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Abstract: To cope with the net load variability in real time, sufficient ramp capability from controllable
resources is required. To address the issue of insufficient ramp capacity in real time operations,
flexible ramping products (FRPs) have been adopted by some Independent System Operators (ISOs)
in the USA as a new market design. The inherent variability and uncertainty caused by renewable
energy sources (RESs) call for new FRP providers apart from conventional generating units. The
so-called interruptible load (IL) has proved to be useful in maintaining the supply-demand balance
by providing demand relief and can be a viable FRP provider in practice. Given this background,
this work presents a stochastic real-time unit commitment model considering ramp requirement and
simultaneous provision of IL for FRP and demand relief. Load serving entities (LSEs) are included in
the proposed model and act as mediators between the ISO and multiple ILs. In particular, incentive
compatible contracts are designed to encourage customers to reveal their true outage costs. Case
studies indicate both the system and LSEs can benefit by employing the proposed method and ILs
can gain the highest profits by signing up a favorable contract.

Keywords: renewable energy; flexible ramping product (FRP); demand relief; interruptible load (IL);
economic incentives; stochastic programming

1. Introduction

As a new market design to enhance power system operational flexibility, flexible ramping product
(FRP) is attracting much attention from both the academic and industry communities. Successful
implementations by two ISOs in the United States, i.e., the California ISO (CAISO) and Midcontinent
ISO (MISO), have proven the feasibility and practicality of this product [1,2]. FRP is the ramp capability
targeting the net system load change between adjacent intervals in real-time (RT) dispatch (e.g., 5-min
in CAISO [1] or 10-min in MISO [2]). The net system load, defined as the difference between the actual
system load and the total output of variable generation plus scheduled interchanges, always possesses
more significant variability and uncertainty than the actual load alone [3]. This issue is exacerbated
with the deepening penetration of variable renewable energy sources (RESs). As the “duck curve” [4]
shows, several upward/downward steep ramp periods occur in the net load profile of the typical
operating day, which calls for more flexible ramping resources to avoid load loss as well as over
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generation. The “duck curve” is an industry moniker since the shape of the net load profile is very
similar to the neck of a duck.

In the present paradigm, only conventional generation units are utilized to provide FRP [2].
However, any RT dispatchable resource can provide such flexible ramping, and thus new potential
providers should be explored in order to accommodate the issue of ramp capability shortage caused by
the variability and uncertainty of increasing RESs. Several studies have been conducted in recent years
to discuss the feasibility of new FRP suppliers, such as obtained from wind and electric vehicles [5–7].
By far, few works have explored interruptible load (IL) as a supplier of FRPs. IL is a contract-based
demand response program in which the IL customers reduce their load in order to respond to the
interruption instructions requested by the ISO when needed (usually during peak periods) [8]. IL
can enhance system reliability by providing ancillary services [9] and demand relief [10], improving
generation adequacy [11], and alleviating congestion [12]. Owing to its high controllability and fast
response, various types of IL programs are used in power system applications. Nevertheless, to the
authors’ best knowledge, simultaneous provision of FRP and demand relief by IL has not been studied.

In a competitive electricity market, a load serving entity (LSE) is a profit-seeking organization
with granted authority pursuant to local law or regulation to serve its own electrical demands and
energy requirements. The LSE aims to maximize its own profit as well as to provide sufficient economic
incentives to its managed IL customers. As the mediator between the ISO and multiple IL customers
(especially small residential customers), the LSE receives interruption instructions from the ISO and
then allocates the total demand relief within its customers in a cost effective way, namely, minimizing
the overall outage cost of all customers. The customers’ true outage costs, however, are unknown
to the LSE since it is deemed confidential. In [13], the outage cost is constructed as a quadratic
function of the amount of curtailed power and the customer type. The customer type, which is private
information, is assumed to be discrete and can be estimated based on historical data. Based on that, the
cost functions of different customers are calibrated and then used in designing efficient IL contracts.
Incentive compatible contracts are designed in [10] to encourage customers to reveal their true cost
value of power interruptions and thus enable them to participate in ideal contracts. The outage cost
function is quadratic as well, while the customer type is a continuous variable with a given probability
distribution. However, these studies in [10] and [13] ignore the limitation of the maximum demand
relief a customer can provide and the effect of FRP on it.

IL is deemed as a kind of incentive-based demand response (DR), while the other kind of DR
is price-based [14]. A stochastic model is presented in [15] by combining DR and probabilistic wind
power forecasting in order to enhance the capability of accommodating wind power in electricity
market operation. The DR here is termed as “demand dispatch” and refers in particular to loads with
sufficient flexibility to be responsive to prices. The reduction in the load demand during hours with
high market prices is similar to the demand relief provided by IL customers. However, the model
in [15] does not consider the provision of FRP. The integration of FRP will introduce changes to both the
objective function and constraints. For example, the ISO must consider the cost for acquiring sufficient
FRPs to meet the system-level ramping capability requirement. On the other hand, market participants
may intend to leave a capacity margin for FRP apart from energy and ancillary services. Thus, the
mathematical model becomes more complicated when FRP is taken into account. A framework for
integrated dispatch of generation and load is presented in [16], with loads modeled as generators by
considering the load adjustment cost. The prevailing unit commitment (UC) model is extended to
include demand-side participations. However, the work in [16] focuses on large industrial customers
and thus neglects the interaction between a LSE and its customers.

This work presents a real-time unit commitment (RTUC) model with IL provision of both FRP
and demand relief. The model is run by the ISO in the RT and considers the system-level ramp
capability requirement. To cope with the variability and uncertainty of load and RES, the RTUC is
modeled stochastically. The optimized dispatching schedule of FRP and demand relief is obtained
from the model and regarded as inputs to the IL relief model run by the LSEs. The outage cost
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function is assumed to be quadratic following [10] and [13], and incentive compensations are adopted
as extra motivations to encourage customers to participate in IL programs and consequently choose
the proper contract.

The main contributions of this paper are threefold:

(1) The idea of simultaneous provision of FRP and demand relief by IL is proposed.
(2) Stochastic RTUC model is presented, taking both ramp capacity requirement and IL provision

into consideration.
(3) Incentive compatible contracts are designed between an LSE and its customers. Additional

compensations can help the LSE collect information about customers and thus design special
contracts for them.

The remainder of this paper is organized as follows. The concept of FRP and demand relief is
presented in Section 2, which also formulates a stochastic RTUC model considering IL provision of
these two products. Section 3 describes the IL relief model and the incentive compensation. Section 4
shows the overall process of this work. Case study is demonstrated in Section 5, followed by the
conclusions in Section 6.

2. LSE Contributing to System Balance and Flexibility

2.1. Demand Relief

Maintaining generation-demand balance is of great importance for the stable and reliable
operation of a power system. This can be achieved by controllable resources on both the supply
and demand sides [17]. Figure 1 presents intuitively how a power system with RES keeps balance with
the aids of interruptible load in different cases.

Case (a) represents the general situation where the ISO can maintain the balance by adjusting
unit generation without reducing RES output or cutting load. When an imbalance materializes as an
excess of supply to meet the demand, RES output reduction (e.g., wind curtailment) or conventional
generation output reduction may be performed to reduce the supply, as Case (b) shows. On the other
hand, if the imbalance materializes as a lack of supply to meet the demand, deployment of reserved
conventional units or demand relief from LSEs is required, as Case (c) shows. However, when the
deployment of reserved capacity plus the demand relief from all LSEs is still insufficient to cover
the supply shortage, base load shedding is performed, as expressed by Case (d). Unlike elastic IL,
the value of lost base load is relatively large since the base load is regarded as inelastic and crucial.
To avoid such cost, more ILs should be explored as an effective and economical way to maintain
system balance.
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Figure 1. Maintaining system generation-demand balance by demand relief of interruptible load.
(RES output is represented by wind power).
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2.2. Flexible Ramping Product

FRP targets the net load movement in RT operations and can be separated into two independent
products based on the direction, namely upward FRP and downward FRP. The total FRP provided
by all controllable resources should meet the system ramp need. The system-level ramp capability
requirements are set for both upward and downward directions for each interval in RT dispatch and
can vary between different intervals, as shown in Figure 2a. Note that in t5, there is only requirement
for upward FRP because the net load is expected to increase steeply in this period and no downward
FRP is needed. In contrast, only requirement for downward FRP is needed in t2 and for other intervals
such as t1 and t4, FRPs for both directions are required. Take t4 for example, more details are presented
in Figure 2b, indicating that ramp capability requirements are composed of the net load variability and
surrounding uncertainty. The variability and uncertainty caused by RES raise the requirements and
intensify the issue of insufficient ramp capability. Therefore, more controllable resources such as IL are
required to be introduced as FRP providers.
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The deployment of FRP is embedded into the RT dispatch model. Cleared FRP is reserved at the
current interval in order to meet the ramp capability requirement. When energy is dispatched for the
next interval, FRP is naturally deployed as energy. Unlike traditional ancillary services whose prices
are based on offers, FRP is priced at the opportunity cost for not providing energy and capped by the
demand curves [2] prescribed by the ISO. For example, MISO currently adopts a single-step demand
curve with the ceiling price being 5 $/MWh [18].

In order to present the technical characteristics of FRP, comparisons between FRP and other
traditional ancillary services (e.g., regulation and operating reserve) are made in Table 1. FRP is
distinguished from regulation and operating reserve in product function, dispatch process, price level
and technical requirement. Among these services, regulation has the most rigorous requirement for
technologies such as respond speed. For instance, only a quarter of resources in MISO are eligible to
provide regulation [19]. On the other hand, providers of operating reserve should be capable of raising
their output to the targeted level in required time. In contrast, the technical requirement for providing
FRP is the lowest, and any real-time dispatchable resource can provide FRP according to CAISO’s
market rule [1]. Although the conventional generators are the only eligible providers of FRP currently
in practice, other resources such as demand response can also provide such ramping capability in
the RT. Actually, exploring demand-side flexibility could be a better choice if an efficient and reliable
demand-side management (DSM) is reached. This is the case because unlike generators which are
constrained by ramp rate limits, IL customers can turn off high-power electrical appliances such as
heat pump and air conditioner in a very short time. Furthermore, the cost of demand-side resources
providing such ramping capability is more effective than conventional generators as demand side is
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playing increasingly important role in today’s electricity markets. MISO is planning to utilize demand
response resources (DDRs) to providing up-ramping capacity by reducing their loads [20].

Table 1. Comparisons between FRP and regulation as well as operating reserve.

Aspects Regulation Operating Reserve FRP

Function

Manage the
instantaneous difference
between the actual net
load and the forecasted
one to ensure the
frequency stability

Active power reserved in
response to a sudden
loss of generation or an
unexpected increase of
load demand

Ramping capability
reserved for addressing
the net load changes in
future dispatch intervals

Dispatch process

Deployed by Automatic
Generation Control
(AGC) in a time
framework of seconds

Activated only when a
contingency event
materializes and usually
the required response
time is within 10–30 min

Deployed every 5 min by
a real-time
dispatch model

Price High relatively high low

Eligible providers Able to respond to
AGC signals

Able to raise the power
output to the targeted
level in a required
time period

Any real-time
dispatchable resource

2.3. Stochastic RTUC Considering System Ramping Requirement and IL Provision

In the RT operation, the ISO endeavors to not only maintain the instantaneous balance, but also to
arrange adequate resources to follow the possible net load changes in the near future. Its controllable
resources include conventional units and ILs. To cope with the uncertainty of loads and RES outputs,
stochastic RTUC is modeled with consideration of system ramping requirement and IL provision.
Scenario simulation is performed based on the forecasted load and RES output, and takes both
the precision and the tractability of the model into account [21]. The simulation process is mainly
composed of scenario generation and reduction, which are based on the Latin hypercube sampling
(LHS) method [22] and the fast forward selection algorithm [23], respectively. The temporal and spatial
dependency of forecasting errors are not examined. Instead, the base load and RES output are both
modeled as specific statistical distributions attained from historical data, and typical scenarios are then
generated and selected.

Based on the latest forecasts, the proposed model gives a resolution of the intra-hour dispatching
strategy. The model considers the selected scenarios and minimizes the expected operating costs
over all these scenarios. The unit commitment (UC) model structure is modified based on [24] and is
enhanced to include ramping requirement and IL provision:

min
{

cgen + creward + cpenalty
}

(1)

where cgen is the cost for start-up and operation of units, creward is the cost for rewarding LSEs to
provide demand-side services (i.e., FRP and demand relief), and cpenalty is the penalty for base-load
shedding and RES output curtailment.

The cost of units cgen is expressed as

cgen = ∑
t∈T

∑
g∈G

yg,tcSU
g + ∑

s∈S

∆t
60

ρs ∑
t∈T

∑
g∈G

Cg
(

Pg,t,s
)

(2)

The first term in (2) represents the commitment schedule, in which cSU
g is the start-up cost of unit

g and is only active when the binary start-up variable yg,t is equal to 1. This part is common for all
scenarios. The second term indicates the expected operation cost over all selected scenarios. ∆t is the
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clearing granularity rated in minutes. ρs is the probability of scenario s. Cg(Pg,t,s) is the operation cost
function of the generation output Pg,t,s.

The cost for rewarding LSEs is given as

creward = ∑
j∈J

λCAPLIL,max
j + ∑

s∈S

∆t
60

ρs ∑
t∈T

∑
j∈J

(λDR
j ∆LIL

j,t,s + λFRPRFRP
j,t,s ) (3)

In (3), J is the set of all LSEs with index j. λCAP is the compensation to LSEs for providing
demand-side resource, which is similar to operating reserve and can provide additional capacity
(i.e., LIL,max

j ) in the event that units have to reduce their output or be taken offline. λDR
j is the reward

to LSE j for providing unit demand relief and is negotiated by the ISO and LSE j in their specific IL
contract, and ∆LIL

j,t,s is the amount of demand relief provided by LSE j in period t under scenario s.

λFRP is the system-level demand price of FRP set by the ISO, and RFRP
j,t,s is the awarded upward FRP

capacity of LSE j in period t under scenario s. The main difference between demand relief and FRP is
that demand relief is the realized load shedding, while FRP is the deductible capability reserved for
the next interval.

cpenalty is composed of the cost for base-load shedding and RES output curtailment penalty, and
described by

cpenalty = ∑
s∈S

∆t
60

ρs(ν∑
t∈T

∆LBL
t,s + ϕ∑

t∈T
∑

w∈W
Dw,t,s) (4)

where ν is the value of lost base load, ∆LBL
t,s is the amount of lost base load in period t under scenario s.

φ is the penalty for unit RES output curtailment, Dw,t,s is the amount of curtailed output of RES w in
period t under scenario s.

The objective function in (1) is subject to general UC constraints and FRP-related constraints.
The general UC constraints include unit ramping up/down limits, unit generation limits, the maximum
limits on base load shedding and RES output curtailment, and power balance constraint [5,25].
The FRP-related constraints reflect the system-wide ramp capability requirement, the impacts of
FRP on unit generation and the maximum limits on interruptible load shedding. All constraints are
categorized and listed as follows:

• Output bounds of generating units

Pg,t,s + RUP
g,t,s ≤ xg,tPmax

g ∀g ∈ G, ∀t ∈ T, ∀s ∈ S (5)

Pg,t,s − RDN
g,t,s ≤ xg,tPmin

g ∀g ∈ G, ∀t ∈ T, ∀s ∈ S (6)

• Ramping limits of generating units

Pg,t,s − Pg,t−1,s ≤ rUP
g ∆t ∀g ∈ G, ∀t ∈ T, ∀s ∈ S (7)

− Pg,t,s + Pg,t−1,s ≤ rDN
g ∆t ∀g ∈ G, ∀t ∈ T, ∀s ∈ S (8)

RUP
g,t,s ≤ rUP

g ∆t ∀g ∈ G, ∀t ∈ T, ∀s ∈ S (9)

RDN
g,t,s ≤ rDN

g ∆t ∀g ∈ G, ∀t ∈ T, ∀s ∈ S (10)

• Limits on base-load shedding and RES output curtailment

∆LBL
t,s ≤ LBL

t,s ∀t ∈ T, ∀s ∈ S (11)

Dw,t,s ≤ Pw,t,s ∀w ∈W, ∀t ∈ T, ∀s ∈ S (12)
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• Limits on IL capacity

∆LIL
j,t,s + RFRP

j,t,s ≤ LIL,max
j ∀j ∈ J, ∀t ∈ T, ∀s ∈ S (13)

• Power balance and ramp capability requirement

∑
g∈G

Pg,t,s + ∑
w∈W

Pw,t,s + ∑
j∈J

∆LIL
j,t,s + ∆LBL

t,s = LBL
t,s + ∑

j∈J
LIL,max

j + ∑
w∈W

Dw,t,s ∀t ∈ T, ∀s ∈ S (14)

∑
g∈G

RUP
g,t,s + ∑

j∈J
RFRP

j,t,s ≥ ∆LNL
t,s + φUP

t,s ∀t ∈ T, ∀s ∈ S (15)

∑
g∈G

RDN
g,t,s ≥ −∆LNL

t,s + φDN
t,s ∀t ∈ T, ∀s ∈ S (16)

Pg,t,s, ∆LIL
j,t,s, RFRP

j,t,s , ∆LBL
t,s , Dw,t,s, RUP

g,t,s, RDN
g,t,s ≥ 0 (17)

Constraints (5) and (6) enforce the output bounds of units where Pmax
g (Pmin

g ) is the maximum
(minimum) output of unit g, xg,t is the on/off state variable of unit g, and RUP

g,t,s (RDN
g,t,s) is the upward

(downward) FRP provided by unit g in period t under scenario s. It is notable that since the FRP is
the focus of this work, provisions of other services (e.g., regulation and operating reserve) are not
considered for simplicity. Constraints (7) and (8) restrict the change in the output of units between two
contiguous time periods within their maximum ramp capabilities. Note that rUP

g (rDN
g ) is the upward

(downward) ramping rate of unit g. Constraints (9) and (10) ensure that a unit’s provision of FRP does
not exceed its ramp capability over the dispatching interval.

The amount of acceptable base-load shedding is capped with constraint (11) where LBL
t,s is the base

load without shedding. Similar rationale applies for RES output curtailment as shown in constraint
(12), in which Pw,t,s is the RES output without curtailment. In terms of IL, Constraint (13) imposes that
a LES’s total provision of demand relief and FRP should not exceed its overall capacity.

Constraint (14) enforces the system generation-demand power balance. Constraints (15) and (16)
define the system-level ramp capability requirements which are composed of the forecasted net load
variability (∆LNL

t,s ) and additional uncertainty. The magnitude of surrounding uncertainty (φUP
t,s and

φDN
t,s ), as explained in Section 2.2, can be constant based on the system scale [26] or is the function of

forecasted load and RES output [5]. Finally, constraint (17) points out the positive variables.

3. Designing Incentive Compatible Contracts between a LSE and Its Customers

3.1. LSE’s IL Relief Model

Consider a LSE who manages I interruptible customers with different cost-quantity characteristics.
The LSE’s role is to allocate its deployed services, namely FRP and demand relief, between different
customers and meanwhile to minimize the overall cost of all customers to curtail their loads.
The objective function is expressed as:

min∑
i∈I

Ci(xi, θi) (18)

Ci(xi, θi) = aILx2
i + bILθixi (19)

where Ci(xi, θi) is the outage cost function of customer i [12], the variable xi is the amount of demand
relief, the coefficients aIL and bIL are the IL cost coefficients [12], and θi is the parameter used to sort
the customers from the most willing to the least willing to shed load. θi indicates customer type and is
normalized to be in the range [0, 1] [10].



Energies 2018, 11, 46 8 of 20

The associated constraints are listed as follows:

∑
i∈I

xi = D (20)

xi ≤ xmax
i ∀i ∈ I (21)

where D is the total required demand relief for the LSE, and xmax
i is the maximum amount of demand

relief that customer i can provide.

3.2. Incentive Compensation to the Customers

In electricity markets, the true value of θi is unknown to the LSE as the customer’s confidential
information. However, the customer will have submitted different θi in previous contracts and thus
the LSE has the relevant historical θi to estimate the probability distribution. Based on this historical
data, incentive compatible contracts are designed in this work so that rational customers who wish to
maximize their own profits are encouraged to reveal their true customer type.

The LSE is assumed to reward customer i based on its submitted customer type θS
i :

Ai(xi(θ
S
i ), θS

i ) = Ci(xi(θ
S
i ), θS

i ) + Bi(θ
S
i ) (22)

where Ai is the reward which consists of the demand relief payment Ci defined in (19) and extra
incentive compensation Bi related to θS

i . xi(θS
i ) is the amount of demand relief assigned to customer

i after the LSE runs the IL relief model. xi(θS
i ) is associated with customer types submitted by both

customer i and all the other customers. It is assumed that for each customer, its possible submitted
customer type is subject to a specific statistical distribution with bounds [θmin

i , θmax
i ], which is known

by the LSE from existing historical utility data. Therefore, Monte Carlo (MC) simulations can be
performed to model the customers’ behaviors. Afterwards, the expected profit of customer i can be
calculated as the received reward minus the true outage cost:

Pi(θ
S
i , θT

i ) = Ai(xexp
i (θS

i ), θS
i )− Ci(xexp

i (θS
i ), θT

i ) = bIL(θS
i − θT

i )xexp
i (θS

i )︸ ︷︷ ︸
strategically bidding revenue

+ Bi(θ
S
i )︸ ︷︷ ︸

incentive compensation

(23)

where θT
i is the true customer type of customer i, and xexp

i (θS
i ) is the expected amount of demand

relief over all MC simulations. The first part of the expected profit is the strategically bidding
revenue. Customer i may intend to submit a large θS

i in order to obtain higher revenue if no incentive
compensation is in place.

Incentive compatible principle requires that customer i obtains the highest expected profit if
the customer submits its true customer type, which can be mathematically formulated as the partial
derivative of the expected profit function with respect to the submitted customer type θS

i is equal
to zero:

∂Pi(θ
S
i , θT

i )

∂θS
i

=
[
bIL(θS

i − θT
i )(xexp

i (θS
i ))
′
+ bILxexp

i (θS
i ) + B′i(θ

S
i )
]∣∣∣

θS
i =θT

i

= 0 (24)

The first item bIL(θS
i − θT

i )(xexp
i (θS

i ))’ is equal to zero if θS
i = θT

i , thus (24) can be simplified as

B′i(θ
S
i ) = −bILxexp

i (θS
i ) (25)

After integrating both sides of (25) over the interval [θS
i , θmax

i ] and setting Bi(θmax
i ) = 0, the

incentive compensation to customer i can be expressed as:

Bi(θ
S
i ) = bIL

∫ θmax
i

θS
i

xexp
i (θS

i )dθS
i (26)
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The demand relief allocated to a customer is greater than or equal to zero and monotonically
decreasing with the submitted customer type. This is because a large customer type indicates a costly
outage, thus this customer will be an unfavorable choice to provide demand relief. Figure 3 shows how
expected demand relief normally changes with submitted customer type. bIL is assumed to be 1 for
illustration purposes. As observed, the incentive compensation a customer receives is closely related
to its submitted customer type. A small submitted customer type will increase the compensation (the
area of the shaded part in Figure 3), and vice versa.Energies 2018, 11, 46  9 of 19 
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On the other hand, a small submitted customer type will decrease the strategically bidding
revenue, as shown in (23). Incentive compatible ensures the customer gains the highest expected
profit by submitting its true customer type θT

i . If the customer submits a different θd
i , the difference in

expected profit is calculated as:

∆Pi = Pi(θ
d
i , θT

i )− Pi(θ
T
i , θT

i )

= bIL(θd
i − θT

i )xexp
i (θd

i ) + bIL
∫ θmax

i
θd

i
xexp

i (θS
i )dθS

i − bIL
∫ θmax

i
θT

i
xexp

i (θS
i )dθS

i

= bIL(θd
i − θT

i )xexp
i (θd

i )− bIL
∫ θd

i
θT

i
xexp

i (θS
i )dθS

i

(27)

(27) is transformed by using the Lagrange Mean Value Theorem:

∆Pi = bIL(θd
i − θT

i )(xexp
i (θd

i )− xexp
i (ε)) (28)

where ε is between θd
i and θT

i ; if θd
i > θT

i , there is xexp
i (θd

i ) ≤ xexp
i (ε) due to the decreasing property of

xexp
i (θS

i ) and thus ∆Pi ≤ 0; the same result can be obtained if θd
i < θT

i . Therefore, submitting a customer
type different from the true value will generate no additional expected profit and thus, it is in the
customer’s best interest to reveal the true outage cost in order to collect the highest profit.

3.3. Calculating the LSE’s Profit

The expected demand relief ∆LIL,exp
j,t and FRP RFRP,exp

j,t in the time period t provided by LSE j over
all scenarios are solved as the outputs of the stochastic RTUC model and are calculated as:

∆LIL,exp
j,t = ∑

s∈S
ρs∆LIL

j,t,s (29)
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RFRP,exp
j,t = ∑

s∈S
ρsRFRP

j,t,s (30)

For each independent time period t ∈ T, LSE j runs the IL relief model considering ∆LIL,exp
j,t

and RFRP,exp
j,t as inputs. Results include FRP and demand relief provision of each customer and their

respective payments. It is assumed that RFRP,exp
j,t is allocated among all the customers in a pro-rated

manner and thus reduces the maximum amount of demand relief the customer can provide. In other
words, the customers are required to leave a margin for FRP and therefore unable to curtail all
their loads.

Additionally, all the customers are expected to submit their true customer types due to the
incentive compensation. Hence, the expected profit of LSE j over all time periods is equal to the reward
from the ISO minus the payment to its customers:

πj = λCAPLIL,max
j + ∑

s∈S

∆t
60

ρs ∑
t∈T

(λDR
j ∆LIL

j,t,s + λFRPRFRP
j,t,s )− ∑

t∈T

∆t
60 ∑

i∈I
Ai(xi(θ

T
i ), θT

i ) (31)

The LSE is happy if πj is no less than its acceptable minimum profit πmin
j . Otherwise, it might

request for a higher reward to provide demand-side services for the ISO.

4. Solving Process

The flowchart for solving the proposed work is presented in Figure 4. The whole process is
terminated only when the LSE is properly rewarded. Otherwise, the LSE will stop providing services
or ask for a higher reward from the ISO. Note the settlement of λDR

j is not real-time scale and might
need a long-term negotiation between the LSE and the ISO. The ultimate goal is incorporating a proper
reward mechanism which allows both parties to be profitable. The negotiation process, however,
entails more detailed study and is beyond the scope of this work. Instead, this work endeavours
to prove that with proper reward mechanisms, not only the ISO, but also the LSE can benefit in IL
simultaneous provision of FRP and demand relief.
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5. Case Studies and Numerical Results

A power system including five generating units, one RES and one LSE is employed to demonstrate
the performance of the proposed method. The characteristics of units (Table 2) are modified
based on [27]. The overall operation cost of unit g is assumed to be a linear function of its
output: Cg(Pg) = ag + bgPg [5]. Among these units, G1 is a base-load unit with zero ramp rate and
least operation cost, while G5 is a fast-starting unit with the highest operation cost and fastest ramp
rate. G2–G4 are regular units with operation and start-up costs in between. The RES output is regarded
as the aggregation of the outputs from multiple RESs. The LSE manages three customers whose
maximum ILs and type parameters are given in Table 3. Customer 1, 2 and 3 are ranked from the most
willing to provide demand relief to the least willing. For the respective customer type i (i = 1, 2, 3), it is
estimated by the LSE to follow the continuous uniform distribution with minimum value θmin

i and
maximum value θmax

i . The cost coefficients of IL are set as aIL = 1 $/MW2h, bIL = 120 $/MWh [12].

Table 2. Characteristics of generating units.

Unit Pmax
g (MW) Pmin

g (MW) rUP
g (MW/min) rDN

g (MW/min) Pinit
g (MW) ag ($/h) bg ($/MWh) cSU

g ($)

G1 280 280 0 0 280 0 5 0
G2 150 50 2.8 2.8 120 200 10 300
G3 100 30 2.8 2.8 80 200 20 600
G4 100 20 2.8 2.8 60 200 30 900
G5 100 5 6 6 0 300 50 1200

Table 3. Parameters of interruptible loads.

Customer Maximum IL
(MW) True Type Parameter θT

i
Low Bound of Type

Parameter θmin
i

High Bound of Type
Parameter θmax

i

1 10 0.32 0.26 0.4
2 20 0.44 0.35 0.52
3 30 0.52 0.46 0.6

The clearing granularity of RTUC is set as 5 min in line with the current market
practice [1,2]. Figure 5 presents the 5-min forecasted base load and RES output during a typical
peak hour. The forecasted net load is also presented in Figure 5, defined as the difference between
the forecasted base load and the RES output plus the total amount of ILs (60 MW in this case study).
As observed, the net load profile is variable and fluctuant. On one hand, the general upward tendency
represents the upward variability, which calls for the IL customers to curtail their loads in order to
maintain the balance between power supply and demand. On the other hand, the decline in the time
interval from the 10th min to the 15th min represents the fluctuation of the net load.
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Figure 5. Forecasted base load, net load and RES output. 
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The base load and RES output are both assumed to follow normal distributions with the
standard deviations of the base load and RES output being 1% and 10% of the expected values,
respectively [25]. Three thousand scenarios for base load are generated by using the Latin hypercube
sampling method [22] and 10 representative scenarios are selected based on the fast forward selection
algorithm [23]. The probability of each selected scenario is also obtained from the fast forward selection.
Similar process applies for the RES output to obtain 10 representative RES generation scenarios. Finally,
100 combined scenarios with the specified load LBL

t,s and RES output PW
t,s chosen from the above

load scenarios and RES output scenarios are obtained, as well as their corresponding conditional
probabilities. Based on these system-level forecasts, the underlying uncertainties in scenario s can be
formulated in a linear form [5]:

φUP
t,s = αl,upLBL

t+1,s + βl,upPW
t+1,s (32)

φDN
t,s = αl,dnLBL

t+1,s + βl,dnPW
t+1,s (33)

In practice, the value of the coefficients can be tuned according to the forecast accuracy and in
this study is set as αl,up = αl,dn = 0.01 and βl,up = βl,dn = 0.05. Note that β is larger than α because the
RES output is normally more variable than the system load. Moreover, sensitivity analysis will be
conducted on β in order to show the impacts of the RES output uncertainty and how IL can effectively
assist in uncertainty mitigation.

Additionally, specify ν = 3500 $/MWh and φ = 50 $/MWh [28]. λCAP is set to 1.35 $/MW, which
is close to the price of operating reserve in MISO [29]. λFRP is set to 5 $/MWh following MISO’s
practice [2]. λDR is assumed to be 50 $/MWh set forth by the ISO in the beginning and might be raised
according to the results of the profit calculation, which terminates the whole process if the LSE’s yield
rate is over 25%.

Two highly efficient optimizers are employed to solve the presented model. The stochastic RTUC
model is implemented in GAMS [30] as a mixed-integer linear program (MILP) and solved by CPLEX,
and the IL relief model is solved in MATLAB as a quadratic programming problem.

5.1. LSE’s Provision of FRP and Demand Relief

To demonstrate the role of the LSE in maintaining the system generation-demand power balance
and reducing the operation cost, three cases are considered as follows:

• Case 1: the LSE is treated as inelastic load and neither demand nor FRP are called upon;
• Case 2: the LSE is only allowed to provide demand relief;
• Case 3: the LSE can provide both FRP and demand relief.

Table 4 summarizes the expected results over all scenarios for three cases. In Case 1, without
supports from the LSE, the ISO has to start G5 at the first time interval and keeps it ON at all times in
order to keep power balance and to meet the ramp capability requirement, which results in the highest
generation cost of all cases. Taking advantage of the LSE provision of demand relief in Case 2, the
generation cost reduces since the expensive production of unit G5 is reduced. However, an extra cost
is incurred to reward the LSE for demand relief and thus results in a very limited reduction (0.37%) in
total cost when compared with Case 1. A significant cost deduction (15.05%) is seen in Case 3, which is
because the commitment of G5 is avoided, and meanwhile, the rewards to the LSE decrease as less
demand relief is called upon. This occurs because the LSE provides cost-effective FRP using IL and
thus forces unit G5 to be extra-marginal.
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Table 4. Summary of unit commitment results for different cases.

Case Total Cost ($) Total Cost
Reduction

Unit Generation
Cost ($)

Rewards to the
LSE ($)

G5 Running
Time (min)

1 9991.5 0% 9910.5 81 60
2 9954.2 0.37% * 9156.4 797.8 15
3 8487.6 15.05% * 8119.3 369.3 0

* The ratio is calculated based on the total cost in Case 1.

To analyze the impacts of introducing the LSE as a FRP provider, detailed comparisons are drawn
between Case 2 and Case 3. Figure 6 presents the average portfolio of FRP provisions in the two
cases. Note that in the period t2, the upward ramp capability requirement is zero because there is a
distinct decrease in net load and no upward FRP is needed. In Figure 6, it is shown the LSE can replace
the expensive unit G5 by providing upward FRP, especially when the requirement is high (e.g., in t1

and t3). In this way, the undesirable startup cost and generation cost is avoided. Furthermore, with
the LSE’s participation, units G3 and G4 are released from limitations of upward FRP provision and
thus can provide their energy to maintain system balance, which in turn leads to less demand relief
requirement from the LSE. This process is shown in Figure 7, which only presents the results of G3,
G4 and LSE for purposes of clarity. The results of G1 and G2, as base-load units, are not presented
for negligible distinctions in Case 2 and Case 3. It should be pointed out that in Case 2, G5 is cycled
from the onset and keeps generating at its minimum output for the first three time intervals in order to
provide upward FRP. This is inefficient and not cost-effective.
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In situations where the RES output is more volatile, the associated uncertainty increases, 
rendering a larger β and consequently higher ramp capability requirements. Table 5 summarizes the 
results of different scenarios with varying β. As β increases in the range of [0.05, 0.15], the total 
required upward FRP over all time intervals increases, which is then met by the provision of the LSE 
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In situations where the RES output is more volatile, the associated uncertainty increases, rendering
a larger β and consequently higher ramp capability requirements. Table 5 summarizes the results of
different scenarios with varying β. As β increases in the range of [0.05, 0.15], the total required upward
FRP over all time intervals increases, which is then met by the provision of the LSE and conventional
units. The former increases its provision according to the system requirement, whereas the latter keeps
its provision almost constant. This is the case because units G1–G4 can only provide limited amount
of FRP due to their ramp rate and maximum power constraints. When β increases to 0.2, the ISO
must cycle G5 in t3 to provide sufficient FRP to meet the higher ramp capability requirement caused
by the RES output uncertainty. This undesirable deployment of G5 might occur more frequently in
systems with significant penetration of RES. Based on the above analysis, therefore, exploring more
ILs is beneficial for reducing the frequency of deploying costly units.

Table 5. FRP provision with the increasingly volatile RES output.

β
Total Required

FRP (MW)
Upward FRP by the

LSE (MW)
Upward FRP by the

Units (MW)
G5 Running
Time (min)

G5 Output
(MW)

0.05 230.3 131.6 98.7 0 0
0.10 277.4 177.5 99.9 0 0
0.15 325.5 225.6 99.9 0 0
0.20 378.7 273 105.7 5 5

5.2. Incentive Compensation to the Customers

After the system operator runs the stochastic RTUC model, the expected demand relief ∆LIL,exp
j,t

and FRP RFRP,exp
j,t in time period t provided by LSE j over all scenarios are solved and presented in

Table 6. The LSE starts to provide demand relief at t7 and onwards. On the other hand, the LSE is
required to provide FRP in all time periods except t2. The required capacity, as already mentioned, is
assigned within all customers using a pro-rated method in proportion to their maximum IL.
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Table 6. Expected FRP and demand relief provided by the LSE.

t Time (min) ∆LIL,exp
t (MW) RFRP,exp

t (MW)

1 5 0 7.32
2 10 0 0
3 15 0 10.41
4 20 0 1.18
5 25 0 3.33
6 30 0 11.25
7 35 1.01 16.07
8 40 6.05 10.15
9 45 5.11 14.97
10 50 8.83 15.51
11 55 13.05 20.37
12 60 21.99 21.06

To validate the effectiveness of the designed incentive compensation, for each customer in each
individual time period t (t = 7, 8, ..., 12), the expected amount of demand relief xexp

i (θS
i ) is calculated

with varying submitted customer type θS
i . The other customers’ behaviours are modelled by MC

simulation. Note that a larger number of MC trials provides more precise results, but introduces higher
computational burden. A trade-off is achieved by setting the number of MC trials to 1000 in this study,
which averages a 1-min computation time to obtain results for each customer.

The results for each customer are shown in Figure 8. As observed, for all the customers, the
expected amount of demand relief decreases as the submitted customer type increases. It is noteworthy
that for Customer 1, the expected amount of demand relief almost remains constant in t11 and t12.
This is because Customer 1 is most willing to curtail load and thus is given priority. Particularly in
t12 when the requirement for demand relief is high, all available capacity of Customer 1 is deployed
regardless of its submitted customer type. In contrast, as the least willing to curtail load, Customer 3 is
seldom deployed in time periods t7, t8 and t9 when the requirement for demand relief is low.

The expected profits of the customers, as defined in (23), are presented in Figure 9, which also
shows the two revenue streams (i.e., the strategically bidding revenue and the incentive compensation).
Note that all customers’ profits in each individual time period are calculated but only a typical subset
(t12) is shown for illustration.

Figure 9 shows that a customer who intentionally submits a higher customer type will receive
more revenues from bidding, but meanwhile is awarded less compensation. These two opposite effects
offset each other and keep the expected profit of Customer 1 constant, as Figure 9a shows. Customer
1 is always got fully deployed in t12, as shown in Figure 8a. Therefore, it can be proved by (23) and
(26) that customer 1 is expected to receive same profit, which is also the maximum profit it can obtain.
In contrast, as shown in Figure 9b,c, it is in the best interest for Customer 2 and 3 to submit their true
customer types. It is noticeable that even though the increase in the expected profit is insignificant,
it is only the profit over the 5-min time interval and would be mirrored as significant monies over
long periods.
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Figure 8. Expected amount of demand relief of each customer versus varying submitted customer type:
(a) Customer 1; (b) Customer 2; (c) Customer 3.
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Figure 9. Expected profit of each customer versus varying submitted customer type in t12: (a) Customer 
1; (b) Customer 2; (c) Customer 3. 
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5.3. Calculating the LSE’s Profit

After all customers submit their true customer types, the LSE runs the IL relief model and
calculates the total reimbursement to its customers which consists of the demand relief payment and
the incentive compensation. The results for each time period are shown in Table 7. The LSE’s own
profit, which is equal to the reward from the ISO ($369.3 as shown in Table 4) minus the reimbursement
to the customers ($282.6), is $86.7, rendering a yield rate of 30.7%. This indicates the LSE is well paid
under the existing price mechanism and is willing to provide services.

Table 7. Reimbursement from the LSE to its customers.

t 1–6 7 8 9 10 11 12 Total

demand relief payment 0 3.3 22.4 18.5 34.7 56.5 107.7 243.2
incentive compensation 0 0.7 4.0 3.4 6. 9.3 15.9 39.4

Total reimbursement 0 4.0 26.4 21.9 40.7 65.8 123.6 282.6

6. Conclusions

With the ever-growing penetration of RESs in power systems, FRP has become a new market
product for addressing the challenges in power system operation. The basic concept and technical
characteristics of FRP are introduced, and FRP imposes much less technical requirement for potential
providers than other ancillary services. Subsequently, the mechanism of simultaneous provision of
FRP and demand relief by IL is explored. The LSE is introduced as the mediator between multiple IL
customers and the ISO. A stochastic RTUC model considering ramp requirements and IL participation
is then presented to formulate the interactions between the ISO and LSEs. Simulation results show
that the overall system benefits with LSEs as service providers come from three major aspects: (1) the
start-up and operation costs of expensive units are avoided; (2) through provision of FRP by ILs,
generating units are released, at least to some extent, from the requirement of upward FRP and thus
can allocate generation resources to other needs of the power system; and (3) there is more flexibility
for the power system concerned to meet the increased ramp requirement caused by high penetration of
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RES. On the other hand, the LSEs can also benefit by providing these services if proper compensations
are in place.

The interactions between LSEs and their customers are simulated using economic incentives. As a
profit-seeking entity, each LSE runs a IL relief model, aiming to minimize the overall outage cost of its
managed IL customers. On the other hand, IL customers intend to attain more profit by strategically
reporting their customer types. To this end, an incentive compatible mechanism is designed so as to
encourage each LSE to collect information about its customers. Simulation results show that customers
with different cost-quantity characteristics are encouraged to reveal their true outage costs so as to
gain the highest profits.

This work also discusses the mechanism and possibility of including IL as a FRP provider. A case
study is employed to demonstrate the feasibility of the proposed method. Technical details of different
kinds of RESs are not presented in this paper due to space limitation. It will be our future research
effort to extend this study to actual power systems with targeted RES penetration levels so as to
investigate the practical feasibility and to attain quantitative benefits with the participation of ILs.
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Nomenclature

A. Abbreviations

AGC Automatic generation control
DSM Demand side management
FRP Flexible ramping product
GAMS General Algebraic Modeling System
IL Interruptible load
ISO Independent system operator
LSE Load serving entity
MILP Mixed-integer linear program
RES Renewable energy source
RTUC Real-time unit commitment

B. Sets

G Set of generators with index g
I Set of IL customers with index i
J Set of LSEs with index j
S Set of scenarios with index s
T Set of time periods with index t
W Set of RESs with index w

C. Parameters

∆t Market clearing granularity (minute)
ρs Probability of scenario s
cSU

g Start-up cost of unit g ($)
Pmax

g /Pmin
g Maximum/Minimum output of unit g (MW)

rUP
g /rDN

g Upward/Downward ramping rate of unit g (MW)
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λCAP Compensation to LSEs for providing demand-side resource ($/MW)
λDR

j Reward to LSE j for providing unit demand relief ($/MWh)

λFRP System-level demand price of FRP set by the ISO ($/MWh)
LIL,max

j Maximum IL that LSE j can provide (MW)

LBL
t,s Base load without shedding in period t under scenario s (MW)

Pw,t,s Output of RES w in period t under scenario s without curtailment
ν Value of lost base load ($/MWh)
φ Penalty for unit RES output curtailment ($/MWh)
aIL, bIL IL cost coefficients
θi Normalized customer type of customer i
D Total required demand relief
D. Variables
cgen Cost for start-up and operation of units ($)
creward Cost for rewarding LSEs to provide demand-side services ($)
cpenalty Penalty for base-load shedding and RES output curtailment ($)
Pg,t,s Generation output of unit g in period t under scenario s (MW)
Cg Operation cost function of unit g
RUP

g,t,s/RDN
g,t,s Upward/Downward FRP provided by unit g in period t under scenario s (MW)

xg,t On/off state binary variable of unit g in period t
yg,t Binary start-up variable of unit g in period t
∆LIL

j,t,s Amount of demand relief provided by LSE j in period t under scenario s (MW)

RFRP
j,t,s Awarded upward FRP capacity of LSE j in period t under scenario s (MW)

∆LBL
t,s Amount of lost base load in period t under scenario s (MW)

Dw,t,s Amount of curtailed output of RES w in period t under scenario s (MW)
xi Amount of demand relief provided by IL customer i (MW)
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