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Abstract: A dynamic wireless power transfer (WPT) system is an effective method, which can reduce
charging time and extend the driving range of the electric vehicles. In the dynamic WPT systems,
the output voltage may fluctuate when the receiver moves along the transmitter coils. This paper
proposes a three-phase dynamic WPT charging system with overlapped three-phase transmitter coils.
The overlap length is optimized to depress the fluctuation of the output voltage. These coils are
powered by a three-phase inverter to generate an even magnetic field, and a unipolar coil is employed
as a receiver to simplify the coil structure of the secondary side. Based on the proposed three-phase
coil structure, the output voltage characteristics of the system are analyzed in detail. A 500 W dynamic
charging prototype is established to validate the proposed dynamic charging system. Experimental
results show that the output voltage fluctuation is within ±3.05%. The maximum system efficiency
reaches 89.94%.

Keywords: wireless power transfer; three-phase inverter; dynamic charging

1. Introduction

Internal combustion engine vehicles, the most prevailing transportation in past decades,
contribute to the undesired emission of global greenhouse gas, spurring research into electric vehicles
(EVs) and the smart grid [1]. The wireless power transfer (WPT) has many advantages compared with
wired charger technology (e.g., opportunity charging, safety, immunity to ice, water, spark and other
chemicals), [2,3] which makes WPT an ideal charging implementation in mobile phones, pacemakers
and underwater robots [4,5].

WPT systems mainly focus on stationary charging applications such as medical implants [6],
household appliances and stationary EVs [7]. In a stationary EVs charging situation, the vehicle is
required to park in the designated position, and the receiver coil should be well-aligned with the
transmitter coil, which is worrisome [8]. Also, the battery limits the cruising range of the vehicles and
needs to be frequently recharged. Although a huge battery increases the cruising range, the system
suffers from increased weight, longer charging time and higher cost. Besides, frequent fast charging
and deep discharging of batteries degrade the lifespan of the expensive onboard batteries [9,10].

The dynamic WPT system can solve these issues mentioned above. When the vehicle is moving on
the track, it can be recharged continuously. Thus, the cruising range of the EV can be extended, and the
weight and cost of the vehicles can be reduced with a small battery. The total length of the transmitter
is 90 m in a 3460 m route in Korea [11,12], and the maximum charging power reaches 100 kW [13]. This
system has few circuit components and a simple structure, but the maximum efficiency of the system is
only about 74% at 27 kW output [14]. In [15,16], multiple short transmitters are arranged on the lane of
the vehicle, and the system is flexible for design and installation. However, it requires a great quantity
of compensation components, and the output power reduces to almost zero between two transmitters
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due to the existence of a dead point [17]. A novel T-type compensation network is proposed in [18],
which keeps a stable transmission power. Apart from the methods mentioned above, the design
of coil structures is another useful method to reduce the output power fluctuation for the dynamic
WPT system. Circular coils are adopted to charge electrical vehicle when the vehicles move along
the track [19]. However, the output power diminishes at the border of two adjacent coils. To solve
this issue, a three-phase bipolar WPT system is adopted in [20], which can create a broader power
delivery zone than a single-phase track. The switchable transmitter coils are adopted in [21]. To keep
the coupling of the transmitters and receiver, the geometry of the receiver is optimized. A prototype
is set up for medium power transfer (tens of Watts). A novel array-type coils design is presented to
overcoming the coil misalignment in [22] for the static charging. In [23], a homogeneous wireless power
transfer system is proposed. The alternate transmitter coils are utilized to enhance the magnetic field
density. The paper mainly focuses on the coupling between the transmitter coils. In order to balance
the three-phase currents, the system had to add additional compensation. The fluctuation of output
power is almost ±20%. In [24], both the transmitters and the receiver are using the LCC network.
The inter-coupling between adjacent coils are investigated in detail. The maximal value of output
power is about three times larger than the minimal value of output power. To reduce the fluctuation of
magnetic fields along the track, the coils are arranged closely in [25]. The mutual inductance between
transmitter coils is compensated by extra capacitors.

This paper is mainly focused on the suppression of the fluctuation by optimizing the overlap of the
transmitter coils, which is not taken into account by the aforementioned research. Six transmitter coils
are adopted to form a track, and all the coils are powered by a three-phase inverter. Each transmitter coil
has its own compensation circuits, and different transmitter coils are connected in parallel. The overlap
of the adjacent transmitter coils and the circuit parameters are designed to minimize the output voltage
fluctuations. Theoretical analysis has been experimentally verified, and the output voltage fluctuation
is within ±3.05% of the average voltage.

This paper is organized as follows: Section 2 describes the optimization of transmitter coils arrays.
Section 3 analyzes the output voltage based on the fundamental harmonic model of dynamic WPT
system. The proposed design is validated by experiments in Section 4. The conclusion is drawn in
Section 5, finally.

2. Design and Optimization of Coil Structure

For the dynamic charging systems, the transmitter coils are usually arranged in an array [11,12].
The mutual inductance between the transmitter coil and the receiver coil varies with the position of
the receiver coil. Accordingly, the induced voltage of the receiver coil varies with the fluctuation of
mutual inductance.

The coil structure of the dynamic charging system is depicted in Figure 1. Six square unipolar
coils are arranged closely on the ferrite plates. The size of a single square coil is l.
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The equivalent circuit for the three-phase system is shown in Figure 2. The phasors of the induced
voltages

.
VAS,

.
VBS and

.
VCS in the receiver can be expressed as:

.
VAS = jωMAS

.
ITA.

VBS = jωMBS
.
ITB.

VCS = jωMCS
.
ITC

(1)

where ω is the angular frequency of the system, and
.
ITA,

.
ITB and

.
ITC are the phasors of the current

in transmitter A, B and C, respectively. Therefore, the sum of induced voltage on the receiver side is
as follows: .

VS = jωMAS
.
ITA + jωMBS

.
ITB + jωMCS

.
ITC (2)
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Figure 2. Circuit topology of the proposed coil structure.

The mutual inductance between the transmitter and receiver coils is calculated using a 3-D
FEA tool, ANSYS Maxwell (Ozen Engineering, Inc., Silicon Valley, CA, USA). The specifications in
simulation and experiment are listed in Table 1. x is defined as the relative position between the
transmitter and receiver. The simulated mutual inductance between the transmitter and receiver coils
is shown in Figure 3.

Table 1. Parameters of the transmitter and the receiver.

Parameters Value

Length of a Q coil [26] l/mm 200
Air gap distance lG/mm 70

Q coil turns in transmitter A NA 17
Q coil turns in transmitter B NB 17
Q coil turns in transmitter C NC 17

Q coil turns in receiver NR 17
Relative position x/mm [0,1200]
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Assuming that the amplitude of each coil current is equal. The relationship between
.
ITA,

.
ITB and

.
ITC can be expressed as: 

.
ITA = IT0∠0◦

.
ITB = IT0∠120◦
.
ITC = IT0∠240◦

(3)

where IT0 is the RMS value of the current in the transmitter coil. The amplitude
∣∣∣ .
VS

∣∣∣ of the induced
voltage can be expressed as:∣∣∣ .

VS

∣∣∣ = |jωMAS ITA + jωMBS ITB + jωMCS ITC|

=
∣∣∣jωIT0

(
MAS + MBSej 2

3 π + MCSej 4
3 π
)∣∣∣ (4)

FM is the sum of all mutual inductances:

FM = MAS + MBSej 2
3 π + MCSej 4

3 π (5)

The Equation (4) shows that the amplitude of the induced voltage
∣∣∣ .
VS

∣∣∣ is related to FM directly,
when ω and IT0 are constant.

The mutual inductances against the location of the receiver and FM calculated by Equation (5) are
shown in Figure 4. Large fluctuation of FM exists with the given parameters, which will lead to the
fluctuation of the induced voltage. In order to alleviate the fluctuation of FM, overlapping is employed,
which is depicted in Figure 5. The overlap length is defined as LO.
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Figure 5. Illustration of the transmitters and receiver after overlapping.

From the Figure 6, the fluctuation of FM varies as per the overlap of coils. It is of importance
to find the optimal overlap length to minimize the fluctuation of FM. The variance D(FM) is used
to measure the fluctuation of FM, when the receiver moves from the second transmitter coils to the
fifth transmitter coils. The variance of FM with various overlapped length is calculated and shown in
Figure 7.
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D(FM) is the square of the standard deviation of FM. As shown in Figure 7, D(FM) varies with
the overlap proportion of the coil length, and the smallest variance occurs when LO/l is about 0.45.
The calculated variance reaches the smallest value when the overlap proportion is 0.445 from the
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details of Figure 7. Meanwhile, the fluctuation of FM is the minimum, and the induced voltage is
nearly uniform versus the variation of x.

According to the analysis, the induced voltage is dependent on the sum of all mutual inductances.
The fluctuation of FM and the voltage can be reduced by overlapping three-phase transmitter coils.

The fluctuation of FM is robust to the movement of the receiver along the x direction, but is
affected by the misalignment between the transmitter coils and the receiver coil along the y direction
as shown in Figure 5. Considering the misalignment along the y direction, the mutual inductances is
simulated by ANSYS Maxwell, and FM is calculated. The calculated results are shown in Figure 8 where
Ldis indicates the lateral displacement of the receiver along the y direction. The mutual inductances
between the transmitters and the receiver will decrease with the increment of Ldis. The fluctuation
of FM is still constant, but smaller than that with no misalignment, when the receiver moves along
the track.
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3. Circuit Analysis

The circuit topology of the dynamic WPT system is shown in Figure 9. The input of the system
is a direct current (DC) source Vdc, which is connected to a three-phase full-bridge inverter to apply
three high-frequency ac voltage vPA, vPB and vPC to the resonant circuit. The LCC networks [24,25]
are chosen as the resonant compensation topologies for the transmitters. Each transmitter coil
is compensated independently. There are transmitter coil LTA(LTB, LTC), resonant compensation
inductors LPA(LPB, LPC), and resonant capacitors CPA(CPB, CPC) and CTA(CTB, CTC) in each transmitter
side. A series resonant compensation, consisting of LS and CS, is adopted on the receiver side. MAS,
MBS and MCS are the mutual inductances between the transmitter coils and receiver coil. MAB, MBC
and MCA are the mutual inductances between the transmitter coils.
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The fundamental harmonics approximation method is used to analyze the circuit shown in
Figure 10. The inverter is regarded as first-order harmonic voltage sources. RTA(RTB, RTC) and RS
are the equivalent series resistors of the transmitter coil A (B, C) and the receiver coil respectively.
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The rectifier and the dc load resistor R can be represented as an equivalent AC load resistor RLeq [27],
which is defined as:

RLeq =
8R
π2 (6)
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ZPA1(ZPB1, ZPC1) and ZPA2(ZPB2, ZPC2) are the circuit impedance of the A (B, C)-phase in
transmitter side. The circuit impedance of receiver side is ZS which is defined as:

ZPA1 = jωLPA + 1/jωCPA
ZPA2 = 1/jωCTA + jωLTA + RTA + 1/jωCPA

ZPB1 = jωLPB + 1/jωCPB
ZPB2 = 1/jωCTB + jωLTB + RTB + 1/jωCPB

ZPC1 = jωLPC + 1/jωCPC
ZPC2 = 1/jωCTC + jωLTC + RTC + 1/jωCPC

ZS = jωLS + RS + 1/jωCS + RLeq

(7)

Each transmitter circuit parameters of the three-phase dynamic charging system are the same.
Thus, the relationship is expressed as: 

LPA = LPB = LPC
CPA = CPB = CPC
CTA = CTB = CTC
LTA = LTB = LTC
RTA = RTB = RTC

(8)

The values of CPA, CTA and CS are designed by:
CPA = 1

ω2LPA

CTA = 1
ω2[LTA−1/(ω2CPA)]

CS = 1
ω2LS

(9)
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Based on the Kirchhoff’s voltage law, the system can be expressed as:



.
VPA

0
.

VPB
0

.
VPC

0
0


=



ZPA1 −j/ωCPA 0 0 0 0 0
−j/ωCPA ZPA2 0 jωMAB 0 jωMCA jωMAS

0 0 ZPB1 −j/ωCPB 0 0 0
0 jωMAB −j/ωCPB ZPB2 0 jωMBC jωMBS
0 0 0 0 ZPC1 −j/ωCPC 0
0 jωMCA 0 jωMBC −j/ωCPC ZPC2 jωMCS
0 jωMAS 0 jωMBS 0 jωMCS ZS





.
IPA.
ITA.
IPB.
ITB.
IPC.
ITC.
IS


(10)

The induced voltage in the receiver can be calculated from Equation (10) as:

.
VS= −RLeq ×

.
IS

=
8R
( .

VPA MAS +
.

VPB MBS +
.

VPC MCS

)
LPA(8R + π2RS)

(11)

where
.

VPA,
.

VPB and
.

VPC are the output voltages of the three-phase inverter. The relationship between
.

VPA,
.

VPB and
.

VPC can be shown as: { .
VPB =

.
VPAej 2

3 π

.
VPC =

.
VPAej 4

3 π
(12)

By substituting Equation (12) into Equation (11), the induced voltage can be derived as:

.
VS =

8R
.

VPA

(
MAS + MBSej 2

3 π + MCSej 4
3 π
)

LPA(8R + π2RS)
(13)

Considering Equations (5) and (13), the output voltage
.

VS is related to FM, when the R, LPA and
.

VPA are constant. Consequently, the fluctuation of output voltages reaches the minimum value with
minimal fluctuation of FM.

It should be noted that the angle frequency of the system is fixed and is equal to that of the inverter.
Except for the generation of pulse width modulation (PWM) waves of the three-phase inverter, there’s
no extra measurement circuit or control loop which is easy for implementation for practice.

4. Experimental Verification

A 500 W system is established to validate the proposed dynamic charging system as shown
in Figure 11. All of the six transmitter coils have the same shape. Each transmitter coil with its
compensation circuit is connected with a three-phase inverter in parallel. A square coil works as a
receiver. The size and shape of each coil is identical as that described in Section 2. Six transmitter
coils share a three-phase inverter. The air gap distance in the dynamic charging system is 70 mm.
The rectifier and the compensation circuit of receiver coil are connected to a dc load resistor. The circuit
parameters of the experimental system are listed in Table 2.
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Table 2. Parameters of the experiment system.

Parameters Value Parameters Value

f /kHz 200 RTB/Ω 0.15
Vdc/V 315 LPC/µH 50.29
Vout/V 72 CPC/nF 12.94
LO/cm 8.9 LTC/µH 119.47

LPA/µH 50.39 CTC/nF 15.32
CPA/nF 12.36 RTC/Ω 0.1
LTA/µH 120.1 LS/µH 110.53
CTA/nF 14.98 CS/nF 5.96
RTA/Ω 0.1 RS/Ω 0.18
LPB/µH 49.6 Maximum value of MAS/µH 37.68
CPB/nF 13.73 Maximum value of MBS/µH 38.1
LTB/µH 122.8 Maximum value of MCS/µH 38.55
CTB/nF 13.95 Output capacitor CD/µF 940

A three-phase inverter is used to provide an ac excitation at the primary side. The oscilloscope
Agilent DSO-X 3014T (Keysight Technologies, Beijing, China) is used to recording waveforms, and the
efficiency between dc source and dc load is gauged by the power analyzer HIOKIPW6001 (HIOKI,
Tokyo, Japan). When the receiver position x = 644 mm, the stable waveforms of the output voltage
vPC of the three-phase inverter, the output current iPC of the three-phase inverter, the input voltages
urec and the input current iS of the rectifier are illustrated in Figure 12.
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Figure 14. System output voltage and efficiency with various receiver positions. 

  

Figure 12. Stable waveforms of the output voltages and currents of inverter and rectifier.

In Figure 13a, is aligned with transmitter coil LTC. MCS is much larger than MAS and MBS.
Therefore, iPC is much larger than the other two, where iPA and iPB are almost equal. As the receiver
moves to the transmitter coil LTA, the iPA increases gradually and the iPC is gradually reduced which
is shown in Figure 13b,c.
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Figure 13. Measured the input current of inverter waveforms. (a) Waveforms with x = 222 mm;
(b) waveforms with x = 259 mm; (c) waveforms with x = 296 mm.

When the receiver moves along the transmitters track, the system output voltage and efficiency
are shown in Figure 14. The system output voltage stays about 72 V with a fluctuation of ±3.05%.
The highest system efficiency between the dc source and the dc load reaches up to 89.94% and the
lowest efficiency is 86.67%. In [28], the system output power fluctuation is about ±5.89% with a load
resistance of 50 Ω, and the maximum of the output power is 230 W. The verification system’s maximum
output power is around 120 W in [29]. The maximum efficiency is 84% and the fluctuation of power is
more than ±50%.
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5. Conclusions

Aimed at reducing the voltage fluctuations in a dynamic WPT system, a three-phase dynamic
charging system with two closely arranged overlapping transmitter coils to eliminate voltage dips
between coils is proposed in this paper. The overlap length is optimized to reduce the fluctuation of
the output voltage. The LCC-S compensation network is adopted in this paper. A 500 W output power
dynamic charging system is set up to validate the proposed method. The experimental results show
that the fluctuation of system output voltage is ±3.05%. The system’s highest efficiency from dc source
to dc load reaches 89.94%.
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