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Abstract: The high precision speed control of gimbal servo system in magnetically suspended control
moment gyro (MSCMG) suffers from periodic torque disturbances, which lead to periodic fluctuations
in speed control. This paper proposes a novel multiple phase-shift resonant controller (MPRC) for
a gimbal servo system to suppress the periodic torque ripples whose frequencies vary with the
operational speed of the gimbal servo motor and high-speed motor. First, the periodic torque ripples
caused by cogging torque, flux harmonics and the dynamic unbalance of the high speed rotor are
analyzed. Second, the principle and structure of MPRC parallel with proportional integral (PI)
controllers are discussed. The design and stability analysis of the proposed MPRC plus PI control
scheme are given both for the current loop and speed loop. The closed-loop stability is ensured by
adjusting the phase in the entire operational speed range. Finally, the effectiveness of the proposed
control method is verified through simulation and experimental results.

Keywords: gimbal servo system; magnetically suspended control moment gyro; periodic torque
ripples; multiple phase-shift resonant controllers

1. Introduction

Magnetically suspended control moment gyro (MSCMG) has been considered as an indispensable
inertial actuator for the attitude control of agile maneuver satellites due to its high-precision, long life
and large output torque generation [1–4]. Single gimbal MSCMG gimbaled in one axis only, consists of
a high-speed rotor system and a gimbal servo system, as shown in Figure 1. The rotor system, which is
suspended by magnetic bearing, generally operates at a high constant speed to supply the demanded
angular momentum H. The gyro torque is the output to adjust the spacecraft attitude when the
direction of the angular momentum is changed by the rotation of the gimbal servo system. The output
torque can be expressed as M = H ×ω, where ω is the angular speed of the gimbal servo motor. It is
obvious that high-precision angular speed-tracking performance of the gimbal servo system must be
achieved to ensure the accuracy of the MSCMG output torque.

A permanent magnet synchronous motor (PMSM) is applied in the gimbal servo system for a
MSCMG due to its distinct advantages of high power density and efficiency, compactness and ease of
control. Generally, in order to achieve high performance, the gimbal servo system is directly driven
by a PMSM without gear drive [5]. The gimbal servo system is an ultra-low-speed mechanical servo
system, and the speed range of the research object in this paper is −2 rad/s to 2 rad/s.
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Figure 1. Schematic diagram of the single gimbal CMG. 

The main factors affecting the gimbal servo system performance include friction torque, inherent 
torque ripples in the PMSM and other external torque disturbances. Various algorithms have been 
proposed for friction torque compensation [6–10]. A model-free control method with an elasto-plastic 
friction observer is proposed in [7] and an adaptive friction compensation scheme is proposed in [8]. 
However, general friction compensation cannot fully inhibit the friction torque in an MSCMG gimbal 
system due to the gyroscopic effect [9]. Methods based on time delay control and internal model 
control [9] and methods based on a cascade extended state observer [10] are presented for the friction 
compensation of gimbal servo systems in double gimbal control moment gyro (DGCMG). However, 
the influence of inherent torque ripples and other external torque pulsations, especially the torque 
ripple caused by high-speed rotor systems, are not investigated. 

Regardless of the PMSM, torque pulsations come from various sources, and they can be 
attributed to cogging torque, flux harmonics and errors in current measurements [11–20]. Among 
these, the former two factors are often the main causes of the poor control precision of PMSMs. 
Broadly speaking, the techniques for torque ripple suppression can be divided into two categories. 
The first approach focuses on the optimal design of PMSM [11,12] and inhibits torque ripples by 
means of skewing the stator slots or rotor poles. Nevertheless, there are many occasions in which 
these methods are not sufficient to eliminate torque ripples. The second group of techniques, which 
is our interest, emphasizes various control algorithms of stator currents [13–20]. These approaches 
include model predictive control (MPC) [13,14], artificial control [15], iterative control [16], repetitive 
control [17], and so on. A cascade -MPC method [13], and an MPC and extended state observer based 
approach [14] are presented to suppress torque ripple and optimize the control performance of the 
PMSM servo system. Reference [15] proposes a self-learning solution based on artificial neural 
networks to reduce the torque ripple in a permanent-magnet nonsinusoidal synchronous motor. The 
abovementioned approaches improve the performance of the PMSM from different aspects. However, 
they all suffer from the disadvantage of complex computation. 

Both the torque pulsations that come from cogging torque, flux harmonics and the torque ripple 
inherited from high-speed rotor systems vary periodically, which make periodic control techniques 
naturally suited to this situation. Compared with iterative controllers [16] and repetitive 
compensations [17], resonant controllers (RCs) have become one of the most popular periodic 
disturbance rejection methods due to their advantages of simplicity, relatively simple turning process 
and easy frequency adaptation [18–25]. RCs are widely used in power systems to suppress harmonic 
disturbances [18–21]. In [18–20], RCs are used for current control in grid-connected converters. In [21], 
the torque ripple is inhibited by multiple RCs in a doubly-fed induction generator-direct current 
(DFIG-dc) system and positive results have been obtained. However, RCs used in power systems are 
usually tuned to a single frequency and achieve excellent performance only in a narrow frequency 
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The main factors affecting the gimbal servo system performance include friction torque,
inherent torque ripples in the PMSM and other external torque disturbances. Various algorithms
have been proposed for friction torque compensation [6–10]. A model-free control method with an
elasto-plastic friction observer is proposed in [7] and an adaptive friction compensation scheme is
proposed in [8]. However, general friction compensation cannot fully inhibit the friction torque in
an MSCMG gimbal system due to the gyroscopic effect [9]. Methods based on time delay control
and internal model control [9] and methods based on a cascade extended state observer [10] are
presented for the friction compensation of gimbal servo systems in double gimbal control moment
gyro (DGCMG). However, the influence of inherent torque ripples and other external torque pulsations,
especially the torque ripple caused by high-speed rotor systems, are not investigated.

Regardless of the PMSM, torque pulsations come from various sources, and they can be attributed
to cogging torque, flux harmonics and errors in current measurements [11–20]. Among these, the former
two factors are often the main causes of the poor control precision of PMSMs. Broadly speaking,
the techniques for torque ripple suppression can be divided into two categories. The first approach
focuses on the optimal design of PMSM [11,12] and inhibits torque ripples by means of skewing
the stator slots or rotor poles. Nevertheless, there are many occasions in which these methods are
not sufficient to eliminate torque ripples. The second group of techniques, which is our interest,
emphasizes various control algorithms of stator currents [13–20]. These approaches include model
predictive control (MPC) [13,14], artificial control [15], iterative control [16], repetitive control [17],
and so on. A cascade -MPC method [13], and an MPC and extended state observer based approach [14]
are presented to suppress torque ripple and optimize the control performance of the PMSM servo
system. Reference [15] proposes a self-learning solution based on artificial neural networks to reduce
the torque ripple in a permanent-magnet nonsinusoidal synchronous motor. The abovementioned
approaches improve the performance of the PMSM from different aspects. However, they all suffer
from the disadvantage of complex computation.

Both the torque pulsations that come from cogging torque, flux harmonics and the torque
ripple inherited from high-speed rotor systems vary periodically, which make periodic control
techniques naturally suited to this situation. Compared with iterative controllers [16] and repetitive
compensations [17], resonant controllers (RCs) have become one of the most popular periodic
disturbance rejection methods due to their advantages of simplicity, relatively simple turning process
and easy frequency adaptation [18–25]. RCs are widely used in power systems to suppress harmonic
disturbances [18–21]. In [18–20], RCs are used for current control in grid-connected converters. In [21],
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the torque ripple is inhibited by multiple RCs in a doubly-fed induction generator-direct current
(DFIG-dc) system and positive results have been obtained. However, RCs used in power systems are
usually tuned to a single frequency and achieve excellent performance only in a narrow frequency
range. This narrow frequency range is unsuitable for a gimbal servo system in MSCMG, whose torque
ripple frequencies vary with their operation speed. RCs are also introduced for torque ripple
suppression in PMSM control [22–25]. In [22], RC is implemented in the stationary frame, which makes
it quite resource consuming, as online trigonometric computation is needed. Reference [23] optimizes
the implementation of RCs by designing the controller in a synchronous reference frame, and this
improvement permits the reduction of the number of RCs and the computation burden. In [24],
a technique for the torque ripple minimization of PMSMs using a proportional RC is proposed.
However, they all report preliminary simulations and experimental results and do not include any
discussion of the tuning process of the controller. Reference [25] develops a cascade proportional
integral RC structure for a low-speed, high-torque PMSM with a current and speed control as the inner
and outer loops. This method can only work in a specific steady-state as its resonant frequencies are
designed according to the speed reference. Moreover, the parameter tuning of the RCs is complicated
in [25].

To overcome the drawbacks of the aforementioned RC schemes, a multiple phase-shift resonant
controller (MPRC) is proposed to suppress the periodic torque ripples of the gimbal servo system at
variable speed. Compared with the previous schemes, the novelty of this paper mainly contains the
following three aspects:

(1) Torque ripples caused by high-speed rotor dynamic imbalance in a gimbal servo system for
MSCMG are first discussed and modeled.

(2) The absolute closed-loop stability and robustness of the overall system is ensured by the
proposed MPRC approach and the phase angle is adjusted for wide and multiple resonant
frequency-varying conditions.

(3) The design and tuning processes of the MPRC are discussed and simplified. These are important
and practical, especially for a gimbal servo system with multiple frequency RCs both in current
and speed control loops.

This paper is organized as follows. In Section 2, the dynamic modeling and disturbance analysis
of a gimbal system are presented. In Section 3, the MPRC is designed for current and speed controllers
to suppress multiple frequency components of torque disturbance simultaneously. Section 4 provides
the simulation and experimental results to validate the effectiveness of the proposed scheme. Section 5
provides the conclusion.

2. Dynamics Modeling and Periodic Disturbance Analysis of Gimbal System

2.1. Model of Gimbal Servo System

Assume that the PMSM iron core is unsaturated and the hysteresis and the eddy current loss are
ignored. In the synchronous reference d-q frame, the model of the surface mounted PMSM can be
written as follows 

dω
dt = 1

J (Te − TL − Td − Bω)
diq
dt = 1

Lq
[uq − Rsiq − pω(Ldid + ψdm)]

did
dt = 1

Ld
[ud − Rsid + pω(Lqiq + ψqm)]

(1)

where ω is the angular speed; ud and uq are the stator voltages of d- and q-axes, respectively; id and iq

are the stator currents of d- and q-axes, respectively; Ld and Lq are the inductances of d- and q-axes,
respectively; and Ld = Lq = L is satisfied. Rs denotes the stator resistance, p is the number of the pole
pairs, Te is the electromagnetic torque, TL is the load torque, Td denotes the disturbing torque, B is the
viscous friction coefficient, J is the gimbal moment of inertia, ψdm and ψqm are the permanent-magnet
flux linkages of d-and q-axes, respectively.
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When the vector control strategy of id = 0 is adopted, the electromagnetic torque equation can be
expressed as

Te = 1.5pψdmiq (2)

2.2. Periodic Disturbance Analysis

2.2.1. Gyro Torque Caused by Dynamic Unbalance

The dynamic unbalance of a magnetically-levitated high-speed rotor causes undesirable
synchronous unbalanced disturbance torque. As shown in Figure 2, o − xgygzg are the frame
coordinates and o − xryrzr are the rotor coordinates. When the rotor rotates around the ozr-axes
at the angular speed of Ω, the unbalanced disturbance torque can be expressed as{

τdα = mdldΩ2R cos(Ωt + ϕ d)

τdβ = mdldΩ2R sin(Ωt + ϕ d)
(3)

where τdα and τdβ denote the unbalanced disturbance torque of xr- and yr-axes in the rotor coordinates,
respectively; md is the couple imbalance mass, R is the radius of the rotor, ld denotes the axial distance
of the two couple imbalance mass, and ϕ d is the initial phase of md.
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Figure 2. Coordinate definition of the SGCMG. (a) Frame coordinate definition; (b) Rotor
coordinate definition.

Influenced by the unbalanced disturbance torque, the principal axis of inertia of the rotor will
deviate from its geometry axis and the unbalance response that the rotor rotates round the radical
direction will be activated. As a result, the gyro torque will generate a component along the oxg-axis in
the frame coordinates. This gyro torque can be obtained as

Tgx = −JrΩ2 Ar sin Ωt (4)

where Jr is the inertia of the high-speed rotor and Ar is a coefficient related to τdα and τdβ.

2.2.2. Cogging Torque

Cogging torque is always present in permanent magnet machines, although there is no current
that excites the stator windings. It is the reluctance torque between permanent magnet poles and the
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slotted stator at no load. For radical flux PMSMs, the Fourier expression of the cogging torque can be
expressed by the following Equation (5):

Tcog =
∞

∑
n=1

Tn sin(nNcoωt) (5)

where Tn represents the amplitude of the nth-order component, and Nco is the least common multiple
of motor poles and slots.

2.2.3. Flux Harmonics

In real PMSMs, it is costly and almost impossible to achieve perfect sinusoidal flux density
distribution around the air gap due to manufacturing restrictions. Thus, flux harmonics always exist.
In the synchronous reference frame, the flux can be expressed by the Fourier series as

ψdm = ψd0 +
∞

∑
n=1

ψd6n cos(6npωt) (6)

where ψd0 is the DC component and ψd6n is the amplitude of the 6nth of the d-axes flux.
Generally, in real PMSMs, sixth and twelfth harmonics are the main part of flux harmonics. Thus,

only these two components are considered. Combining Equations (2) and (6), electromagnetic torque
can be rewritten as

Te = T0 + T6 cos(6pωt) + T12 cos(12pωt) (7)

where T0 is the DC component of the electromagnetic torque, and T6 and T12 are the sixth-order and
twelfth-order harmonic torque amplitudes.

3. MPRC for Periodic Disturbance Suppression

3.1. Multiple Phase-Shift Resonant Controllers

From the view of internal model principle (IMP), if the controller contains all the internal models
that describe the reference or the disturbance signals, then the accuracy tracking or perfect disturbance
rejection is ensured [26]. The internal structure of an ideal resonant controller can be shown as
Figure 3a, letting x(t) and c(t) denote the input and output signal of the resonant controller, respectively.
The dynamics of the resonant controller can be expressed as

c(t) = sin(ω0t)
∫

x(t) sin(ω0t)dt + cos(ω0t)
∫

x(t) cos(ω0t)dt (8)

With the assumption of
.

ω0 = 0, by differentiating (8) twice with respect to time, we can obtain

.
c(t) = ω0 cos(ω0t)

∫
x(t) sin(ω0t)dt−ω0 sin(ω0t)

∫
x(t) cos(ω0t)dt + x(t) (9)

..
c(t) = −ω2

0c(t) +
.
x(t) (10)

The Laplace transform of (10) can be derived as

Gr(s) =
c(s)
x(s)

=
s

s2 + ω02 (11)

where ω0 is the resonant frequency.
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The resonant controller achieves zero steady-state error for the synchronous component rejection
of disturbances due to their infinite gain in the open-loop without any effect on other signals. Thus,
resonant controllers are effective solutions for the periodic disturbances which were analyzed in
Section 2. However, two major drawbacks exist in an ideal resonant controller. First, the abrupt phase
change characteristic around its resonance frequency may affect the stability of the closed-loop system.
In addition, the disturbance frequency that varies with the speed of the motor also will affect the
stability margin and deteriorate the instability possibility of the closed-loop system. To maintain system
stability and extend the stability margin for the entire operational speed range, an adaptive phase-shift
resonant controller is adopted in this paper. The internal structure of the phase-shift resonant controller
is shown in Figure 3b. The transfer function derivation process of the phase-shift resonant controller is
the same as the ideal resonant controller. The transfer function can be expressed as

G′r(s) =
s cos θ −ω0 sin θ

s2 + ω02 (12)

where θ is the phase-shift angle.
In order to deal with multiple frequency components in periodic disturbances that are integer

multiples of the motor speed, multiple resonant controllers are introduced. A multiple phase-shift
controller can be expressed by the following transfer function:

Grn(s) =
s cos θ −ω0 sin θ

s2 + ω02 +
s cos θ − 2ω0 sin θ

s2 + (2ω0)
2 + · · ·+ s cos θ − nω0 sin θ

s2 + (nω0)
2 (13)

3.2. Design and Analysis of the Current MPRC

A resonant controller is adopted in reference [22–24] for PMSM control, but none of them discuss
the tuning process. This part presents the design procedure of the q-axis MPRC for the current control
loop, which works together with the baseline proportional-integral (PI) current control system to track
iqre f accurately and eliminate the multiply frequency harmonic currents caused by flux harmonics.

The back electromotive force (EMF) in q-axes, namely pωψdm, result in current harmonics in
the frequency of 6npω, in which 6pω and 12pω play the major role. In order to suppress the 6pth
and 12pth current harmonic components, the current control strategy of MPRC combined with PI
control is designed as shown in Figure 4. Here, Giq = Kqp + Kqi/s, Gp(s) = Kpwm/(Tpwms + 1),
Pe(s) = 1/(Ls + R) and εi is the control gain which can determine the convergence rate. The transfer
function of the current MPRC is designed as

Gri =
s cos θi − 6pω sin θi

s2 + (6pω)2 +
s cos θi − 12pω sin θi

s2 + (12pω)2 (14)



Energies 2018, 11, 32 7 of 19

where θi is the phase shift of the current MPRC. Therefore, choosing back EMF disturbance de(s) =
pωψdm and current iq(s) as the input and output, the transfer function from de(s) to iq(s) is derived as

iq(s)
de(s)

=
−Pe(s)

1 + Pe(s)[Giq(s) + εiGri(s)]Gp(s)
(15)
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According to (14) and (15), we can obtain
lim

s→j6pω
iq(s) = 0

lim
s→j12pω

iq(s) = 0
(16)

As can be seen from (16), the 6pth- and 12pth-order harmonic components can be theoretically
suppressed. However, the DC component in the control current is not affected.

The root-locus analysis method is utilized to analyze the stability of the current control loop.
Substituting (14) into (15), the transfer function from de(s) to iq(s) can be rewritten as

Gcq = Gcq0(s)
1

1 + εiGri(s)G′cq0(s)
= Gcq0(s)

[s2 + (6pω)2][s2 + (12pω)2]

[s2 + (6pω)2][s2 + (12pω)2] + εi Miq(s)G′cq0(s)
(17)

where Miq(s) = (s cos θi − 6pω sin θi)[s2 + (12pω)2] +(s cos θi − 12pω sin θi)[s2 + (6pω)2], Gcq0(s) is
the transfer function of the baseline system from de(s) to iq(s), and G′

cq0
(s) is the transfer function of

the baseline system from uq(s) to iq(s). They are expressed as follows

Gcq0(s) =
−Pe(s)

1 + Pe(s)Giq(s)Gp(s)
(18)

G′cq0(s) =
Gp(s)Pe(s)

1 + Pe(s)Giq(s)Gp(s)
(19)

The original system which is composed of a baseline system with a PI controller is stable. Thus,
the characteristic roots of Gcq0(s) are located in the left s-plane. Then, to analyze the stability of the
designed current controller, we only need to investigate the characteristic root distribution of the
following characteristic equation

det[[s2 + (6pω)2][s2 + (12pω)2] + εi Miq(s)G′cq0(s)] = 0 (20)

The solution of (20), is the closed-loop root of the open-loop transfer function
εi M(s)G′cq0(s)/[s

2 + (6pω)2][s2 + (12pω)2]. Hence, by solving the root locus of the independent
variable εi, the stability of the system can be determined. When εi = 0, s = ±j6pω, ±j12pω.
According to the characteristics of the root locus, the root locus originates from the poles of the
open-loop transfer function. Only when the angle of emergence is within the range (π

2 , 3π
2 ), the roots
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are all located in the left half-plane, that is, the system is stable. Therefore, in order to keep the stability
of the system, the following condition must be satisfied:

arg[
∂s
∂εi

∣∣∣∣
εi=0

] ∈ (
π

2
,

3π

2
) (21)

When the gimbal servo motor is operating at speed ω, we can obtain the following expression

∂s
∂εi

∣∣∣∣
εi=0,s=j6pω

= − (cos θi + j sin θi)

2
G′cq0(j6pω) (22)

According to (21) and (22), to make the system stable, the condition must be met as follows:

− π

2
< arg[G′cq0(j6pω)] + θi <

π

2
(23)

3.3. Design and Analysis of the Speed MPRC

In the design procedure of the speed MPRC, the current loop is taken as a first-order system.
As analyzed in the previous section, there are three disturbances in the speed loop: the cogging
torque, the flux harmonics torque and the gyro torque caused by the dynamic torque. According to
the parameters of the gimbal servo PMSM shown in Table 1, the harmonic frequencies contained
in the cogging torque are 60nω, those in the flux harmonics torque are 60nω and those in the gyro
torque are Ω. Considering the fact that the higher order harmonics have little effect on speed ripples,
only the frequencies in 60ω and Ω are picked up by making a compromise between complexity and
performance. Thus, the speed MPRC parallel with a PI speed controller is designed, as per the structure
shown in Figure 5.

Table 1. Parameters of the gimbal servo PMSM.

Parameters Values Unit

Rated speed 150 rpm
Pole pairs 10 -

Slot 60 -
Torque constant 1.1 Nm/A
Stator resistance 7.4 Ω

d axes
inductance 6 mH

q axes
inductance 6 mH

Inertia 0.024 kg·m2
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Figure 5. Schematic diagram of the proposed speed controller configuration.

The transfer function of the speed MPRC is designed as

Grv(s) =
s cos θv − 6pω sin θv

s2 + (6pω)2 + εΩ
s cos θΩ −Ω sin θΩ

s2 + Ω2 (24)
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where θv and θΩ are the phase-shift angles of speed MPRC. Choosing torque disturbance Td(s) =

T6 cos(60ωt) + Tgx and speed ω(s) as input and output, respectively, the transfer function from Td(s)
to ω(s) is derived as

ω(s)
Td(s)

=
−Pm(s)

1 + KT Pm(s)[Gv(s) + εvGrv(s)]Gi(s)
(25)

where Pm(s) = 1/(Js + B), KT = 1.5pψd0, Gv(s) = Kvp + Kvi/s, Gi(s) is the first-order system of
current loop, εv and εΩ are the control gain.

According to (24) and (25), we can obtain
lim

s→j6pω
ω(s) = 0

lim
s→jΩ

ω(s) = 0
(26)

Similarly, substituting (24) into (25), the transfer function of (25) can be rewritten as

Gcv = Gcv0(s)
1

1 + εvGrv(s)G′cv0(s)
= Gcv0(s)

[s2 + (6pω)2][s2 + Ω2]

[s2 + (6pω)2][s2 + Ω2] + εv Mv(s)G′cv0(s)
(27)

where Mv(s) = (s cos θv − 6pω sin θv)(s2 + Ω2)+(s cos θΩ − Ω sin θΩ)[s2 + (6pω)2], Gcv0(s) and
G′

cv0
(s) are the transfer function of the baseline system from Td(s) to ω(s) and the transfer function of

the baseline system from iqre f (s) to ω(s), respectively. They can be expressed as follows

Gcv0(s) =
−Pm(s)

1 + KT Pm(s)Gi(s)Gv(s)
(28)

G′cv0(s) =
Gi(s)Pm(s)

1 + KT Pm(s)Gi(s)Gv(s)
(29)

Similarly, in order to analyze the stability of the designed speed controller, we only need to
investigate the characteristic root distribution of the following characteristic equation

det[[s2 + (6pω)2](s2 + Ω2) + εv Mv(s)G′cv0(s)] = 0 (30)

The solutions of (30), namely, the closed-loop roots of the open-loop transfer function
εv Mv(s)G′cv0(s)/[s

2 + (6pω)2](s2 + Ω2). Hence, by solving the root locus of the independent variable
εv, the stability of the system can be determined. s = ±j6pω,±jΩ can be obtained when εv = 0.
According to the characteristics of the root locus, the root locus originates from the poles of the
open-loop transfer function. Only when the angle of emergence is within the range (π

2 , 3π
2 ), the roots

are all located in the left half-plane, namely, the system is stable. Therefore, in order to keep the stability
of the system, the following condition must be satisfied:

arg[
∂s
∂εv

∣∣∣∣
εv=0

] ∈ (
π

2
,

3π

2
) (31)

When the gimbal servo motor and high-speed motor are operating at speed ω and Ω, respectively,
we can obtain the following expression

∂s
∂εv

∣∣∣
εv=0,s=j6pω

= − (cos θv+j sin θv)
2 G′cv0(j6pω)

∂s
∂εΩ

∣∣∣
εΩ=0,s=jΩ

= − (cos θΩ+j sin θΩ)
2 G′cv0(jΩ)

(32)
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According to (31) and (32), to make the system stable, the condition must be met as follows:{
−π

2 < arg[G′cv0(j6pω)] + θv < π
2

−π
2 < arg[G′cv0(jΩ)] + θΩ < π

2
(33)

4. Simulation and Experimental Verification

4.1. Simulation and Experimental Setup

Figure 6 illustrates the configuration of the MSCMG control system for experiments. Figure 7
shows the overall block diagram of the proposed MPRC-based control strategy for a gimbal servo
system in MSCMG. The servo motor of the gimbal system is a PMSM with a sinusoidal back EMF.
The rotor position is measured and decoded to 20-bit data based on the twin-channel resolvers which
has the characteristics of high accuracy and high reliability. The phase currents are measured by the
high-bandwidth hall-effect current sensor and fed to the controller through a 16-bit analog to digital
converter. The experimental setup based on a floating-point TMS320C6713 digital signal processor
(DSP) and a Xilinx XCS400 field-programmable gate array (FPGA) is implemented. The high-speed DSP
with sampling frequencies kept at 20 kHz and 1 kHz for current-loop and speed-loop performs all the
digital control algorithms. The FPGA is used to implement analog to digital interface, generate driving
signal and realize signal detection. All the parameters of the gimbal servo system used in the simulation
and experiments are listed in Tables 1 and 2.

Table 2. Parameters of control system.

Parameters Values Unit Parameters Values Unit

Kqp 38 v/A Kvp 13 A · s/rad
Kqi 42,000 v/A Kvi 8900 A · s/rad

Tpwm 0.00005 s εv 8000 -
εi 10,000 - εΩ 0.6 -
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Figure 7. Block diagram of the proposed MPRC-based control strategy for PMSM.

To verify the performance of the proposed MPRC+PI control scheme, the simulation and
experiment were carried out under the following four cases.

(Case 1) The gimbal servo motor speed keeps constant at 1 rad/s under speed PI control
and the suspended high-speed rotor keeps at a standstill to verify the harmonic current
suppression performance.

(Case 2) The gimbal servo motor speed keeps constant at 1 rad/s under the proposed MPRC+PI
control and the speed of the suspended high-speed rotor operates at 10,000 rpm and 6000 rpm.

(Case 3) The gimbal servo motor speed keeps constant at 0.01 rad/s under the proposed MPRC+PI
control and the speed of the suspended high-speed rotor operates at 10,000 rpm and 6000 rpm.

(Case 4) The gimbal servo motor speed varies with a frequency of 3 HZ and amplitude of 1 rad/s,
and the suspended high-speed rotor keeps constant at 10,000 rpm.

4.2. Simulation Results

The magnitude-frequency and phase-frequency characteristic diagrams of (19) and (29) are shown
in Figure 8. As can be seen from the diagrams, both the current and speed system have a strong
inhibition on disturbances at low frequency. Besides, the magnitude of the interference associated
with the gimbal torque motor speed is small when the motor operates at ultra-low speed. Therefore,
when the operating speed of the gimbal torque motor is lower than 0.1 rad/s, the phase-shift resonant
controller for gyro torque rejection is activated only. According to the phase ranges shown in Figure 8
at different operating speeds, the compensation phases are given in (34)–(36) to maintain the stability
of the system.

θi =

{
−π

2 (0.1 ≤ ω < 6.5 rad/s)

0 (ω ≥ 6.5 rad/s)
(34)

θv =

{
−π

2 (0.1 < ω < 6.3 rad/s)

0 (ω ≥ 6.3 rad/s)
(35)

θΩ =


−π

2 (0 < Ω ≤ 382 rad/s)
0 (382 < Ω ≤ 910 rad/s)

π
2 (Ω > 910 rad/s)

(36)
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4.2.1. Simulation 1—Harmonic Current Suppression

This simulation is conducted under case (1). In this simulation, the traditional PI controller
is adopted in the speed loop and the speed reference of the servo motor is 1 rad/s. Figure 9a,b
provide the performance of the PI current controller and multiple phase-shift resonant current
controller, respectively. It can be seen from Figure 9a that there are tracking errors between iq and iqre f ,
and there are periodic ripples with a frequency of 60 rad/s and a peak-to-peak value of about 0.01 A
in id under current PI control. By contrast, as depicted in Figure 9b, the iq and iqre f curves are almost
coincident and the current ripples in id are suppressed completely. In addition, the speed of the servo
motor oscillates with a peak-to-peak value about 0.014 rad/s and 0.012 rad/s under the current PI
control and the current MPRC+PI control schemes, respectively. The harmonic current has little effect
on velocity performance. Simulation results verify that the proposed zero harmonic current control
method can suppress the harmonic currents effectively.
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4.2.2. Simulation 2—Speed Ripple Suppression

This simulation is conducted under case (2), case (3) and case (4) to investigate the periodic
disturbance rejection performance in the speed loop. In this simulation, MPRC+PI control is applied in
the speed control loop. The speed references of 1 rad/s and 0.01 rad/s are firstly given to evaluate the
performance in the steady-state. Generally speaking, the bandwidth of the speed command that is
given by the attitude control computer is less than 3 HZ. Thus, the sinusoidal speed reference with a
frequency of 3 HZ and an amplitude of 1 rad/s is applied to evaluate the performance of the proposed
MPRC+PI control in the dynamic process.

The simulation results under case (2), case (3) and case (4) are shown in Figures 10–12, respectively.
In Figures 10 and 11, the MPRC is activated at the moment of 0.25 s. In Figure 12, the MPRC is
activated at the moment of 0.5 s. It can be seen that the speed oscillates obviously under PI control.
The amplitude of the speed harmonics caused by the dynamic unbalance of the high-speed rotor does
not vary with the changing speed of the gimbal servo PMSM, and its peak-to-peak value is 0.018 rad/s
and 0.01 rad/s, with the high-speed rotor operating at 10,000 rpm and 6000 rpm, respectively. The 60th
speed harmonic amplitude varies with the operational speed of the PMSM. Its peak-to-peak value is
about 0.014 rad/s at an operating speed of 1 rad/s and is about 0.0002 rad/s at a speed of 0.01 rad/s.
Thus, it can be seen from Figure 10 that when the gimbal servo motor speed keeps constant at 1 rad/s,
the speed oscillating ranges are 0.984 to 1.016 rad/s and 0.988 to 1.012 rad/s, with the high-speed rotor
operating at 10,000 rpm and 6000 rpm, respectively. As depicted in Figure 11, when the gimbal servo
motor speed keeps constant at 0.01 rad/s, the speed oscillating ranges are 0.0089–0.0191 rad/s and
0.0049–0.0051 rad/s, with the high-speed rotor operating at 10,000 rpm and 6000 rpm, respectively.
By contrast, in the MPRC+PI control, the amplitudes of those two kinds of speed harmonics are almost
reduced to zero. Figure 12 shows that the proposed method has an excellent dynamic performance
during the whole operating speed range.
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4.3. Experiment Results

Figure 13 provides the comparison experimental results of current MPRC+PI control in case (1).
It can be seen from Figure 13a that there are tracking errors between iq and iqre f , and there are periodic
ripples with a frequency of 60 rad/s and a peak-to-peak value of about 0.02 A in id under current
PI control. By contrast, as depicted in Figure 13b, the iq and iqre f curves are almost coincident and
the current ripples in id are suppressed completely. The gimbal servo motor speed oscillates with a
range of 0.986 rad/s to 1.012 rad/s in speed PI control and is influenced little by the current harmonics.
The experimental results demonstrate that the proposed control scheme achieves satisfactory speed
ripple suppression performance.
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Figure 13. Experimental waveforms of d-axis, q-axis currents and speed under case (1). (a) Waveforms
under current PI control; (b) Waveforms under current MPRC+PI control.

The experimental results of the speed response under case (2) and case (3) are shown in
Figures 14 and 15, respectively. In Figure 14, the speed of the gimbal servo motor oscillates seriously
under PI control and the fluctuation ranges are 0.974 to 1.025 rad/s and 0.985 to 1.016 rad/s,
corresponding with the high-speed rotor operating at 10,000 rpm and 6000 rpm, respectively, whereas
the speed steady-state error is controlled to be within ±0.004 rad/s under the proposed MPRC+PI
control method. In Figure 15, the gimbal servo motor speed is constant at 0.01 rad/s, the speed
harmonic amplitudes are 0.005 rad/s and 0.0095 rad/s, corresponding to the high-speed rotor operating
at the speed of 6000 rpm and 10,000 rpm, respectively. By contrast, the speed steady-state error of the
gimbal servo system is maintained at±0.003 rad/s under the proposed MPRC+PI control. The detailed
experiment results of the speed ripple harmonics in case (2) and case (3) are depicted in Tables 3 and 4,
respectively. According to the above experimental results, the effectiveness of MPRC+PI control is
clearly revealed under various steady-state operating speeds.

Figure 16 shows the experimental results under case (4), in which the sinusoidal speed reference
with a frequency of 3 Hz and amplitude of 1 rad/s is given. According to Figure 16a,c, the actual speed
of the servo motor cannot track the reference very well, with a maximal speed error reaching 0.036 rad/s.
The speed harmonic in 1047 rad/s is the main factor of speed error. Compared to Figure 16a,c, the actual
output speed in Figure 16b,d can follow the reference better, with a maximal speed error of only about
0.007 rad/s, and the main influence factor is nonlinear friction. The effectiveness and excellent dynamic
performance of the proposed MPRC+PI control is clearly confirmed.
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Figure 14. Experimental results under case (2). (a) Speed response under PI control with high-speed
rotor operating at 10,000 rpm; (b) Speed response under MPRC+PI control with high-speed rotor
operating at 10,000 rpm; (c) Speed response under PI control with high-speed rotor operating at
6000 rpm; (d) Speed response under MPRC+PI control with high-speed rotor operating at 6000 rpm.
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Figure 15. Experimental results under case (3). (a) Speed response under PI control with high-speed
rotor operating at 10,000 rpm; (b) Speed response under MPRC+PI control with high-speed rotor
operating at 10,000 rpm; (c) Speed response under PI control with high-speed rotor operating at
6000 rpm; (d) Speed response under MPRC+PI control with high-speed rotor operating at 6000 rpm.
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Table 3. Details of the harmonics in speed under case (2).

Control Method Speed of High-Speed Rotor (rpm) Amplitude of Hrmonics in Speed

60 rad/s 628 rad/s 1047 rad/s

PI 6000 0.013 0.005 -
MPRC+PI 6000 0.002 0.0012 -

PI 10,000 0.013 - 0.0095
MPRC+PI 10,000 0.002 - 0.002

Table 4. Details of the harmonics in speed under case (3).

Control Method Speed of High-Speed Rotor (rpm) Amplitude of Harmonics in Speed

0.6 rad/s 628 rad/s 1047 rad/s

PI 6000 0.0001 0.005 -
MPRC+PI 6000 0.0001 0.0013 -

PI 10,000 0.0001 - 0.0095
MPRC+PI 10,000 0.0001 - 0.002
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5. Conclusions

Periodic torque ripples are important factors affecting the high-precision speed tracking control of
a gimbal servo system in MSCMG. Periodic torque ripples caused by the cogging torque, flux harmonic
and mass unbalance of the high-speed rotor were analyzed. To effectively minimize the torque
ripples, a method that plugs multiple phase-shift resonant controllers into the baseline speed and
current control is proposed. Different phases were chosen as compensation to ensure the stability of the
closed-loop system at variable speed rotations of both the gimbal servo motor and the high-speed motor.
The method presented is easy to realize and is propitious to engineering applications. The effectiveness
of the proposed method was verified by both the simulation and the experimental results.
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