
energies

Article

Rate Decline Analysis for Modeling Volume
Fractured Well Production in Naturally
Fractured Reservoirs

Mingxian Wang, Zifei Fan, Guoqiang Xing * ID , Wenqi Zhao, Heng Song and Penghui Su

Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China;
wangmingxian89@126.com (M.W.); fzf@petrochina.com.cn (Z.F.); zhaowenqi@petrochina.com.cn (W.Z.);
songheng@petrochina.com.cn (H.S.); suphui317@petrochina.com.cn (P.S.)
* Correspondence: m18600835372@163.com

Received: 20 October 2017; Accepted: 21 December 2017; Published: 1 January 2018

Abstract: Based on the property discontinuity in the radial direction, this paper develops a new
composite model to simulate the productivity of volume fractured wells in naturally fractured
reservoirs. The analytical solution of this model is derived in detail and its accuracy is verified
by the same model’s numerical solution. Detailed analyses of the traditional transient and
cumulative rate are provided for the composite model. Results show that volume fracturing mainly
contributes to the early-flow period’s production rate. As interregional diffusivity ratio increases or
interregional conductivity ratio decreases, the transient rate at the same wellbore pressure increases.
Three characteristic decline stages may be observed on transient rate curves and the shape of
traditional rate curves in the middle- and late-flow periods depends on naturally fractured medium
and boundary condition. By introducing a new pseudo-steady constant, new Blasingame type
curves are also established and their features are more salient than those of traditional rate curves.
Five typical flow regimes can be observed on these new type curves. Sensitivity analysis indicates that
new Blasingame type curves for varied interregional diffusivity ratio, interregional conductivity ratio,
interporosity coefficient and dimensionless reservoir radius, except storativity ratio, will normalize
in the late-flow period.

Keywords: rate decline analysis; volume fractured wells; naturally fractured reservoirs;
composite model; new Blasingame type curves; flow regime recognition

1. Introduction

Volume fracturing has been an effective technique to enhance the productivity of the wells
with damaged zones or in low-permeability formations. Production wells in naturally fractured
reservoirs are a potential target for being stimulated by such technique. After volume fracturing
treatment, a certain stimulated region composed of hydraulic fractures, natural fractures and shear
cracks is created near the wellbore. This reduces the flow resistance and thus improves the wells’
production [1,2]. However, it is difficult to test and evaluate the productivity under such complex
fracture network conditions caused by volume fracturing.

As an important method, rate decline analysis is widely used to predict well performance and
estimate reservoir properties. In terms of productivity analysis and prediction, Arps [3] generalized the
production decline law into three types: exponential decline, harmonic decline, and hyperbolic decline.
Fetkovich [4] proved Arps’ rate decline law theoretically and combined theoretical decline curves with
Arps decline equations to further analyze rate decline. However, Fetkovich type curves could not solve
the problem of both variable production rate and variable wellbore pressure. Blasingame et al. [5,6]
solved this problem skillfully by introducing the concepts of material balance time and rate integral
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average. Later, Fetkovich and Blasingame type curves were extended into other well types, such as
fractured wells and horizontal wells [7–12].

Based on the assumption that the well is intersected by a single fracture, Gringarten et al. [13]
developed three important solutions for fractured wells: infinite-conductivity fracture solution,
uniform-flux fracture solution for the well with a vertical fracture, and uniform-flux fracture solution
for the well with a horizontal fracture. Later, Cinco-Ley et al. [14] provided a semi-analytical solution
for the well with a finite-conductivity vertical fracture. These four solutions have a significant effect
on the study of fractured wells, but all the solutions are limited to the transient-pressure analysis.
Based on their solutions, a few scholars began to conduct the rate decline analysis of fractured wells
by using the approaches originally proposed by Fetkovich and Blasingame [4–6]. Wang et al. [15]
established Blasingame type curves for the well with a finite-conductivity vertical fracture in tight
oil reservoirs and investigated its productivity. Further, Wang et al. [16] considered the fracture face
damage existed in a finite-conductivity vertical fracture and also developed rate decline curves like
Blasingame to discuss the effect of fracture face damage. It has been shown that the increase in the
productivity of a fractured well depends on fracture characteristics, such as fracture conductivity,
length, and penetration [17,18].

The previous studies assume that only a single fracture intercepts the wellbore. However, in
practice, a few observations from the field and laboratory have shown very complex fracture paths
and the presence of multiple fractures, multi-segmented fractures and branchings [19–24]. Multiple
fractures can occur near the wellbore and they grow out of each other’s influence zone [20,25,26].
Therefore, the previous assumption about hydraulic fracture near the wellbore is not valid in the
case of volume fractured wells in naturally fractured reservoirs. When a reservoir has a discontinuity
of material properties in the radial direction, it can be considered a composite reservoir [27].
Volume fracturing treatment creates a high-permeability region near the wellbore, for this reason, the
case of a well with multiple complex fractures near the wellbore in naturally fractured reservoirs can
be closely represented by a composite reservoir model. Restrepo [28] also developed an analytical
model for multiple fractures with complex geometry to investigate the transient pressure by using
superposition principle, which puts forward a new way to deal with the complex fracture network.
Unfortunately, he does not include the well productivity in his work.

Due to the good stimulation of volume fracturing, rate decline analysis in volume fractured well
production has attracted a continuous increasing attention. Al-Salem et al. [29] established a numerical
model by using a vertical and horizontal orthogonal fracture network to approximately substitute the
volume reconstruction. Combining with the micro seismic exploration results, Arvind et al. [30]
approximately simulated the reconstruction region around the wells. Using the fractal theory,
Liu et al. [31,32] and Xiao and Zhao [33] described the fracture distribution in the stimulated region
and presented an analytical model to simulate the productivity of cold and heavy oil. However, to be
my best known, there is still no overall well test interpretation model and rate decline type curves for
vertical wells with volume fracturing in naturally fractured reservoirs.

The purpose of this work is to simulate the productivity of volume fractured wells in naturally
fractured reservoirs by establishing rate decline type curves. Firstly, based on the concept of composite
reservoir, this paper develops a new mathematical model for volume fractured well production in
such reservoirs. Secondly, we acquire the analytical solution of this composite model in Laplace space
and verify its accuracy through comparing it with the same model’s numerical solution. Thirdly, we
compare the differences of productivity between the models with and without volume fracturing
and also investigate the parameter influence on the traditional transient and cumulative rate curves
thoroughly. Finally, we establish new Blasingame type curves by using a new pseudo-steady constant,
and identify main flow regimes on the new Blasingame type curves and further emphatically discuss
parameter sensitivity of these type curves, including interregional diffusivity ratio, interregional
conductivity ratio, storativity ratio, interporosity coefficient and dimensionless reservoir radius.
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2. Analytical Solution to Mathematical Model

Figure 1 shows a sketch of the flow of a volume fractured well in a naturally fractured reservoir.
A stimulated region with joint network is formed in the near-wellbore area after volume fracturing
treatments (Figure 1a). Using the concept of composite reservoir, the proposed model can be normally
subdivided into two concentric regions: the inner region with multiple fractures (Region I) and the
outer region with naturally fractured formation (Region II), respectively (Figure 1b). In the inner
region, multiple hydraulic fractures caused by volume fracturing greatly improve the connectivity
and conductivity near the wellbore, thus we can assume that these fractures have infinite conductivity,
and fluid seepage in them follows Darcy linear flow. We use the classical Warren-Root model [34]
to describe the fluid flow in the outer region. In order to establish a mathematical model, certain
simplifications and assumptions in the composite model are made (Figure 1c):

(1) All the hydraulic fractures, with the same properties, fully penetrate the formation, and
the reservoir is closed at the external boundary of side and bounded by upper and lower
impermeable formation.

(2) Flow in the reservoir is considered to be a single-phase flow with slightly compressible fluid of
constant viscosity and volume factor.

(3) The joint fracture network constituted the main flow channel in the composite system, and fluid
flow in the reservoir is laminar and isothermal. In the inner region, fluid flows into the wellbore
only through hydraulic fractures and the matrices of this region have no contribution to the flow;
in the outer region, fluid first flows from the matrices to the natural fractures and then directly
flows into the hydraulic fractures of the inner region.

(4) A vertical well intercepted by a finite number of hydraulic fractures is located at the center of the
composite reservoir. No wellbore storage effect and skin effect is considered.
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Based on the composite model above, we can establish a mathematical model for volume fractured
wells in naturally fractured reservoirs (seen in Appendix A). Flow patterns in the inner and outer
regions are defined first. Considering the continuity of pressure and flux at the interface, two
interface conditions are then incorporated into the model. To simplify the problem, we do the
nondimensionalization and Laplace transform for the mathematical model successively.

Note that the governing equations, Equations (A7) and (A18), are the typical Bessel equations.
Their general solutions in Laplace space can be given by:

p̃1D = A cosh
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)
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(√
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)
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respectively.
Combining the boundary conditions (Equations (A8) and (A19)) and interface conditions

(Equations (A24) and (A25)) with the general solutions, we can obtain the following mathematical
Equations: 

B×
√

sα = − β
s

C×
√

s f (s)× I1

(√
s f (s)reD

)
− D×

√
s f (s)× K1

(√
s f (s)reD

)
= 0

A cosh
(√

sα
)
+ Bsinh

(√
sα
)
= CI0

(√
s f (s)

)
+ DK0

(√
s f (s)

)
Asinh

(√
sα
)
+ B cosh

(√
sα
)
= β

√
s f (s)√

sα

[
CI1

(√
s f (s)

)
− DK1

(√
s f (s)

)] (3)

By solving the equations, we can acquire the wellbore pressure in Laplace space:
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According to Duhamel principle [35], the pressure solution under constant rate and the rate
solution under constant wellbore pressure have the following correlation in Laplace space:

q̃wD(s) =
1

s2 p̃wD(s)
(5)

Furthermore, using the relationship between the transient and cumulative rates, we can obtain
the cumulative rate under constant wellbore pressure in Laplace space:

q̃cD(s) =
q̃wD(s)

s
=

1
s3 p̃wD(s)

(6)

Then, combining Equations (4)–(6), pwD(tD), qwD(tD) and qcD(tD) for any given tD in real space
can be figured out by the Stehfest numerical inverse method [36].

3. Verification of the Analytical Solution

As far as we know, in the literature there is no other analytical model dealing with volume
fractured wells in naturally fractured reservoirs. Generally, a model’s numerical solution is an
effective way to verify its analytical solution’s accuracy. Numerical solution of this composite
model can be obtained by solving a tri-diagonal matrix, which can be constructed by treating
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the dimensionless mathematical model (seen in Appendix A) with a finite difference method and
simultaneously introducing a mirror image method to deal with the dimensionless boundary and
interface conditions [37]. Therefore, we can verify the accuracy of the analytical solution through
comparing it with the numerical solution. Figure 2 shows the comparison results of two solutions under
different interregional diffusivity ratio, interregional conductivity ratio, fracture-matrix storativity
ratio, and fracture-matrix interporosity coefficient, respectively. The excellent agreement within the
most production life between our analytical and numerical solution results can be seen in this figure.
These comparisons indicate that the analytical solution in this paper is reliable, thus we can proceed
with the development of rate decline curves using the analytical solution. It is noteworthy that these
two kinds of solutions have their own advantages. The computational speed of the numerical solution
is faster than that of the analytical solution, but the analytical solution is easier to take the wellbore
storage and skin effects into consideration and also more convenient to conduct the rate decline
analysis by using Duhamel principle.
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Figure 2. Comparison results of the analytical and numerical solutions: (a) α = 0.1, 10; (b) β = 0.05, 0.5;
(c) ω = 0.1, 0.001; (d) λ = 5 × 10−6, 5 × 10−4.

4. Results and Discussion

In this section, we conduct a detailed productivity analysis for a volume fractured well in the
naturally fractured reservoir, including differences of well productivity between the reservoir models
with and without volume fracturing, parameter influence on traditional transient and cumulative
rate curves, flow regime recognition on new Blasingame type curves and sensitivity analysis of new
Blasingame type curves.
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4.1. Comparison with a Model not Having Volume Fracturing

Since we have established an analytical model for a volume fractured well in the naturally
fractured reservoir, it is necessary to make a comparison of this model with the same reservoir
model not having volume fracturing to know their differences. Figure 3 presents the differences of
the transient and cumulative rate curves between these two models. It can be seen that the same
parameters for two models are ω, λ, rwD and reD, but the parameters α and β, only belong to the model
with volume fracturing.

As shown in Figure 3, in the early and middle time both the transient and cumulative rates of the
volume fractured well are higher than those of the well without the stimulation at the same group of
production parameters, due to a larger drainage area caused by volume fracturing. However, in the
late time, the transient rate of the volume fractured well is slightly lower than that of the well without
the stimulation, but this difference can be ignored because the transient rate is very low in the later
time. It also can be seen that the rate decline of the volume fractured well is much faster than that
of the well without the stimulation and the cumulative rates of these two models reach the same in
the late time, which implies that volume fracturing treatment mainly contributes to the early-flow
production but has little influence on the final cumulative rate.
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without volume fracturing.

4.2. Parameter Influence on Transient and Cumulative Rate Curves

There is a possibility of multiple solutions for well test analysis and the shape of type curves
may be affected by different parameter values. Figures 4–8 show how the shape of the transient and
cumulative rate curves for a volume fractured well in the naturally fractured reservoir is affected by
changing the parameters.

4.2.1. Interregional Diffusivity Ratio α and Interregional Conductivity Ratio β

Physically interregional diffusivity ratio α and interregional conductivity ratio β represent two
fracture systems’ diffusivity ratio and conductivity ratio, respectively. These two parameters depend
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on the permeability, the number of hydraulic fractures and the storativity of two fractured regions.
Figures 4 and 5 show the effect of these two parameters on the transient and cumulative rates,
respectively. There are three characteristic decline stages within the whole production life on the
transient rate curves: initially transient rate decreases linearly, then the second decline stage comes
after a stable production period, and when the pressure wave spreads to the outer boundary, the third
decline stage occurs and the production rate approaches to zero.

From Figure 4, we can find that interregional diffusivity ratio mainly affects the early-flow period
and during this period a larger α leads to a higher production rate at the same wellbore pressure. In the
later-flow period, the diffusion capacity of the inner region well satisfies the demand of fluid flow
feeding the wellbore and flow in the composite model reaches a dynamic balance. Therefore, changing
interregional diffusivity ratio does not affect the transient rates and the cumulative rates reach the
same in the later-flow period.
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of interregional diffusivity ratio (α = 0.01, 0.1, 1 and 10).

Figure 5 demonstrates that interregional conductivity ratio mainly affects the early- and
middle-flow periods and during these periods a larger interregional conductivity ratio corresponds to
a lower production rate at the same production. As we know, a larger interregional conductivity ratio
means a weaker conductivity of the inner region. Therefore, a larger interregional conductivity ratio
increases the flow resistance, which can explain the previous result.

As shown in Figures 4 and 5, in the late-flow period, the transient rate curves normalize for
varied interregional diffusivity ratio and interregional conductivity ratio, respectively, and so do
the cumulative rate curves for these two parameters. Considering that the parameters α and β only
depend on volume fracturing treatment, these normalizations demonstrate that this stimulation
technique has no influence on the total productivity but significantly improves the production rate in
the early-flow period.
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4.2.2. Storativity Ratio ω and Interporosity Coefficient λ

The influence of fracture-matrix storativity ratio (ω = 10−3, 10−2, 10−1 and 0.9) and fracture-matrix
interporosity coefficient (λ = 10−6, 10−5, 10−4 and 10−3) on the transient and cumulative rate curves
are given in Figures 6 and 7, respectively. It can be seen from these two figures that the storativity
ratio and interporosity coefficient only affect the late-flow period, similar to the common dual media.
There are also three decline stages on their transient rate curves.
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From Figure 6, as storativity ratio increases from 0.001 to 0.9, the third decline stage occurs earlier
and the duration of the last stable production stage becomes shorter. This is because when ω goes
to 1, reserves in the matrix system approach to zero and inter-porosity flow in the outer region is
very weak, which accelerate the rate decline. Note that the final cumulative rate curves are a set
of parallel horizontal lines and a higher storativity ratio corresponds to a lower cumulative rate in
the late-flow period. As shown in Figure 7, with the increase of interporosity coefficient, the second
decline stage lasts short and even disappears from the transient rate curves, but the appearance of
the third decline stage gets early and also the transient rate corresponding to this stage decreases.
It can be interpreted by that the ability of matrix system supplying fluid for natural fracture system
becomes stronger as interporosity coefficient increases. Different from the influence of storativity
ratio, this group of cumulative rate curves will normalize in the late-flow period, which suggests that
interporosity coefficient has no influence on the final cumulative rate

4.2.3. Dimensionless Reservoir Radius reD

In this paper, we focus on the case of closed boundary. Figure 8 presents the influence of
dimensionless reservoir radius on the transient and cumulative rate curves (reD = 50, 100, 200 and 400).
There is no difference in the shape of type curves in the early- and middle-flow periods under varied
dimensionless reservoir radius. However, in the late-flow period, as the parameter reD decreases, both
the transient and cumulative rates decrease rapidly, which meets the characteristic of closed reservoir.
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4.3. Flow Regime Recognition on Blasingame Type Curves

For closed external boundary, the late-time behavior of well production corresponds to a
pseudo-steady flow. Specially, we further study the pseudo-steady analytical solution by means
of the asymptotic analysis method.

When the variable x goes to zero, the following Bessel functions may be approximated by [38]:

K0(x) ≈ − ln(x) + ln 2− 0.5772 (7)

K1(x) ≈ 1
x

(8)

I0(x) ≈ 1 +
x2

4
(9)

I1(x) ≈ x
2

(10)

As tD → ∞ ( s→ 0), considering these approximate relations in Equation (4) and then conducting
the Laplace inverse, a new pseudo-steady analytical formula in real space can be obtained:

pwD,pss(tD) =
2ωtD(

r2
eD − 1

) + r2
eD ln(ωtD)

2
(
r2

eD − 1
) +

r2
eD(ln 4− 0.5772) + 1

2
(
r2

eD − 1
) (11)

Recalling the general identity for pseudo-steady flow under the dimensionless condition [4,10],
we can define bDpss as a new dimensionless pseudo-steady constant for our composite model, which is
given by:

bDpss =
r2

eD(ln 4− 0.5772) + 1
2
(
r2

eD − 1
) (12)

where the parameter bDpss is independent of time, but is a function of reD. In fact, bDpss is close
to a constant when reD is large enough. The work to derive the variable bDpss is essential for the
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development of new rate decline curves. The bDpss parameter always acts as a correlating variable
when we define some new rate functions [4].

The general definitions of the base decline for type curve variables as given by Fetkovich [4] are:

qDd = qDbDpss (13)

tDd =
2

bDpss(reD2 − 1)
tD (14)

In order to eliminate the possibility of multiple solutions and reduces the errors in well test
analysis, Blasingame et al. [6] created the integral average method of rate and defined the following
two variables, which are widely used in the rate decline analysis:

(1) Dimensionless rate integral function: qDdi

qDdi =
NpDd

tDd
=

1
tDd

∫ tDd

0
qDd(τ)dτ (15)

(2) Dimensionless rate integral derivative function: qDdid

qDdid = − dqDdi
d ln(tDd)

= −tDd
dqDdi
dtDd

= qDdi − qDd (16)

Now incorporating Equations (13)–(16) with our composite model, we can consequently establish
new Blasingame type curves for volume fractured well production in the naturally fractured reservoir.
New Blasingame type curves are normally composed of log-log plots of rate integral function qDdi
and rate integral derivative function qDdid with “decline time” tDd. Due to the addition of rate integral
derivative function, it can amplify the small variations in the flow process on type curves and greatly
help us to identify its flow behavior, which is a huge advantage of Blasingame type curves over the
traditional rate decline type curves.

Figure 9 clearly shows an entire transient flow process for a volume fractured well in the naturally
fractured reservoir with closed boundary and five typical flow regimes can be observed on the new
Blasingame type curves:

Regime I: linear flow regime. The curves of qDdi and qDdid are a pair of parallel downward straight
lines with the slope of negative one half, which is the typical characteristic of linear flow.

Regime II: transition flow regime. This regime occurs when the interface of two regions is felt.
The curves of qDdi and qDdid are not parallel.

Regime III: radial flow regime. Production continues to decline while the curves of qDdi and qDdid
become a pair of parallel downward sloping lines again. In this regime, fluid flow in the natural
fracture and hydraulic fracture systems reaches a dynamic balance.

Regime IV: inter-porosity flow regime. The curve of qDdid is first convex and then concave, which
is a reflection of fracture-matrix inter-porosity flow.

Regime V: pseudo-steady flow regime. For a closed boundary, when the pressure wave spreads
to the outer boundary, pseudo-steady flow begins to appear in the composite system and the curves of
qDdi and qDdid converge to a straight line with negative unit slope.

Type curves’ shape in regime I and II is typical of fluid flow for volume fractured wells. The shape
and position of type curves in the early time are dominated by interregional diffusivity ratio α and
interregional diffusivity ratio β. Type curves’ shape in regimes IV and V is typical of fluid flow in the
naturally fractured reservoir. The shape and location of type curves in the late time are dominated by
storativity ratio ω, interporosity coefficient λ and dimensionless reservoir radius reD.
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4.4. Sensitivity Analysis of New Blasingame Type Curves

Compared with the traditional rate decline curves, Blasingame type curves could deal with the
issue of both variable rate and variable wellbore pressure. It is useful and necessary to establish a set
of Blasingame type curves for volume fractured well production in the naturally fractured reservoirs.
Figures 10–14 contain these new type curves for different parameter conditions. Later we will show
the results of sensitivity analysis of new Blasingame type curves.

4.4.1. Interregional Diffusivity Ratio α

Figure 10 presents the effect of interregional diffusivity ratio on dimensionless rate integral qDdi
and dimensionless rate integral derivative qDdid. The curves of qDdi and qDdid have the same decline
trend, but the features of the qDdid curves are more salient than those of the qDdi curves. As shown
in Figure 10, the values of qDdi and qDdid before inter-porosity flow regime decrease as interregional
conductivity ratio decreases. We can find that this parameter mainly affects the early-flow period and
radial flow regime may be absent at a large interregional diffusivity ratio. Meanwhile, as the value
of α decreases, the duration of linear flow regime is shortened while that of transition flow regime is
prolonged. When interregional diffusivity ratio is larger than 1, fluid velocity in the inner region is
slower than that in the outer region. Additionally, all the new type curves for different interregional
diffusivity ratio will normalize at the start of inter-porosity flow regime.
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diffusivity ratio (α = 0.01, 0.1, 1 and 10).

4.4.2. Interregional Conductivity Ratio β

Blasingame type curves for different interregional conductivity ratio are shown in Figure 11.
Before inter-porosity flow regime, a larger the interregional conductivity ratio corresponds to smaller
values of qDdi and qDdid.
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It can be concluded that the effect of interregional conductivity ratio is predominantly on linear-,
transition- and radial-flow regimes. When the value of β is low enough, radial flow may be absent and
replaced by transition flow. With the increase of interregional conductivity ratio, the duration of linear
flow is shortened while that of radial flow is prolonged. Interestingly, all the curves of qDdi and qDdid
for varied interregional conductivity ratio will normalize in the pseudo-steady flow regime

4.4.3. Storativity Ratio ω

Figure 12 shows the effect of storativity ratio on the curves of qDdi and qDdid. Similar to the
common naturally fractured media, it can be observed that storativity ratio has a strong influence on
the inter-porosity flow regime and the curves of qDdid are concave in this regime. With the decrease of
storativity ratio, the inter-porosity flow becomes more obvious, the duration of this regime becomes
longer, and also the values of both qDdi and qDdid becomes lower. It is worth noting that a larger
storativity ratio corresponds to a smaller valley value of qDdid in the inter-porosity flow regime. In the
late-flow period, the curves of qDdi and qDdid corresponding to each storativity ratio will normalize,
respectively, which is different from the influence of the other four parameters on the Blasingame
type curves.

4.4.4. Interporosity Coefficient λ

From Figure 13, we can see that interporosity coefficient λ also mainly affects the duration and
degree of inter-porosity flow, like the common dual media. The lower the interporosity coefficient is,
the longer the inter-porosity flow regime lasts. Meanwhile, the values of both qDdi and qDdid in the
inter-porosity flow regime decrease with the decrease of interporosity coefficient. Similarly, the curves
of both qDdi and qDdid normalize in the pseudo-steady flow regime.

Energies 2018, 11, 43 14 of 22 

 

It can be concluded that the effect of interregional conductivity ratio is predominantly on 
linear-, transition- and radial-flow regimes. When the value of β is low enough, radial flow may be 
absent and replaced by transition flow. With the increase of interregional conductivity ratio, the 
duration of linear flow is shortened while that of radial flow is prolonged. Interestingly, all the 
curves of qDdi and qDdid for varied interregional conductivity ratio will normalize in the pseudo-steady 
flow regime 

4.4.3. Storativity Ratio ω 

Figure 12 shows the effect of storativity ratio on the curves of qDdi and qDdid. Similar to the 
common naturally fractured media, it can be observed that storativity ratio has a strong influence on 
the inter-porosity flow regime and the curves of qDdid are concave in this regime. With the decrease of 
storativity ratio, the inter-porosity flow becomes more obvious, the duration of this regime becomes 
longer, and also the values of both qDdi and qDdid becomes lower. It is worth noting that a larger 
storativity ratio corresponds to a smaller valley value of qDdid in the inter-porosity flow regime. In the 
late-flow period, the curves of qDdi and qDdid corresponding to each storativity ratio will normalize, 
respectively, which is different from the influence of the other four parameters on the Blasingame 
type curves. 

4.4.4. Interporosity Coefficient λ 

From Figure 13, we can see that interporosity coefficient λ also mainly affects the duration and 
degree of inter-porosity flow, like the common dual media. The lower the interporosity coefficient is, 
the longer the inter-porosity flow regime lasts. Meanwhile, the values of both qDdi and qDdid in the 
inter-porosity flow regime decrease with the decrease of interporosity coefficient. Similarly, the 
curves of both qDdi and qDdid normalize in the pseudo-steady flow regime. 

 
Figure 12. New Blasingame type curves for a volume fractured well at different values of 
fracture-matrix storativity ratio (ω = 10−3, 10−2, 10−1 and 0.9). 
Figure 12. New Blasingame type curves for a volume fractured well at different values of
fracture-matrix storativity ratio (ω = 10−3, 10−2, 10−1 and 0.9).



Energies 2018, 11, 43 15 of 21
Energies 2018, 11, 43 15 of 22 

 

 

Figure 13. New Blasingame type curves for a volume fractured well at different values of 
fracture-matrix interporosity coefficient (λ = 10−6, 10−5, 10−4 and 10−3). 

4.4.5. Dimensionless Reservoir Radius reD 

Blasingame type curves for different dimensionless reservoir radius are given in Figure 14. The 
difference in the shape of new Blasingame type curves for varied reD appears in the early-flow period 
and the curves of both qDdi and qDdid normalize in the pseudo-steady flow regime, which is contrary to 
the traditional rate decline curves (Figure 8). 

 
Figure 14. New Blasingame type curves for a volume fractured well at different values of 
dimensionless reservoir radius (reD = 50, 100, 200 and 400). 

Figure 13. New Blasingame type curves for a volume fractured well at different values of
fracture-matrix interporosity coefficient (λ = 10−6, 10−5, 10−4 and 10−3).

4.4.5. Dimensionless Reservoir Radius reD

Blasingame type curves for different dimensionless reservoir radius are given in Figure 14.
The difference in the shape of new Blasingame type curves for varied reD appears in the early-flow
period and the curves of both qDdi and qDdid normalize in the pseudo-steady flow regime, which is
contrary to the traditional rate decline curves (Figure 8).
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For different reD, the features of new Blasingame type curves are more salient than those of
traditional rate decline curves. Therefore, these new type curves are convenient for us to quickly
detect the radius of closed reservoir by using field data. Before the inter-porosity flow regime, both
the dimensionless rate integral and dimensionless rate integral derivative decrease as the parameter
reD increases.

5. Conclusions

This paper presents a new composite model for rate decline analysis of volume fractured wells in
naturally fractured reservoirs. Based on this work, several important conclusions are obtained:

1. Compared with the model not having volume fracturing, this stimulation technique mainly
contributes to the early-flow period’s production.

2. Three characteristic decline stages and two stable production periods may be observed on the
transient rate curves. In the early-flow period, the transient rate at the same wellbore pressure
increases as interregional diffusivity ratio increases or interregional conductivity ratio decreases.
In the middle- and late-flow periods, the shape of the traditional rate curves depends on naturally
fractured medium and boundary condition.

3. New Blasingame type curves for volume fractured wells in naturally fractured reservoirs are
established and can be used to deal with the problem of both variable rate and variable wellbore
pressure. Five flow regimes may be observed on the new Blasingame type curves: linear flow
regime, transition flow regime, radial flow regime, inter-porosity flow regime, and pseudo-steady
flow regime. The shape and position of type curves in linear- and transition-flow regimes are
predominantly determined by interregional diffusivity ratio and interregional conductivity ratio.

4. New Blasingame type curves have more salient features and better normalizations than the
traditional rate curves and are convenient for us to conduct well testing analysis. Sensitivity
analysis indicates that these new type curves for varied interregional diffusivity ratio,
interregional conductivity ratio, interporosity coefficient and dimensionless reservoir radius,
except storativity ratio, will normalize in the late-flow period.
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Nomenclature

Field Variables
k permeability, m2

h formation thickness, m
µ fluid viscosity, Pa·s
p pressure, Pa
r radial distance, m
rf half length of artificial fracture, m
b aperture of artificial fracture, m
t time variable, s
φ porosity, fraction
ct compressibility factor, Pa−1

q total rate at the wellbore, m3/s
B volume factor, m3/m3
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γ shape factor, dimensionless
η fluid transmissivity factor, Pa·m2/(Pa·s)
n number of artificial fractures, dimensionless
π 3.1415926 . . . . . .

Dimensionless Variables: Real Domain

rD dimensionless radius
reD dimensionless drainage radius
rwD dimensionless wellbore radius
tD dimensionless time
tDd dimensionless decline time
bDpss dimensionless pseudo-steady constant
p1D dimensionless pressure in the inner region
pwD dimensionless wellbore pressure
p2fD dimensionless pressure of natural fracture system
p2mD dimensionless pressure of matrix system
pwD,pss dimensionless wellbore pressure in pseudo-steady flow regime
qwD dimensionless transient rate
qcD dimensionless cumulative rate
qDd dimensionless decline rate
qDdi dimensionless rate integral
qDdid dimensionless rate integral derivative

Dimensionless Variables: Laplace Domain

s time variable in Laplace domain
x1 corresponding coefficient in Laplace domain
x2 corresponding coefficient in Laplace domain
p̃1D dimensionless pressure p1D in Laplace domain
p̃wD dimensionless wellbore pressure pwD in Laplace domain
p̃2 f D dimensionless pressure p2fD in Laplace domain
q̃wD dimensionless transient rate qwD in Laplace domain
q̃cD dimensionless cumulative rate qcD in Laplace domain

Greek Variables

α interregional diffusivity ratio
β interregional conductivity ratio
ω fracture-matrix storativity ratio
λ fracture-matrix interporosity coefficient

Special Functions

I0(x) modified Bessel function (1st kind, zero order)
I1(x) modified Bessel function (1st kind, first order)
K0(x) modified Bessel function (2nd kind, zero order)
K1(x) modified Bessel function (2nd kind, first order)

Special Subscripts

D dimensionless
w wellbore
e reservoir external boundary
1 inner region
2f natural fracture in the outer region
2m matrix in the outer region
i initial or ordinal
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Appendix A. Establishment of Mathematical Model

Appendix A.1. Flow in the Inner Region

A finite number, n, of hydraulic fractures constitute the main flow channel in the inner region and flow in
each fracture has been assumed to be linear, thus the flow equation for the inner region can be written as:

k1
µ

∂2 p1
∂r2 = (φct)1

∂p1
∂t

(A1)

Initial condition:
p1(r, 0) = pi(rw ≤ r ≤ r f ) (A2)

Well production condition at constant rate production:

nbh
k1
µ

∂p1
∂r

∣∣∣∣
r→0

= qB (A3)

Introducing the dimensionless variables into the equations above, we obtain the following
dimensionless equations:

∂2 p1D

∂r2
D

= α
∂p1D
∂tD

(A4)

p1D(rD, 0) = 0 (A5)

∂p1D
∂rD

∣∣∣∣
rD→0

= −β (A6)

where: p1D =
2πk2 f h(pi−p1)

qµB , tD =
k2 f t

µ(φct)2 f r2
f
, rD = r

r f
, α =

η2
η1

=
k2 f (φct)1
k1(φct)2 f

, β =
2πk2 f r f

nbk1
.

For the inner region, applying the Laplace transform with respect to tD to Equations (A4)–(A6), we have:

∂2 p̃1D

∂r2
D

= αsp̃1D (A7)

∂ p̃1D
∂rD

∣∣∣∣
rD→0

= − β

s
(A8)

Appendix A.2. Flow in the Outer Region

The outer region is modeled with the classical Warren-Root model [34]. The governing equation for the
natural fracture system is:

k2 f

µ

1
r

∂

∂r

(
r

∂p2 f

∂r

)
= (φct)2 f

∂p2 f

∂t
− q2m (A9)

where the subscripts 2f and 2m refer to the natural fracture and matrix system, respectively, and q2m is the
volumetric flux from the matrix system to the natural fracture system. If we assume the interporosity flow from
the matrix system to the natural fracture system is pseudo-steady flow, q2m can be given as:

q2m =
γk2m

(
p2m − p2 f

)
µ

(A10)

Ignoring flow in the matrix system, the governing equation for the matrix system can be written as:

q2m = −(φct)2m
∂p2m

∂t
(A11)

Initial condition:
p2 f (r, 0) = p2m(r, 0) = pi (r f ≤ r ≤ re) (A12)

Closed external boundary condition:
∂p2 f

∂r

∣∣∣∣
r=re

= 0 (A13)



Energies 2018, 11, 43 19 of 21

Similarly, introducing the dimensionless variables into Equations (A9)–(A13), dimensionless equations of
the outer region are obtained:

∂2 p2 f D

∂r2
D

+
1

rD

∂p2 f D

∂rD
=

∂p2 f D

∂tD
+ λ

(
p2 f D − p2mD

)
(A14)

λ
(

p2 f D − p2mD

)
=

(φc)2m
(φc)2 f

∂p2mD
∂tD

(A15)

p2 f D(rD, 0) = p2mD(rD, 0) = 0 (A16)

∂p2 f D

∂rD

∣∣∣∣
rD=reD

= 0 (A17)

where: p2 f D =
2πk2 f h(pi − p2 f )

qµB , p2mD =
2πk2 f h(pi − p2m)

qµB , reD = re
r f

, ω =
(φct)2 f

(φct)2 f + (φct)2m
, λ =

γk2mr2
f

k2 f
.

For the outer region, by employing the Laplace transform, Equations (A15)–(A17) can be simplified as:

∂2 p̃2 f D

∂r2
D

+
1

rD

∂ p̃2 f D

∂rD
= s f (s) p̃2 f D (A18)

where:

f (s) =
(1−ω)s + λ

λω + (1−ω)s

Closed external boundary condition in Laplace space:

∂ p̃2 f D

∂rD

∣∣∣∣
rD=reD

= 0 (A19)

Appendix A.3. Interface Conditions

As we known, natural fractures in the outer region are connected with hydraulic fractures in the inner region
directly. Considering the continuity of pressure and flux at two regions’ interface, the following conditions must
hold along the surface:

p1|r=r f
= p2 f

∣∣∣
r=r f

(A20)

nb
k1
µ

∂p1
∂r

∣∣∣∣
r=r f

= 2πr
k2 f

µ

∂p2 f

∂r

∣∣∣∣
r=r f

(A21)

Similarly, introducing the dimensionless variables into Equations (A20) and (A21), we have:

p1D|rD=1 = p2 f D

∣∣∣
rD=1

(A22)

∂p1D
∂rD

∣∣∣∣
rD=1

= β
∂p2 f D

∂rD

∣∣∣∣
rD=1

(A23)

Further taking Laplace transform for the dimensionless form of the interface conditions, we obtain the
following equations:

p̃1D|rD=1 = p̃2 f D

∣∣∣
rD=1

(A24)

∂ p̃1D
∂rD

∣∣∣∣
rD=1

= β
∂ p̃2 f D

∂rD

∣∣∣∣
rD=1

(A25)
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