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Abstract: State of charge (SOC) is a key parameter for lithium-ion battery management systems.
The square root cubature Kalman filter (SRCKF) algorithm has been developed to estimate the SOC
of batteries. SRCKF calculates 2n points that have the same weights according to cubature transform
to approximate the mean of state variables. After these points are propagated by nonlinear functions,
the mean and the variance of the capture can achieve third-order precision of the real values of the
nonlinear functions. SRCKF directly propagates and updates the square root of the state covariance
matrix in the form of Cholesky decomposition, guarantees the nonnegative quality of the covariance
matrix, and avoids the divergence of the filter. Simulink models and the test bench of extended
Kalman filter (EKF), Unscented Kalman filter (UKF), cubature Kalman filter (CKF) and SRCKF
are built. Three experiments have been carried out to evaluate the performances of the proposed
methods. The results of the comparison of accuracy, robustness, and convergence rate with EKF,
UKF, CKF and SRCKF are presented. Compared with the traditional EKF, UKF and CKF algorithms,
the SRCKF algorithm is found to yield better SOC estimation accuracy, higher robustness and better
convergence rate.

Keywords: lithium-ion batteries; state of charge (SOC); square root cubature Kalman filter (SRCKF);
electric vehicle (EV); real-time estimation

1. Introduction

Increasingly along with the fossil energy depletion, air pollution and more and more serious
global climate changes, people have begun to realize the great importance of the utilization and
development of non-fossil energy [1]. Governments all over the world have introduced a variety of
incentives to reduce pollutant emissions and greenhouse gas emissions [2–6]. Since transportation
consumes a large amount of energy, it is necessary to develop and utilize electric vehicles (EVs) to
realize green mobility. Lithium-ion batteries (LIBs) have many advantages, such as high power density
and durability, and therefore they have been widely used in EVs. However, when overcharging
occurs, the LIBs are more likely to burn and explode than other batteries, necessitating higher
requirements for battery management system (BMS) [7–10]. A few parameters, such as maximum
discharge current, specific energy of weight, specific energy of volume, and power density, determine
an EV’s performance [11–15]. The most important index for a BMS is state of charge (SOC). Because of
the inherently time-varying and non-linearity characteristics of LIB under working conditions, accurate
estimation of SOC remains a challenge [16–19].
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1.1. Review of Methods

Some popular methods for SOC estimation are discussed below.
The open-circuit voltage method is simple and easy to use. SOC estimation in the late and early

stages of charging is effective, but batteries must be tested online for a long time. This approach
is used to estimate the charging efficiency of battery packs in laboratories and the accuracy of SOC
estimation [10,19–21].

The neural network model method can realize basic nonlinear characteristics and can give
corresponding outputs to external excitation. This method can also be used to simulate the
characteristics of the nonlinear dynamic of batteries. The main problem with this method is that a large
amount of reference data are required to be trained, and the estimation error of SOC is significantly
impacted by the approach and data. Other flaws are that this method consumes considerable
computer time in BMS applications, high demands for the BMS design, and high costs to adopt
high-performance chips, which obviously cannot meet the requirements in the competitive automobile
industry; consequently, the method cannot be used in mass production of electric vehicles [22].

Particle filter (PF) [23] and unscented PF [24,25] perform efficiently in nonlinear and non-Gaussian
estimation. However, the major issue is that a complex BMS environment requires considerable sample
data to describe posterior probability distribution. Other flaws are similar to those of neural network
approaches [26–30].

The extended Kalman filter (EKF) is a typical representative of traditional nonlinear estimation
approaches. The basic idea is to locally linearize a nonlinear state and the functions of measurement to
perform a first-order Taylor polynomial expansion and then apply the Kalman filter formula of linear
systems. EKF requires that the state and measurement functions of nonlinear systems be continuously
differentiable, which limits its application scope. The first-order linearization approximation of
nonlinear functions leads to low estimation accuracy, especially when systems are strongly nonlinear
and the EKF estimation precision is severely reduced or even divergent. The Jacobin matrix of nonlinear
functions should be calculated, which can easily cause differential stability of EKF and calculation
divergence [31–36].

Unscented Kalman filter (UKF) [37] differs from EKF in that it replaces the first-order Taylor
expansion in EKF with unscented transform (UT). UKF selects 2n + 1 sigma points with weight
according to UT to approximate the mean of state variables. After the sigma points are propagated by
nonlinear functions, the mean and the variance of the capture can achieve third-order precision
of the real values of the nonlinear functions; thus, the precision of UKF is higher than that of
EKF [38]. Nevertheless, UKF needs to compute and transform the sigma points, which leads to
a high computational complexity and cost of BMS.

In cubature Kalman filter (CKF), the mean and the variance of the system state are propagated
through 2n equal-weight cubature points, which enables it to obtain high estimation accuracy. CKF,
on the basis of cubature criteria, gives new points after the transformation of nonlinear system
equations from 2n cubature points that have equal weight values to give the estimation of the
system state at the next time. The cubature point and its weight are only determined by the state
dimension and can be calculated and stored in advance. CKF can reduce computation time while
maintaining estimation accuracy because of its use of minimal sampling points, and it is gradually
replacing UKF as the filtering method for embedded system applications [39]. The CKF algorithm in
engineering applications is susceptible to abnormal perturbation, inexact initial values, and difficulty
in decomposing non-semi-definite matrices with Cholesky, which leads to system divergence [40].

In addition to the above methods, data-driven approaches, such as sliding mode observer [41],
H-infinity observer [42], recursive further squares [43], EKF-based methods with online parameter
identification [44,45], the Lyapunov-based estimator [46], and an estimation of the SOC and the model
parameters simultaneously with paralleled filters [47–50] have also been studied. Most of these
methods require adequate incentives. If the incentives are not obvious (such as charging condition),
these methods are not very good for SOC estimation. These methods can solve some particular
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problems with certain requirements, but these methods cannot be good for the robustness [13,51] and
anti-measurement noise interference. In addition, there are other methods based on electrochemical
models [52,53] that have been reported. However, because of the complexity (strict electrode dynamic
theoretical framework and a large number of battery data accumulation) of these methods, they are
not suitable for real BMS.

In real conditions, most controllers use embedded micro-controller units to compute the algorithm
and control logic. Under the finite computing resources of embedded micro-controller units,
the method for SOC estimation must not be complex and must have a rapid convergence speed
and anti-measurement of noise interference to increase the robustness of BMS. Through what has
been reviewed above, some requirements have not been fully met. We proposed a new method for
SOC estimation using the square root cubature Kalman filter (SRCKF) algorithm in this paper. The
SRCKF is based on CKF, directly propagates and updates the square root of the state covariance
matrix in the form of Cholesky decomposition, obtains higher computational efficiency, guarantees
the non-negative qualitative of the covariance matrix, avoids the divergence of the algorithm, and
improves the convergence speed and stability of the filter.

1.2. Contribution of This Study

This paper aims to develop a new method based on the Thevenin model. The new method can
improve the accuracy, robustness, and convergence rate of SOC estimation. The SRCKF algorithm is
different from EKF and UKF algorithms, uses the cubature principle for nonlinear state particles and
presents robustness in extreme nonlinear conditions. Compared with the EKF method, the present
method can enhance SOC estimation accuracy and robustness and improve the convergence rate.
When compared with the UKF method, the computation cost can be reduced with better estimation
accuracy of SOC and robustness. Compared with the CKF approach, the present method can enhance
the robustness and convergence rate with the same SOC estimation. Furthermore, the SRCKF algorithm
has a better capability to overcome disturbances of unstable noises for SOC estimation. Thus, it can
ensure the robustness and estimation accuracy of the algorithm in the case of limited computing
resource requirements and can be applied to new BMS with online SOC estimation easily.

1.3. Organization of This Paper

The remaining sections of this paper are structured as follows. Section 2 discusses the parameters
of the dynamic LIB model. Section 3 elucidates the principles of the SRCKF algorithm of SOC
estimation. Section 4 shows the experimental configurations and the results of the parameters of the
lithium-ion battery model identified offline. Experimental results and discussion are presented in
Section 5, followed by conclusions in Section 6.

2. Model of the Battery

Lumped-Parameter Model of the Battery

An equivalent circuit model is developed on the basis of the dynamic features and operation
mechanism of batteries [54]. The result indicates that 1RC and 2RC network-based lumped-parameter
models of battery have good performance in terms of their estimation precision and model
complexity [8]. In this paper, the 1RC network-based lumped-parameter model (Thevenin model)
of battery, shown in Figure 1, is selected in consideration of calculation accuracy, computational and
parameter identification complexities.

An equivalent circuit model has these components: the open circuit voltage Uocv represents
the voltage source and describes the static characteristic of the battery, an RC network consists of
polarization resistance Rp and polarization capacitance Cp describes the polarization phenomenon of
the battery, resistance R0 represents the internal resistance of the battery.
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Figure 1. Model for a lithium-ion battery (LIB).

According to the analysis of the electric circuit [20], the electrical characteristics of the model of
battery can be described as:

.
Up = −Up/CpRp + i/Cp (1)

Ut = Uocv −Up −U0 (2){
U0 = iRdchg (discharge)
U0 = −iRchg (charge)

(3)

where the load current is represented with i (charge describes negative, discharge describes positive);
the open-circuit voltage (OCV) is represented with Uocv; Ut and Up respectively denote the terminal
voltage and the polarization voltage; Rp and Cp represent the polarization resistance and capacitance
of the RC network, respectively; U0 represents the internal resister voltage; Rchg and Rdchg denote the
internal resistance when the battery is charging or discharging, respectively.

The SOC of a battery denotes the ratio of the remaining capacity to the total capacity. After the
current integral and discretization, SOC can be obtained using the following equation:

SOC(t) = SOC(t0) + (η
∫ t

t0

i(t)dt)/CN (4)

where SOC(t) is the SOC of the battery at time (t), SOC(t0) is the SOC of the battery at the previous
point (t0), ηk is the Coulomb efficiency, and CN is the battery-rated capacity.

After the discretization of (2), we can obtain the following formula:

Up,k −Up,k−1/Ts = −Up,k−1/CpRp + Ik−1/Cp (5)

Subsequently, we can acquire the following formula:

Up,k =
(
1− Ts/CpRp

)
Up,k−1 + Ts/Cp Ik−1 (6)

where Up,k denotes the Up at time (k), Up,k−1 denotes the Up at time (k− 1), Ts represents the sample
time, and Ik−1 represents the current at time (k− 1).

Up and SOC are selected as system state variables, i is selected as an input variable, and Ut is
selected as an output variable on the basis of Formulas (1)–(4) and (6). Then, the following formulas
can be obtained:(

Up,k
SOCk

)
=

( (
1− Ts/CpRp

)
0

0 1

)(
Up,k−1
SOCk−1

)
+

(
Ts/Cp

ηkTs/CN

)
(Ik−1) +

(
ω1,k−1
ω2,k−2

)
(7)
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(Ut,k) =

(
1
0

)T(
UP,k
SOCk

)
+
(

Rdchg

)
(Ik) + UOCV + (νk) (discharge)

(Ut,k) =

(
1
0

)T(
UP,k
SOCk

)
−
(

Rchg

)
(Ik) + UOCV + (νk) (charge)

(8)

Formula (7) describes the state equation of the Thevenin model, and Formula (8) describes the
observation equation of the Thevenin model. At time (k), Ik, Ut,k and νk denote the current, terminal
voltage and measurement noise, respectively, and ω1,k−1, ω2,k−2 represent the process noise.

Define:

xk =

(
Up,k
SOCk

)
, Ak =

( (
1− Ts/CpRp

)
0

0 1

)
, Bk =

(
Ts/Cp

ηkTs/CN

)

The equation of time state is:
f (xk, uk) = Akxk + Bk Ik (9)

With battery voltage as an output variable, we can generate the following observation equation:

g(xk, uk) = Uocv + Up,k + Rdchg Ik (discharge)
g(xk, uk) = Uocv + Up,k − Rchg Ik (charge)

(10)

3. Cubature Integral Approximation Method and SRCKF Algorithm

3.1. Cubature Using Numerical Integral Approximation Method

The numerical method of calculating cubature is introduced before elaborating the SRCKF
algorithm, considering that SRCKF is based on the cubature integral approximation method. We
take the n-dimensional integral of the following Gaussian density function [40]:

I( f ) =
∫

Rn
f (x) exp(−xTx)dx (11)

where f (x) denotes an arbitrary function and Rn denotes the integral region. The key of the
Bayesian theory to solve nonlinear Gaussian filtering is the integral of Formula (11). The integral
term f (x) exp(−xTx) can be summarized as multidimensional integrals with the form of “nonlinear
function × Gaussian probability density”.

We define x = ry, yTy = 1, r ∈ [0, ∞), and Formula (11) can be expressed as:

I( f ) =
∫ ∞

0

∫
Un

f (ry)rn−1 exp(−r2)dσ(y)dr (12)

Un =
{

y ∈ Rn
∣∣yTy = 1

}
is a supersphere with a radius of 1, and σ(·) is a spherical metric unit.

Formula (12) can be simplified as

I( f ) =
∫ ∞

0
S(r)rn−1 exp(−r2)dr (13)

S(r) =
∫

Un
f (ry)dσ(y) (14)

Therefore, the n-dimensional integral Formula (11) can be transformed into a spherical radial
integral form, as shown in Formulas (13) and (14). The spherical integral principle and the radial
principle can be used to solve this equation.

∫
Un

f (y)dσ(y) ≈ ω
2n

∑
i=1

f [u]i (15)
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∫ b

a
f (x)ω(x)dx ≈ωi

m

∑
i=1

f (xi) (16)

Formula (15) shows a third-order spherical integral structure under the spherical integral principle,
and [u]i is the i element of the generated operator. Formula (16) presents the radial principle of
the sphere, which means that m point Gaussian integral can be equivalent to the sum of (2m− 1)
polynomials. ω(x) is a nonnegative weight function in the integral interval [a, b].

SRCKF uses the spherical radial principle to select 2n (n is state dimension) with corresponding
weight point set (ωi, ζi), which can be used to approximate the posterior mean value and covariance
of the nonlinear state.

I( f ) =
m

∑
i=1

ωi f (ζi) (17)


ζi =

√
n[1]i,

ωi = 1
2n ,

i = 1, 2, . . . , 2n.
(18)

where [1]i represents the column i of set [1]. We define n = 2 and obtain

[1] =
{
[1, 0]T , [0, 1]T , [−1, 0]T , [0,−1]T

}
(19)

3.2. SRCKF Algorithm

We define n-dimensional nonlinear discrete-state space mode and acquire

xk = f (xk−1, uk−1) + ωk−1, k = 0, 1, · · · (20)

zk = h(xk, uk) + υk, k = 0, 1, · · · (21)

where uk is the known input, ωk−1 is the system noise, and υk is the noise of measurement.
The following three steps describe the SRCKF algorithm:

Step 1. Initialization of state estimation. We set the initial value of state to x̂0|0 and obtain{
x̂0|0 = E(x0)

S0|0 = chol
(

E
[
(x0 − x̂0|0)(x0 − x̂0|0)

T
]) (22)

where U = chol(A) is the Cholesky decomposition of matrix A, A = UTU, U is the upper triangular
matrix, and E(·) is the expectation.

Step 2. State prediction (k = 1, 2, 3, · · · ).

Step 2.1 n cubature points for battery states at time k− 1 (i = 1, 2, · · · , 2n) are calculated.

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (23)

Step 2.2: The battery state Formula (7) is used to propagate cubature points and generate
new points.

X∗ i,k|k−1 = f (Xi,k−1|k−1, uk−1) (24)

Step 2.3: After the newly generated points are weighted, the sum of the weighted points is
determined and then the prediction value of the battery state at time k can be estimated (SRCKF
uses equal weights).

x̂k|k−1 = 1/2n
2n

∑
i=1

X∗ i,k|k−1 (25)
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Step 2.4: The square root of the covariance matrix of the prediction value is estimated.

Sk|k−1 = Tria
([

χ∗k|k−1SQ,k−1

])
(26)

where Qk−1 = SQ,k−1ST
Q,k−1.

χ∗k|k−1 = 1/
√

2n
[

X∗1,k−1 − x̂k|k−1, X∗2,k−1 − x̂k|k−1, · · · , X∗2n,k−1 − x̂k|k−1

]
(27)

S = Tria(A) represents the QR decomposition of matrix A, which obtains a normal orthogonal
matrix B and an upper triangular matrix C. We define S = CT , and S is the upper triangular matrix.

Step 3. Measurement update.

After the state prediction value of time k is obtained, the prediction value can be updated with
the observation value at this moment to obtain the optimal state estimation value.

Step 3.1: A set of equal-weight cubature points by the square root matrix of the state prediction
value and its covariance matrix is generated using the spherical radial rule (i = 1, 2, · · · , 2n).

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1 (28)

Step 3.2: The battery observation Formula (8) is used to propagate the cubature points.

Zi,k|k−1 = h
(

Xi,k|k−1, uk

)
(29)

Step 3.3: The prediction value of observation at time k is generated.

ẑk|k−1 = 1/2n
2n

∑
i=1

Zi,k|k−1 (30)

Step 3.4: The square root of the covariance matrix of the estimated prediction value of observation
is estimated.

Szz,k|k−1 = Tria
([

Zk|k−1 SR,k

])
(31)

where Rk = SR.kST
R,k, and

Zk|k−1 = 1/
√

2n
[

Z1,k|k−1 − ẑk|k−1, Z2,k|k−1 − ẑk|k−1, · · · , Z2n,k|k−1 − ẑk|k−1

]
(32)

Step 3.5: The observation and prediction values of the square root of the covariance matrix of
each other are estimated.

Pxz,k|k−1 = χk|k−1ZT
k|k−1 (33)

where

χk|k−1 = 1/
√

2n
[

X1,k|k−1 − x̂k|k−1, X2,k|k−1 − x̂k|k−1, · · · , X2n,k|k−1 − x̂k|k−1

]
(34)

Step 3.6: The SRCKF filter gain matrix is solved.

Wk =
(

Pxz,k|k−1/ST
zz,k|k−1

)
/Szz,k|k−1 (35)
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Step 3.7: The best state value estimate of the battery at time k is calculated.

x̂k|k = x̂k|k−1 + Wk

(
zk − ẑk|k−1

)
(36)

Step 3.8: The square root of the error covariance matrix of the optimal state estimation of the
battery at time k is calculated.

Sk|k = Tria
([

χk|k−1 −WkZk|k−1 WkSR,k

])
(37)

After the value of the state estimation x̂k|k and its covariance square root Sk|k are obtained at time
k, Step 2 is repeated at time k + 1, and the next iteration is performed. Flowchart of the method using
SRCKF is shown in Figure 2.
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4. Experimental Configurations, HPPC Test and Off-Line Identification of Relevant Parameters

According to the algorithm model, a test bench for the cells was built, which included cells of the
battery, charging and discharging equipment (NBT BTS5200C4, Newaresles Limited, Shenzhen, China),
monitoring platform, environment oven, testing cable, the hardware of the battery management unit
(BMU) and local electronic control unit (LECU), and communication cables. The test bench can not
only conduct Hybrid pulse power characterization (HPPC) tests to identify the relevant parameters of
the battery off-line but also it can be used for simulation and verification according to the condition of
a real environment.

HPPC tests must be conducted at various temperatures and different state of health (SOH) to
identify the parameters of Uocv, Rdchg(Rchg), Cp, Rp, and SOC and input them into the table to be used
by the SRCKF algorithm to meet the requirements of the vehicle at various temperatures (−20 ◦C to
55 ◦C every 5 ◦C) and SOH (1 to 0.8 every 0.05). The specifications of the battery cell are shown in
Table 1, the test equipment specifications are shown in Table 2, and Figure 3 shows the configuration
of the battery test bench.
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Table 1. Specifications of the battery cell.

Item Value

Cell Voltage 3.7 V
Cell Capacity 35 Ah

Maximum charging rates 2 C
Maximum discharging rates 4 C

Table 2. Specifications of the NBT BTS5200C4.

Item Value

Max value of discharging current 200 A
Max value of charging current 200 A
Range of voltage measurement 0~5 V

Current measurement error 0.1%F.S. but not better than ±20 mA
Voltage measurement error 0.1%F.S. but not better than ±20 mV

Temperature measurement error ±1 ◦C
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It is noted that, because of the high accuracy of NBT BTS5200C4, the reference values of SOC
can be acquired by the current integral method with the measured value. To get a precise initial SOC,
the battery cell is fully charged before test with a constant current, firstly. And to obtain an accurate
terminal SOC, the battery cell is fully discharged after test, finally.

The HPPC test cycle of the battery cell is shown in Figure 4. There are various methods to fit
functions in the MATLAB (R2016b, The MathWorks, Inc., Natick, MA, USA) simulation environment,
such as polyfit command, is curvefit command, and cftool [55]. Among these methods, cftool is
chosen to fit functions in this study, because it provides a visual graphical interface and powerful
curve-fitting ability. The least square method [56] is used on the basis of the Formulas (1) and (2)
to identify unknown parameters. The fitting curves of Uocv, Rdchg, Cp, Rp, and SOC equations are
provided in Figure 5 (Temperature = 25 ◦C, SOH = 1) and Figure 6 (Temperature = 15 ◦C, SOH = 0.9).
The coefficients of the corresponding equation (y = f (x) = ax6 + bx5 + cx4 + dx3 + ex2 + f x1 + g) are
indicated in Tables 3 and 4.
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Table 3. Equation coefficients at temperatures = 25 ◦C and SOH = 1.

Coefficients g f e d c b a

Rp 0.004107 −0.052842 0.316150 −0.917690 1.395537 −1.062447 0.318105
Rdchg 0.001812 −0.006602 0.041589 −0.144026 0.258410 −0.226639 0.076809
Uocv 2.971124 7.396502 −37.015633 101.27299 −143.46866 100.40782 −27.381834
Cp 3839 86,475 −502,083 2,080,696 −4,107,296 3,696,315 −1,244,161
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Table 4. Equation coefficients at temperatures = 15 ◦C and SOH = 0.95.

Coefficients g f e d c b a

Rp 0.008551 −0.108954 0.621934 −1.758040 2.593975 −1.910763 0.554538
Rdchg 0.005575 −0.027267 0.171668 −0.538437 0.840745 −0.636656 0.187370
Uocv 2.712023 10.728256 −55.006330 149.858773 −213.2116 151.254438 −42.189757
Cp 2677 −51,640 397,937 −773,697 312,761 400,225 −282,581

5. Results and Discussion

Under the same conditions, three different experiments were performed to test the performance of
the proposed algorithm: constant current discharge test, dynamic stress test (DST), and DST test with
noise measurement. At a temperature of 25 ◦C and SOH = 1, by using Figure 3 as the test bench, and
the results of the battery parameters shown in Table 2, the EKF, UKF, CKF, and SRCKF algorithms were
compared in the experiment. The comparison results were given in the performances of estimation
accuracy, convergence speed, robustness, and calculation cost. Moreover, under real conditions, the
actual current and voltage showed deviation from measured results due to the measurement errors of
the voltage and current sensors and interference of corresponding hardware circuits (such as EMI).
To verify the proposed algorithm robustness against the noise of measurement, a random interference
to the system was conducted. Simulations of 100 cycles of the four algorithms were run in the Intel
Core i7-4600U (2.1 GHz, 2.7 GHz, Intel Corporation, Santa Clara, CA, USA) to obtain the calculation
cost of the algorithms. The test results are shown in Table 5. The comparison results showed that
the proposed method had lesser computation cost than the other methods. Hence, because of the
difference of calculation cost of the four algorithms, a cycle of the algorithms was run every 100 ms
with BMU to ensure that the cycle was fully completed.

Table 5. Simulation results of the calculation cost.

Methods EKF UKF CKF SRCKF

Computation cost (s) 0.0023 0.01788 0.006775 0.00774

5.1. Experiment A: Test with Constant Discharge Current

In this experiment, with a constant current of 34.95 A (approximately 1 C), the cell of the battery
was discharged from the initial state (SOC = 1) to the final state (SOC = 0.00027). The voltage of
terminal decreased from 4.14 V to 2.5105 V. The curve of the test is shown in Figure 7. The current of
the battery is constant with the car running in a constant speed. Thus, this experiment can be used to
simulate this condition. The experimental results of convergence speed are shown in Figure 8. The cyan
line is the reference value of SOC calculated by the BTS5200C4 with a precise initial value of SOC, and
the estimated SOC is described with the red line. The initial value of real SOC is 1, and the estimated
one is 0.5. A comparison of results from the EKF, UKF, CKF, and SRCKF estimation algorithms are
shown in Figure 8a–d, respectively. Figure 9 shows the estimation SOC errors of the EKF, UKF, CKF,
and SRCKF estimation algorithms, and the results of probability of estimation SOC errors are shown
in Figure 10. Table 6 shows the data of the root mean square errors (RMSE), mean errors, maximum
errors, and convergence time. The estimation SOC errors of the EKF, UKF, CKF, and SRCKF estimation
algorithms are shown in Figure 9a–d, respectively. Similarly, the results of the probability of estimation
SOC errors of the EKF, UKF, CKF, and SRCKF estimation algorithms are shown in Figure 10a–d,
respectively. From the experiment results of Experiment A, the following conclusions are obtained.
Under constant current discharge, (1) the proposed method had a faster convergence rate in the case
of a higher accuracy of SOC estimation than the other three methods; (2) the estimation SOC error
of the proposed method was distributed in the small region near zero, which showed good stability
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of the SRCKF algorithm; and (3) the proposed method met the requirement of the constant current
discharge condition.
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Table 6. Experimental results of Experiment A.

Methods Convergence Time (s) RMSE Max Error Mean Error

EKF 25 0.01211 0.02727 0.00270
UKF 110 0.00970 0.01701 −0.00268
CKF 60 0.00602 0.01233 0.00008

SRCKF 25 0.00599 0.01308 0.00015

5.2. Experiment B: DST

The DST is simplified from actual urban driving cycles (AUDC). The current of battery with the
DST in Experiment B is shown in Figure 11, with battery charge denoted with the positive current
and battery discharge denoted with the negative current. Figure 11a shows one test cycle of DST and
Figure 11b shows 20 test cycles of DST that were used in Experiment B. Experimental results of the
convergence speed are shown in Figure 12. The cyan line is the reference value of SOC calculated
by the BTS5200C4 with a precise initial value of SOC, and the estimated SOC is plotted by the red
line. The initial value of real SOC was 1, and the estimated one was 0.5. The results of the EKF, UKF,
CKF, and SRCKF estimation algorithms are shown in Figure 12a–d, respectively. To maintain proper
estimation accuracy and convergence speed, the parameters of the EKF were adjusted to avoid the
divergence of the EKF algorithm in Experiment B. However, the EKF algorithm still had the problem
of divergence and filtering interruption in Experiment B. The curve in the purple circles represents
this problem in Figure 12a. Figure 13 shows the estimation SOC errors of the EKF, UKF, CKF, and
SRCKF estimation algorithms, and the results of probability of estimation SOC errors are shown in
Figure 14. Table 7 shows the data of the root mean square errors (RMSE), mean errors, maximum
errors, and convergence time. In comparison with Experiment A, the accuracy of the SOC estimation
of the EKF, UKF, CKF, and SRCKF estimation algorithms decreases because the voltage and current
have strong nonlinear changes. At the same time, because of the adjustment of the parameters of the
EKF algorithm, the convergence speed time is long. Hence, the following conclusions are obtained
from Experiment B. Under the DST condition, (1) the SRCKF algorithm had a faster convergence rate
and better accuracy of SOC estimation than the other three methods; (2) the estimation error of the
SRCKF algorithm was distributed in the small region near zero, which showed the good stability of
the SRCKF algorithm; (3) the SRCKF algorithm met the requirement of the DST condition.
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Table 7. Experimental results of Experiment B.

Methods Convergence Time (s) RMSE Max Error Mean Error

EKF 65 0.01560 0.05064 −0.01443
UKF 85 0.00864 0.03058 −0.01047
CKF 60 0.00912 0.02665 −0.00705

SRCKF 25 0.00892 0.02469 −0.00704Energies 2018, 11, 209  14 of 20 
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5.3. Experiment C: DST with Noise Measurement

In Experiment C, the conditions were the same as Experiment B, as shown in Figure 11. To verify
the robustness of the proposed algorithm against the voltage and current errors, stochastic normal
distributed noises were added to the measurement voltage and current. The standard deviation of the
noise was calculated as follows:

θ = αNmax/3 (38)

where θ denotes the arithmetic mean, α denotes a scaling factor, and Nmax denotes the maximum
voltage or the maximum current. Conditions of α = 1%, 2.5%, 5% are studied in this paper. The results of
the current and voltage in Experiment C, with both voltage and current noises, are shown in Figure 15.
Similar to Experiment B, the initial value of real SOC was 1, and the estimated one was 0.5. Because of
the noise, the methods of EKF, UKF, and CKF diverged. The filters were interrupted in approximately
120 s. The curve in blue circle represents this problem in Figure 16. Evidently, the proposed method
worked well. Hence, the RMSEs, mean errors, maximum errors, and convergence time of EKF, UKF,
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and CKF were not obtained in Experiment C. They were obtained in the SRCKF method with the
different noises. The results are shown in Table 8, and the results of the probability of the corresponding
estimation SOC errors are shown in Figure 17. In the real EVS, the error of current and voltage was not
more than 2.5% after the signals were filtered through the hardware and software. As shown in Table 8,
in the case of error ≤2.5%, the proposed method still maintained a high estimation accuracy, and
its RMSEs and mean error values were still small enough to be applied to the actual EVS. Although
the maximum error of the estimation SOC was bound within 8%, the RMSEs and mean errors of
the proposed method were still small. From the point of error distribution shown in Figure 17d,
the majority of the error distribution is within 5%. The conclusions of Experiment C, in the DST
condition with noise (≥1%), are the following: (1) The proposed method had a faster convergence rate
(approximately 25 s) and better accuracy of estimation SOC with noise than the other three methods;
(2) the estimation error of the SRCKF algorithm was distributed in the small region near zero, which
showed the good stability of the proposed method; (3) the proposed method had a weaker robustness
against the disturbance than the methods of EK, UKF, and CKF and met the requirement of the DST
condition with noises.
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6. Conclusions

In this paper, a new SOC estimation method using the SRCKF algorithm is proposed to
simultaneously improve the SOC estimation accuracy and reduce the computation cost. Under
strong nonlinear working conditions, filtering divergence can be avoided. Some findings from the
present study are summarized as follows.

(1) The shortcomings of several common algorithms for battery SOC are investigated, and the SRCKF
algorithm is recommended for its accuracy and speed. To balance between model accuracy and
computation cost, the Thevenin model was applied to simulate the dynamic characteristics of the
LIB, based on which Equations (9) and (10) were derived. With this model, experimental and
parameter identification methods for off-line identification of battery parameters were proposed,
and four Simulink algorithm models were established according to the EKF, UKF, CKF, and
SRCKF algorithms, respectively.

(2) Constant current discharge tests and DST cycles were conducted to verify the performance of
the proposed method against other three methods (i.e., EKF, UKF, and CKF). The results of
experiments showed that the estimation SOC error with the proposed method quickly converged
to 2% within approximately 25 s, whereas the initial SOC error reached 50%. The RMSEs (0.00892),
maximum error (0.02469), and mean error (−0.00704) of the proposed method were the best
among all the methods in DST. Moreover, the maximum error was less than 5.5% even when the
measurement noise of the voltage and the current was up to 2.5% in DST with noise.

(3) Given the insufficient sensor accuracy and inaccurate hardware circuit, the signal of voltage and
current are often interfered. Hence, a real EV running in a complex working condition (such as
DST) with noises is very important. The method should be able to handle the nonlinear changes
and random disturbance. In comparison with other methods (EKF, UKF, and CKF), only the
proposed method avoided the filtering divergence in DST with noise (up to 5%).

Therefore, the proposed method ensured the robustness and estimation accuracy of the algorithm
in the case of limited computing resource requirements and can be applied to new BMS with online SOC
estimation easily. In the future, a new BMS with the proposed method to achieve good performance
can be developed.
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Nomenclature

i load current
Uocv open-circuit voltage
Ut terminal voltage
Up polarization voltage
Rp polarization resistance
Cp polarization capacitance
U0 internal resister voltage
Rchg internal resistance when discharging
Rdchg internal resistance when discharging
Rn integral region
uk known input
E(·) expectation
Nmax max voltage or the max current

Greek Symbol

σ(·) spherical metric unit
ω(x) nonnegative weight function
(ωi,ζi) weight point set
ωk−1 system noise
νk noise of measurement
θ arithmetic mean
α scaling factor

Acronyms and Abbreviations

OCV open-circuit voltage
SOC state of charge
SRCKF square root cubature Kalman filter
EKF Extended Kalman filter
UKF unscented Kalman filter
CKF cubature Kalman filter
EV electric vehicle
LIB lithium-ion battery
BMS battery management system
PF particle filter
UT unscented transform
LECU local electronic control unit
BMU battery management unit
HPPC hybrid pulse power characteristic
SOH state of health
DST dynamic stress test
EMI electromagnetic interference
RMSE root mean square error
Ah ampere-hour
C discharge rate
MATLAB MATrix LABoratory
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