MVAr) 1.4
Pg99 (MW) 0.7622 Vg74 (PU) 1.0085 -
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