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Abstract: Accurate solar forecasting facilitates the integration of solar generation into the grid
by reducing the integration and operational costs associated with solar intermittencies. A novel
solar radiation forecasting method was proposed in this paper, which uses two kinds of adaptive
single decomposition algorithm, namely, empirical mode decomposition (EMD) and local mean
decomposition (LMD), to decompose the strong non-stationary solar radiation sequence into a set
of simpler components. The least squares support vector machine (LSSVM) and the Volterra model
were employed to build forecasting sub-models for high-frequency components and low-frequency
components, respectively, and the sub-forecasting results of each component were superimposed to
obtain the final forecast results. The historical solar radiation data collected on Golden (CO, USA),
in 2014 were used to evaluate the accuracy of the proposed model and its comparison with that of the
ARIMA, the persistent model. The comparison demonstrated that the superior performance of the
proposed hybrid method.

Keywords: hourly solar radiation; empirical mode decomposition; local mean decomposition;
least squares support vector machine; Volterra model; hybrid model

1. Introduction

Solar radiation is the most important factor affecting photovoltaic power generation [1].
Accurate solar forecasting facilitates the integration of solar generation into the grid by reducing
the integration and operational costs associated with solar intermittencies [2]. Nowadays, physically-
based forecasting is mainly conducted using numerical weather prediction methods such as the
well-known numerical weather prediction (NWP), which provides information up to several days
ahead; however, it has obvious biases and random errors [3]. It is therefore very important to
develop effective solar radiation forecasting methods, especially ones that can use less measurements.
Solar radiation sequences can be treated as a time series produced by random processes; therefore,
mathematical models can be used to fit the underlying processes and forecast the future values [4,5].
Many modeling methods have been used to describe solar radiation sequences, including regression
methods such as linear regression [4], autoregressive model (AR) [6], autoregressive moving average
(ARMA) [7], multi-dimensional linear prediction filters [8], least absolute shrinkage and selection
operator (LASSO) [9], and nonlinear model approximators such as artificial neural network (ANN) [10],
adaptive neuro-fuzzy inference system [11], hidden Markov model [12], fuzzy logic [13] and
Angstrom–Prescott equations [14]. Traditionally, these techniques were used independently by
researchers to build forecasting models for solar radiation. However, solar radiation is a strong
random process, which makes a single modeling algorithm unable to guarantee the accuracy and
robustness of the forecasting model. Therefore, hybrid models were used to maximize the advantages

Energies 2018, 11, 68; doi:10.3390/en11010068 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-2927-3163
http://dx.doi.org/10.3390/en11010068
http://www.mdpi.com/journal/energies


Energies 2018, 11, 68 2 of 21

of different models. Theoretical and empirical results suggest that hybrid methods can effectively
improve the prediction performance [15].

Hybrid methods are categorized into algorithm hybrids, data hybrids, and joint hybrids of
algorithms and data. Algorithm hybrids use preprocessing algorithms to decompose or classify the
original solar radiation sequence into a series of stationary components that are easier to model
and predict, and then the forecasting models for each component were built according to the
characteristic of the components [15–17]. Because the solar radiation is influenced by climatic and
environmental parameters, the robustness of forecast models based on the historical data of solar
radiation may not be guaranteed. To address this limitation, researchers proposed the data hybrid
method, which integrates solar radiation data and meteorological parameters to develop a forecast
model of solar radiation [18,19]. Aiming to capture the distribution characteristics of solar radiation
and meteorological parameters more effectively, the joint hybrid of data and algorithms method
is proposed. Then, the forecast model for data distribution using different modeling algorithms is
established [20,21].

However, the modeling methods for solar radiation using data hybrids or joint hybrids of data
and algorithms require available meteorological and environmental parameters. These parameters
are usually difficult to obtain in practical application because of the expensive price of measuring
equipment and the installation limits. Hence, a novel hybrid method, which only depends on the
historical data of the solar radiation, was proposed in this study to realize the accurate forecast of solar
radiation without high cost. The proposed modeling method employs two kinds of adaptive signal
decomposition methods, namely, EMD and LMD, to adaptively decompose the strong non-stationary
solar radiation sequence into a set of simpler components. Following that, the LSSVM and the Volterra
model were used to build sub-models for different components. The final forecasting results were
obtained by integrating all of sub-models. The comparison results demonstrated that the superior
performance of the proposed hybrid method.

This work is organized as follows: the data used in the study are described in Section 2.
The method used in this study is explained in Section 3. Evaluation metrics for the model performance
comparison are listed in Section 4. Simulation experiments with different algorithms and comparison
results are presented in Section 5. Finally, conclusions are made in Section 6.

2. Data Description

The time series of hourly Global Horizontal Irradiance (GHI, which means hourly average
value), collected on Golden, CO, USA (39.7◦ N, 105◦ W, 1829 m AMSL) in 2014, were used in this
study. These GHI data were acquired by using a high-precision CM22 pyranometer instrument on a
plane surface, and can be downloaded from the website of National Renewable Energy Laboratory
(NREL, URL link: http://www.nrel.gov/midc/srrl_bms/).

Colorado is a mountain state with a complex climate. Table 1 presents the information about
temperatures and relative humidity (RH) of the observation site in 2014. It can be seen that the
observed environmental volatility is strong. The strong environmental volatility will result in strong
nonstationary of solar radiation sequence, and ultimately lead to difficulty in establishing an accurate
forecasting model. Therefore, the solar radiation sequence of Colorado in 2014 was used to verify the
performance of the proposed method.

The series of hourly Global Horizontal Irradiance (GHI) values used in this study is shown in
Figure 1, which contains a total of 8760 sampling data, and each sampling data represents an average
value of hourly GHI, and there are 24 sample points per day. From Figure 1, it can be found that the
seasonal factor has a great impact on the GHI. In order to weaken the influence of seasonal factor on
the forecasting performance of the model, a total of 8760 sampling data were divided into 4 datasets
(i.e., 1 January to 31 March, 1 April to 30 June, 1 July to 30 September, 1 October to 31 December),
according to their sampling date.

http://www.nrel.gov/midc/srrl_bms/
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The forecasting model was established for each dataset. Considering the adaptive signal
decomposition algorithms used in this study are based on the prior condition of the time-continuity of
the original signal, in order to satisfy this condition, the first 70% sampling data of each dataset were
used as training set, and the last 30% sampling data were used as testing set. When the number of
samples is sufficient, this sample partitioning method can cover all possible weather situations.

Table 1. Environmental information about temperatures and relative humidity (RH) of the observation
site in 2014.

Month Avg Temp (◦C) Max Temp (◦C) Min Temp (◦C) Avg RH (%) Max RH (%) Min RH (%)

Jan. 2.06 16.8 −18.0 44.7 103 3.40
Feb. −0.61 17.9 −25.1 57.5 105 5.60
Mar. 5.16 21.9 −15.6 43.6 107 6.20
Apr. 9.29 15.9 2.76 42.9 70.6 21.6
May 13.4 19.9 7.51 53.7 79.0 31.7
Jun. 19.1 26.6 12.1 44.5 75.0 21.5
Jul. 22.3 29.1 16.7 48.3 75.0 28.2

Aug. 20.6 27.3 15.3 46.5 70.4 26.0
Sept. 17.8 24.48 11.98 51.58 76.18 29.6
Oct. 13.5 20.1 7.29 39.9 63.6 22.5
Nov. 3.56 10.6 −3.00 45.0 69.8 25.9
Dec. 1.39 7.57 −3.82 47.5 67.5 25.9
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Figure 1. The series of hourly GHI from 1 January 2014 to 31 December 2014 collected on
Golden, Colorado.

3. Methodology

3.1. Signal Decomposition

The original solar radiation series has strong nonlinear and nonstationary characteristics.
Existing modeling methods have limited ability to describe this kind of signal. Hence, the adaptive
signal decomposition algorithms were used to decompose original solar radiation into a small
number of simpler components (sub-sequences) to improve prediction accuracy. EMD and LMD
have been extensively shown as good and popular adaptive methods for processing nonlinear
and nonstationary signals. They were widely used in many applications, such as solar radiation
forecasting [16], energy load forecasting [22], climate forecasting [23], and time-frequency estimation
for electroencephalogram [24]. Because the EMD and LMD have different decomposition mechanisms,
the sub-sequences obtained by these two methods also have some differences, which are exactly
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the description of the original signal from different perspectives. Considering the complexity of the
original solar radiation sequence, the EMD and LMD methods were used for analysis and comparison
simultaneously in this study to realize the multi-angle and comprehensive description for original
solar radiation sequence.

3.1.1. Empirical Mode Decomposition

The basic idea of EMD is to decompose a complicated signal into a finite and a small number
of oscillatory modes based on a local characteristic time scale. Each oscillatory mode is expressed
by an intrinsic mode function (IMF), which has to satisfy the following two conditions: (1) In the
whole dataset, the number of extrema and the number of zero-crossings must either be equal or differ
at most by one; (2) At any point, the mean between the upper and lower envelopes must be zero.
Let {I(t), t = 1, 2, · · · , N} be a given solar radiation sequence, the computational steps of the EMD are
described as follows:

Step 1. Identify all the local extrema of I(t) and connect all the local maxima and minima using a
cubic spline to generate an upper envelope u(t) and a lower envelope v(t).

Step 2. Calculate the mean envelop m(t) by averaging the upper envelope u(t) and the lower
envelope v(t), and then subtract it from I(t) to obtain a detailed component d(t) = I(t) − m(t).

Step 3. Check whether d(t) is an IMF. If d(t) is an IMF, then set c(t) = c(t) and meanwhile replace
I(t) with the residual r(t) = I(t) − d(t). Otherwise, replace I(t) with d(t)and repeat Steps 1–2, until the
following termination criterion is satisfied:

N

∑
t=1

[dj−1(t)− dj(t)]
2[

dj−1(t)
]2 ≤ δ (1)

where j denotes the number of iterative calculations. The threshold value δ was set to 0.25 in this study.
Step 4. Repeat Steps 1–3, until all the IMFs and residual are obtained. Finally, the original time

series I(t) can be decomposed as follows:

I(t) = ∑
i

ci(t) + r(t) (2)

where ci(t) and r(t) represent different IMFs and final residual, respectively. Here, the number of IMFs is
adaptively determined by the algorithm. For complete procedures, please refer to the references [25,26].

3.1.2. Local Mean Decomposition

LMD was originally developed for decomposing the modulated signals into a small set of product
functions (PFs), each of which is the product of an amplitude envelope signal and a frequency
modulated signal. LMD scheme involves progressively separating a frequency modulated signal from
an amplitude envelope signal in essence. For a given solar radiation sequence I(t), the procedure of
LMD can be simply described as follows:

Step 1. Identify the local extrema ni from I(t), and calculate the mean value mi and magnitude ai of
the two successive extrema ni and ni+1 using the following description:

mi = (ni + ni+1)/2, ai = |ni − ni+1|/2 (3)

Step 2. Smooth local means and local magnitudes using moving averaging respectively, to form a
smoothly varying continuous local mean function m(t) and the envelope function a(t), and calculate
the assessment function s(t) as follows:

s(t) = (I(t)−m(t))/a(t) (4)



Energies 2018, 11, 68 5 of 21

Step 3. Replace I(t) with s(t) and repeat Steps 1–2, until the envelope function a(t) equals 1,
and finally the product function (PF) is obtained:

PF(t) =
n

∏
j=1

aj(t)× sn(t) (5)

where j denotes the number of iterative calculation, aj(t) is the envelope function obtained in the j-th
iterative process, and sn(t) is the final assessment function.

Step 4. Replace the original signal I(t) with the residual r(t) = I(t) − PF(t), repeat Steps 1–3,
until the residual r(t) is a constant or monotonic. Finally, the original time series I(t) can be decomposed
as follows:

I(t) = ∑
i

PFi(t) + r(t) (6)

where PFi(t) and r(t) represent different PFs and final residual, respectively. Like the EMD algorithm,
the number of PFs is also adaptively determined by the algorithm. Interested readers may refer to [27]
for details.

3.2. False Nearest Neighbor (FNN) Algorithm

After decomposition, each component obtained by the EMD or the LMD can be treated as a time
series produced by the dynamical system. According to state space equation, for a given time series
{x(t), t = 1, .., k, . . . , j, . . . N}, produced by the dynamical system, their relationship can be described as
the following equation:

x(t + 1) = F(x(t), x(t− 1), · · · , x(t−m + 1)) (7)

where F(·) is a nonlinear function reflecting the relationship between ‘input’ vectors
x(t−1)x(t), x(t − t1), . . . . . ., x(t − m + 1) and ‘output’ values x(t + 1), and m is an embedding
dimension reflecting time-delay characters of the dynamical system.

The objective of time series prediction is to obtain the function F(·) based on the given time series
{x(t), t = 1, .., k, . . . , j, . . . N}, using various modeling methods. When the function F(·) (also called
forecasting model) is established, the next value x(t + 1) can be predicted using the m-dimension
vector {x(t), x(t − 1), . . . , x(t − m + 1)}. However, due to the lack of prior knowledge of the dynamic
system, the proper embedding dimension of the dynamic system is unknown. Therefore, determining
the embedding dimension (also called input dimension of the forecasting model) must be done before
developing the forecasting model. The false nearest neighbor algorithm (FNN) [28] was adopted
to confirm the optimal embedding dimension in this study. The FNN algorithm was summarized
as follows:

Step 1. For a given small embedding dimension m, identify the closest point (in the Euclidean
sense) to a given point in the time-delay coordinates. That is, for a given time-delay point Xm (k) = [x(k),
x(k − 1), . . . , x(k − m + 1)], find the point Xm(j) in the data set such that the following distance d
is minimized:

d = ‖Xm(k)− Xm(j)‖2 (8)

Xm(j) is known as the nearest neighbor to Xm(k).
Step 2. Determine if the following expression is true or false:

|x(k)− x(j)|
‖Xm(k)− Xm(j)‖2

≤ R (9)

where R is threshold value, and set as 1/15 in this study. If expression (9) is true, then the neighbors
are true nearest neighbors. If the expression is false, then the neighbors are false nearest neighbors.
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Step 3. Continue the algorithm for all points k in the data set. Calculate the percentage of points in
the data set which have false nearest neighbors.

Step 4. Continue the algorithm for increasing embedding dimension m until the percentage of false
nearest neighbors drops to acceptably small number. In this study, if for a certain m, the percentage of
false nearest neighbors is less than 5%, it is accepted as the embedding dimension for the data set.

3.3. Prediction Model

After decomposition, selecting an effective modeling method to build the forecasting model for
each component is particularly important. The Volterra model and the LSSVM are two powerful and
popular modeling tools in nonlinear and nonstationary time series analysis. By integrating linear
and nonlinear factors of the nonlinear time series, the Volterra model can automatically track the
chaotic trajectory and yield accurate forecasting results for nonlinear time series [29]. However,
as a polynomial regression model, the Volterra model is difficult to obtain satisfied forecasting results
for strong nonlinear time series due to the influence of finite model orders. The support vector
machine (SVM) is a machine learning method based on structural risk minimization coupled with
kernel mapping, which can achieve the best generalization ability of model by balancing the model
complexity and learning ability [30]. As an improved version of the SVM, the LSSVM uses equality
constraints to replace inequality constraints of the SVM; therefore, it has a faster computing speed
while maintaining the generalization ability [31]. The LSSVM can obtain better results than that of the
Volterra model for strong nonlinear time series forecasting by using a kernel function. Considering each
component obtained by the EMD and the LMD has different nonlinear characteristics, high-frequency
components have stronger nonlinearity than low-frequency components. LSSVM was thus used
to model the high-frequency components while the Volterra was used to model the low-frequency
components. Finally, the best forecasting model was achieved by integrating different sub-models.

3.3.1. Least Squares Support Vector Machine

LSSVM is an effective regression method based on the SVM, the quadratic optimization of the
LSSVM is solving linear equations by constructing a loss function, which reduces the computational
complexity, improves computation speed, and positively influences regression modeling. It has been
widely used in time-series prediction [32].

Given X(t) = [x(t), x(t − 1), . . . , x(t − m + 1)] and Y(t) = x(t + 1) are set as the input and output of a
nonlinear discrete dynamic system, respectively, the initial space has the following form:

Y(t) = ωTψ(X(t)) + b (10)

where ψ(X(t)) is the nonlinear mapping function, which maps X(t) to the high dimensional feature
space. According to the structural risk minimization principle, the optimization problem can be
expressed as:

minω,b,e JP(ω, e) = 1
2 ωTω + 1

2 γ∑n
i=1 ei(t)

2

s.t. Yi[ω
Tψ(Xi(t)) + b] = 1− ei(t), i = 1, 2, · · · , n

(11)

where γ is the regularization parameter, and {Xi(t), Y(t)i}
n
i=1 is a given training set, ei(t) is the error

variable. When the dimension tends to be infinite, the Lagrange duality problem can be set up to solve
the above problem. The solution to this problem is presented by Suykens and Vandewalle [33] as:

Y(t) =
n

∑
i=1

aiK(X(t), Xi(t)) + b (12)
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where K(X(t), Xi(t)) is the kernel function. In this paper, the radial basis function (RBF) was selected as
the kernel function:

K(X(t), Xi(t)) = ψ(X(t))Tψ(Xi(t)) = exp(−‖X(t)− Xi(t)‖2

2σ2 ) (13)

where σ2 is the kernel function parameter. The regularization parameter γ and the kernel function
parameter σ2 control the model complexity and affect the generalization capability of the LSSVM.
In this study, the grid-search algorithm coupled with the 10-fold cross validation was utilized to
optimize these two parameters. Relevant reference [34] may help the reader to get a clear idea on how
the LSSVM works.

3.3.2. Volterra Model

The Volterra model is a general mathematical model for a nonlinear system that produces a single
output from a serial input. The Volterra models can fit any dynamic systems, without necessity to
assume the model structure [35,36]. Given X(t) = [x(t), x(t− 1), · · · , x(t−m+ 1)] and Y(t) = x(t+ 1)
are the input and output of a nonlinear dynamic system, respectively. The discrete form of the Volterra
model is written as:

Y(t) = F(X(t))

= h0 +
+∞
∑

m=0
h1(m)x(t−m)+

+∞
∑

m1=0

+∞
∑

m2=0
h2(m1, m2)x(t−m1)x(t−m2) + · · ·+

+∞
∑

m1=0

+∞
∑

m2=0
· · ·

+∞
∑

mp=0
hp(m1, m2, · · ·mp)x(t−m1)x(t−m2) · · · x(t−mp) + · · ·

(14)

where hp(m1, m2, . . . , mp) is the p order Volterra kernel, which act as the weighting coefficients on the
past input to the system. This infinite series expansion is difficult to be realized in practical applications;
thus, the form of finite truncated and finite times must be used. The most commonly used form is the
following two-order truncation sum:

Y(t) = h0 +
m−1

∑
i=0

h1(i)x(t− i) +
m−1

∑
i=0

m−1

∑
j=i

h2(i, j)x(t− i)x(t− j) (15)

the coefficients of the Volterra model expressed in Equation (15) can be solved using the orthogonal
decomposition, stepwise multiple regression, and the iterative descent gradient method. In this paper,
the least square algorithm was adopted. Complete details of the Volterra may refer to consistent
reference [37].

4. Model Evaluation

In this paper, four statistical parameters, including Root mean square error (RMSE), mean absolute
error (MAE), correlation coefficient (R), and forecast skill were used in model evaluation.

4.1. Root Mean Square Error

Root mean square error can be obtained using the following equation:

RMSE =

√
∑n

t=1 (x̂(t)− x(t))2

n
(16)

where x̂(t) and x(t) are the forecasted value and true value, respectively, and n is the number of
the forecasted points. This parameter provides information on short-term performance of a model.
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RMSE is always positive, except for ‘zero’ in the ideal case [38]. Small values of RMSE indicate accurate
model performance.

4.2. Mean Absolute Error

The MAE measures the average magnitude of the errors in a set of forecasts, with regardless of
their direction, which represents the accuracy of continuous variables. It means that the MAE is the
average over the verification sample of the absolute values of the differences between the forecast and
the corresponding observation. All the individual differences are weighted equally on average as the
MAE is a linear score, which is calculated as:

MAE =
∑n

t=1|x̂(t)− x(t)|
n

(17)

The ideal value of the MAE is 0 or close to 0 [39].

4.3. Correlation Coefficient

The correlation coefficient is used to test the relationship between forecasted and true values [3,40];
this index can be obtained from the following equation:

R =
∑n

t=1
(
x̂(t)− x̂(t)

)
· (x(t)− x(t))√[

∑n
t=1
(
x̂(t)− x̂(t)

)2
][

∑n
t=1(x(t)− x(t))2

] (18)

where x̂(t) is the average of the forecasted values, and x(t) is the average of the true values.
Correlation coefficient measures the degree of linear correlation between two random

variables. High absolute values of correlation coefficient indicate strong correlation among variables.
The correlation coefficient is stronger when it is close to 1 or −1 and weaker when it is close to 0.

4.4. Forecast Skill

To compare the forecast performance to smart persistence forecasts, the forecast skill is
introduced [41]:

Forecast skill = 1− RMSE
RMSEp

(19)

where RMSEp is the RMSE of the persistence model. The forecast skill is used as a comparison
with the commonly used persistence forecasting method, which considers the data associated with
the closest hours to the forecasting time as the most important data for predicting the variable of
interest at a specific hour. Consequently, the ratio RMSE/RMSEp is a measure of improvement over the
persistence forecast when the latter is corrected by the clear-sky index (or, in other words, when diurnal
variability of the clear sky is taken into consideration). A forecast skill of 1.0 implies an unattainable
perfect forecasting, and a forecast skill of 0 indicates an exact performance as the persistence method.
Negative values show lower forecasting accuracies compared to the persistence method. In this paper,
the persistence model with clear-sky index was used. The resulting clear-sky persistence model is
defined as follows [42]:

k̂(t + ∆t) = k∗(t) = I(t)
I(t)clr

Î(t + ∆t) = k̂(t + ∆t)I(t + ∆t)clr

(20)

where Î(t + ∆t) and I(t + ∆t)clr are the persistence forecasting result and clear-sky solar radiation
data for the time t + ∆t; k̂(t + ∆t) is the clear-sky index; I(t) and I(t)clr are the actual solar radiation
data and clear-sky radiation data in the time t. Here I(t)clr was calculated based on the Bird model [43].
The input atmospheric parameters of the Bird model are listed in Table 2.
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Table 2. Input atmospheric parameters values of the Bird clear sky model.

Lat Long TZ Pressure mB Ozone cm H2O cm AOD@ 500 nm AOD@ 380 nm Taua Ba Albedo

40 −105 −7 840 0.3 1.5 0.1 0.15 0.08 0.85 0.2

5. Establishment and Comparison of Models

In this section, several models are respectively analyzed and compared using the measured hourly
GHI data from NREL to determine the most accurate solar radiation model.

5.1. The Forecasting Results for Hourly GHI Using the LSSVM and the Volterra Models

The forecasting results of the LSSVM, the Volterra model and persistence model for the four
datasets based on the original solar radiation data are shown in Table 3. Both the LSSVM and the
Volterra model have obtained good correlation coefficients for all the datasets, with values of R
over 0.94, which indicates that there is strong correlation between the forecasting values and the
measured values. The values of RMSE and forecast skill, obtained by the LSSVM and the Volterra model,
were significantly better than the persistence model except for the period of Jul. to Sept. In terms of
MAE, the persistence model was better than the LSSVM and the Volterra model for all the datasets,
which may be attributed to the LSSVM and the Volterra models are based on the principle of least
squares error minimization, while the persistence model is an empirical model. The above results
indicate that the LSSVM and the Volterra model have good performance in GHI forecasting. However,
the accuracy of models is greatly affected by the nonstationary characteristic of the original GHI
sequence. Therefore, in order to improve the accuracy and robustness of the model, it is necessary to
decompose the strong original GHI signal into a set of weaken nonstationary single.

Table 3. The performance comparison of the persistence, the LSSVM and the Volterra models for the
four datasets.

Period Models RMSE (W/m2) MAE (W/m2) R Forecast Skill

Jan. to Mar.
Persistence 120 36.8 0.923 0.00

LSSVM 74.0 46.6 0.975 38.3%
Volterra 88.1 56.0 0.963 26.6%

Apr. to Jun.
Persistence 121 55.4 0.941 0.00

LSSVM 110 62.1 0.948 9.09%
Volterra 118 73.2 0.939 2.48%

Jul. to Sept.
Persistence 68.7 30.1 0.970 0.00

LSSVM 76.9 50.8 0.962 −11.9%
Volterra 75.7 49.4 0.962 −10.2%

Oct. to Dec.
Persistence 74.3 24.5 0.890 0.00

LSSVM 46.0 25.6 0.957 38.1%
Volterra 44.5 25.8 0.954 40.1%

5.2. The Forecasting Results for GHI Series Using the EMD-LSSVM, the EMD-Volterra, the LMD-LSSVM,
and the LMD-Volterra Models

Figures 2 and 3 show the different IMF and PF components decomposed from the original
GHI series using the EMD and the LMD, respectively. As we can see, the original GHI series was
decomposed into a set of IMF and PF with different frequency. The frequency of IMF or PF is reduced
with the increase of decomposition levels of the original signal. Both high-frequency IMF (PF) and
low-frequency IMF (PF) have weaker nonstationarity than the original solar radiation sequence,
and they are helpful to develop more accurate forecasting models.
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Figure 2. Solar radiation sequence decomposition using EMD. (a) IMFs from Jan. to Mar.; (b) IMFs
from Apr. to Jun.; (c) IMFs from Jul. to Sept.; (d) IMFs from Oct. to Dec.
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Figure 3. Cont.



Energies 2018, 11, 68 11 of 21
Energies 2018, 11, 68 11 of 21 

 

(c) (d)

Figure 3. Solar radiation sequence decomposition using the LMD. (a) PFs from Jan. to Mar.; (b) PFs 
from Apr. to Jun.; (c) PFs from Jul. to Sept.; (d) PFs from Oct. to Dec. 

After decomposition, the LSSVM and the Volterra models were established for each IMF and PF 
component. Due to limited space, the forecasting results for each IMF and PF decomposed by two 
datasets (1 January to 31 March, 1 April to 30 June) are shown in Tables 4 and 5, respectively. The 
embedding dimensions of m, the values of RMSE and MAE showed the decrease tendency with the 
increase of decomposition levels, which may be attributed to the fact that the low-frequency 
components are more stable than the high-frequency components, and the stable time series can more 
easily obtain high forecasting accuracy. Except for the first components (i.e., IMF1 and PF1), the 
LSSVM and the Volterra models achieved excellent forecasting results for other components, with 
correlation coefficients of more than 0.97. The lower correlation coefficients obtained by the first 
components were due to the fact that the first components have more nonstationary characteristics 
than other components, which will bring difficulties for developing an accurate forecasting model. 

Table 4. The forecasting results of the LSSVM and the Volterra models for each component obtained 
by the EMD and the LMD based on the data of 1 January to 31March in 2014. 

Components m 
LSSVM Volterra 

RMSE (W/m2) MAE (W/m2) R RMSE (W/m2) MAE (W/m2) R 
IMF1 17 52.8 37.98 0.778 60.4 43.8 0.709 
IMF2 13 36.2 17.1 0.977 19.5 11.1 0.993 
IMF3 6 1.93 1.20 1.00 1.05 0.730 1.00 
IMF4 6 3.45 × 10−2 2.06 × 10−2 1.00 3.20 × 10−2 1.86 × 10−2 1.00 
IMF5 6 8.57 × 10−3 6.56 × 10−3 1.00 2.45 × 10−3 1.38 × 10−3 1.00 
IMF6 2 3.34 × 10−2 1.80 × 10−2 1.00 1.26 × 10−2 1.03 × 10−2 1.00 
IMF7 2 1.35 × 10−2 7.00 × 10−3 1.00 2.11 × 10−3 1.81 × 10−3 1.00 
IMF8 3 1.27 × 10−4 9.66 × 10−5 1.00 8.64 × 10−6 5.46 × 10−6 1.00 
PF1 10 52.7 32.0 0.716 55.7 33.8 0.675 
PF2 7 24.4 14.7 0.993 20.4 12.9 0.995 
PF3 6 5.90 4.38 1.00 5.73 4.17 1.00 
PF4 7 2.62 1.32 0.999 1.28 0.922 1.00 
PF5 6 0.576 0.207 1.00 0.255 0.157 1.00 
PF6 7 0.347 0.116 1.00 3.54 × 10−2 1.74 × 10−2 1.00 
PF7 4 1.07 × 10−2 4.45 × 10−3 1.00 6.15 × 10−3 1.70 × 10−3 1.00 
PF8 2 6.38 × 10−2 4.59 × 10−2 1.00 2.66 × 10−3 1.38 × 10−3 1.00 

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-1000

0
1000

P
F

1

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-1000

0
1000

P
F

2

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-500

0
500

P
F

3

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-500

0
500

P
F

4

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-500

0
500

P
F

5

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-200

0
200

P
F

6

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-200

0
200

P
F

7

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-100

0
100

P
F

8

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-50

0
50

P
F

9

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
250
300
350

P
F

10

Time(2014.7.1-2014.9.30) / h

(W/ m2)

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-500

0
500

P
F

1

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-500

0
500

P
F

2

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-500

0
500

P
F

3

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-200

0
200

P
F

4

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-100

0
100

P
F

5

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-100

0
100

P
F

6

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-50

0
50

P
F

7

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-50

0
50

P
F

8

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
100
150
200

P
F

9

Time(2014.10.1-2014.12.31) / h

(W/ m2)

Figure 3. Solar radiation sequence decomposition using the LMD. (a) PFs from Jan. to Mar.; (b) PFs
from Apr. to Jun.; (c) PFs from Jul. to Sept.; (d) PFs from Oct. to Dec.

After decomposition, the LSSVM and the Volterra models were established for each IMF and
PF component. Due to limited space, the forecasting results for each IMF and PF decomposed by
two datasets (1 January to 31 March, 1 April to 30 June) are shown in Tables 4 and 5, respectively.
The embedding dimensions of m, the values of RMSE and MAE showed the decrease tendency with
the increase of decomposition levels, which may be attributed to the fact that the low-frequency
components are more stable than the high-frequency components, and the stable time series can more
easily obtain high forecasting accuracy. Except for the first components (i.e., IMF1 and PF1), the LSSVM
and the Volterra models achieved excellent forecasting results for other components, with correlation
coefficients of more than 0.97. The lower correlation coefficients obtained by the first components
were due to the fact that the first components have more nonstationary characteristics than other
components, which will bring difficulties for developing an accurate forecasting model.

Table 4. The forecasting results of the LSSVM and the Volterra models for each component obtained by
the EMD and the LMD based on the data of 1 January to 31 March in 2014.

Components m
LSSVM Volterra

RMSE (W/m2) MAE (W/m2) R RMSE (W/m2) MAE (W/m2) R

IMF1 17 52.8 37.98 0.778 60.4 43.8 0.709
IMF2 13 36.2 17.1 0.977 19.5 11.1 0.993
IMF3 6 1.93 1.20 1.00 1.05 0.730 1.00
IMF4 6 3.45 × 10−2 2.06 × 10−2 1.00 3.20 × 10−2 1.86 × 10−2 1.00
IMF5 6 8.57 × 10−3 6.56 × 10−3 1.00 2.45 × 10−3 1.38 × 10−3 1.00
IMF6 2 3.34 × 10−2 1.80 × 10−2 1.00 1.26 × 10−2 1.03 × 10−2 1.00
IMF7 2 1.35 × 10−2 7.00 × 10−3 1.00 2.11 × 10−3 1.81 × 10−3 1.00
IMF8 3 1.27 × 10−4 9.66 × 10−5 1.00 8.64 × 10−6 5.46 × 10−6 1.00
PF1 10 52.7 32.0 0.716 55.7 33.8 0.675
PF2 7 24.4 14.7 0.993 20.4 12.9 0.995
PF3 6 5.90 4.38 1.00 5.73 4.17 1.00
PF4 7 2.62 1.32 0.999 1.28 0.922 1.00
PF5 6 0.576 0.207 1.00 0.255 0.157 1.00
PF6 7 0.347 0.116 1.00 3.54 × 10−2 1.74 × 10−2 1.00
PF7 4 1.07 × 10−2 4.45 × 10−3 1.00 6.15 × 10−3 1.70 × 10−3 1.00
PF8 2 6.38 × 10−2 4.59 × 10−2 1.00 2.66 × 10−3 1.38 × 10−3 1.00
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Table 5. The forecasting results of the LSSVM and the Volterra models for each component obtained by
the EMD and the LMD based on the data of 1 April to 30 June in 2014.

Components m
LSSVM Volterra

RMSE (W/m2) MAE (W/m2) R RMSE (W/m2) MAE (W/m2) R

IMF1 17 81.1 57.2 0.449 87.8 63.3 0.387
IMF2 10 47.0 27.9 0.969 46.2 31.3 0.970
IMF3 10 5.90 3.63 1.00 5.23 2.79 1.00
IMF4 5 1.17 0.690 1.00 0.139 9.01 × 10−2 1.00
IMF5 5 6.74 × 10−2 2.13 × 10−2 1.00 5.69 × 10−3 5.69 × 10−3 1.00
IMF6 5 1.07 × 10−3 5.49 × 10−4 1.00 1.08 × 10−4 5.77 × 10−5 1.00
IMF7 6 4.44 × 10-4 3.45 × 10−4 1.00 6.67 × 10−6 2.95 × 10−6 1.00
IMF8 4 3.69 × 10−3 3.42 × 10−3 1.00 2.17 × 10−7 1.33 × 10−7 1.00
IMF9 4 3.90 × 10−4 3.47 × 10−4 1.00 4.65 × 10−7 3.71 × 10−7 1.00
PF1 16 79.8 52.8 0.623 92.6 61.9 0.469
PF2 6 25.9 17.1 0.995 24.6 14.9 0.996
PF3 7 9.19 3.06 0.997 5.22 2.73 1.00
PF4 7 1.25 0.717 1.00 1.23 0.717 1.00
PF5 3 0.420 0.181 1.00 0.420 0.193 1.00
PF6 4 1.28 0.320 1.00 0.103 4.11 × 10−2 1.00
PF7 4 5.60 × 10−2 1.71 × 10−2 1.00 1.92 × 10−2 3.86 × 10−3 1.00
PF8 2 0.508 0.409 1.00 4.04 × 10−3 1.43 × 10−3 1.00
PF9 2 7.31 × 10−2 7.22 × 10−2 1.00 1.44 × 10−3 8.76 × 10−4 1.00

The Volterra model is a polynomial regression model. It easily falls into a local minimum of the
parameter space and is inapplicable in cases where the underlying system exhibits a high degree of
complexity [44]. The LSSVM transforms the nonlinear regression problem in a low dimensional space
into a linear regression problem in a high dimension space by using kernel mapping technique, so it
exhibits unique advantages in strong nonlinear regression [45]. The first components (i.e., IMF1 and
PF1) obtained in this study have a strong randomness and large volatility; therefore, it can be found
that the accuracy of the LSSSVM for the first components were better than that of the Volterra models.

For the remaining components, the R values of the Volterra model are more stable and higher
than those of the LSSVM. Moreover, the RMSE and MAE values of the Volterra model for the test data
are lower than that of the LSSVM in general. Thus, the Volterra model exhibits more accurate and
stable performance than the LSSVM model for low-frequency components, which reflect the overall
physical characteristics of the system. As such, the Volterra model can clearly describe the physical
meaning of the system and accurately predict the continuous function [46].

Forecasting residuals (i.e., forecasting results minus real value) with the LSSVM and the Volterra
models for two datasets (1 January to 31 March, 1 April to 30 June) were shown in Figures 4–7.
Comparison clearly showed that the fitting residuals of the Volterra were smaller than the LSSVM for
low-frequency components, while the fitting residuals of the LSSVM were smaller than Volterra for
high-frequency components.
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IMF9 4 3.90 × 10−4 3.47 × 10−4 1.00 4.65 × 10−7 3.71 × 10−7 1.00 
PF1 16 79.8 52.8 0.623 92.6 61.9 0.469 
PF2 6 25.9 17.1 0.995 24.6 14.9 0.996 
PF3 7 9.19 3.06 0.997 5.22 2.73 1.00 
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PF9 2 7.31 × 10−2 7.22 × 10−2 1.00 1.44 × 10−3 8.76 × 10−4 1.00 
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Figure 4. Forecasting residuals of the LSSVM and the Volterra models with different IMFs based on the
data of 1 January to 31 March in 2014.
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Figure 5. Forecasting residuals of the LSSVM and the Volterra models with different PFs based on the
data of 1 January to 31 March in 2014.
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Figure 6. Forecasting residuals of the LSSVM and the Volterra models with different IMFs based on the
data of 1 April to 30 June in 2014.
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Figure 7. Forecasting residuals of the LSSVM and the Volterra models with different PFs based on the
data of 1 April to 30 June in 2014.

The final forecasting results for original GHI series, obtained by the different decomposition
algorithms and modeling methods, were shown in Table 6. All of models based on the decomposition
algorithm improved the forecasting results, compared to the LSSVM and the Volterra models without
decomposition, meanwhile, the values of RMSE and forecast skill, obtained by these four models
(EMD-LSSVM, LMD-LSSVM, EMD-Volterra, and LMD-Volterra), were significantly better than the
persistence model for all the datasets. The results fully illustrated that using decomposition algorithm
can effectively improve forecasting accuracies of GHI and model robustness.

Table 6. The forecasting results of the EMD-LSSVM, the LMD-LSSVM, the EMD-Volterra,
and the LMD-Volterra for the four datasets in 2014.

Period Models RMSE (W/m2) MAE (W/m2) R Forecast Skill

Jan. to Mar.

EMD-LSSVM 62.6 42.8 0.977 47.8%
EMD-Volterra 64.8 45.9 0.976 46.0%
LMD-LSSVM 58.4 37.4 0.981 51.3%
LMD-Volterra 60.0 37.8 0.979 50.0%

Apr. to Jun.

EMD-LSSVM 89.9 62.8 0.965 25.7%
EMD-Volterra 90.3 63.6 0.965 25.4%
LMD-LSSVM 85.8 58.3 0.968 29.1%
LMD-Volterra 98.0 66.3 0.958 19.0%

Jul. to Sept.

EMD-LSSVM 51.6 35.6 0.982 24.9%
EMD-Volterra 60.7 45.2 0.975 11.6%
LMD-LSSVM 58.8 39.9 0.977 14.4%
LMD-Volterra 66.4 42.6 0.971 3.35%

Oct. to Dec.

EMD-LSSVM 37.8 26.4 0.968 49.1%
EMD-Volterra 38.0 28.3 0.967 48.9%
LMD-LSSVM 36.9 21.7 0.969 50.3%
LMD-Volterra 41.6 25.0 0.960 44.0%
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5.3. The Forecasting Results for GHI Series Using the EMD-LSSVM-Volterra, the LMD-LSSVM-Volterra,
and the EMD-LMD-LSSVM-Volterra Models

Analysis has shown that LSSVM is suitable for the high-frequency components (i.e., IMF1 and PF1)
and the Volterra is suitable for the low-frequency components; the LSSVM and the Volterra models were
combined to develop forecasting models (namely EMD-LSSVM-Volterra and LMD-LSSVM-Volterra,
respectively). In other words, after signal decomposition by the EMD or LMD, the LSSVM was
employed to develop a sub-model for the first components (i.e., IMF1 or PF1), while the Volterra was
used to develop the sub-models for the remaining low-frequency components, and the final results
were obtained by superposition of each sub-model. As shown in Table 7, the forecasting accuracies
of the EMD-LSSVM-Volterra and the LMD-LSSVM-Volterra have various degrees of improvements
for all the datasets, compared to the EMD-LSSVM, the LMD-LSSVM, the EMD-Volterra and the
LMD-Volterra models. These differences are attributed to the fact that the EMD and the LMD have
different explanatory power for the original signals. EMD presents several limitations in terms of
end effect, over envelope, under envelope, and mode confusion. LMD, a new processing method
for non-stationary signals, also exhibits obvious deficiencies compared with EMD. For example,
the signal will be lagging behind or ahead of time when smoothing is performed for a long time,
smoothing step cannot be optimally determined in the smoothing process, and no fast algorithm is
available [38]. The signal in LMD smoothing easily advances or lags and EMD yields serious end
effect; hence, we integrated both decomposition algorithms to deal with the original radiation series
to improve the prediction accuracy. Therefore, in order to further improve the forecasting accuracy
for GHI, a novel modeling method called EMD-LMD-LSSVM-Volterra was proposed in this study.
The forecasting result obtained by the EMD-LMD-LSSVM-Volterra model is the average value of the
EMD-LSSVM-Volterra model and the LMD-LSSVM-Volterra model. The entire process was shown in
Figure 8, and comparison results were presented in Table 7.
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Table 7. The forecasting accuracy comparisons of the ARIMA, the EMD-LSSVM-Volterra,
the LMD-LSSVM-Volterra, and the EMD-LMD-LSSVM-Volterra model.

Period Models RMSE (W/m2) MAE (W/m2) R Forecast Skill

Jan. to Mar.

ARIMA 70.8 45.8 0.970 41.0%
EMD-LSSVM-Volterra 57.7 40.6 0.981 51.9%
LMD-LSSVM-Volterra 57.5 36.3 0.981 52.1%

EMD-LMD-LSSVM-Volterra 50.7 33.8 0.985 57.8%

Apr. to Jun.

ARIMA 116 67.8 0.941 4.13%
EMD-LSSVM-Volterra 87.8 61.4 0.967 27.4%
LMD-LSSVM-Volterra 85.3 57.6 0.969 29.5%

EMD-LMD-LSSVM-Volterra 77.1 52.2 0.974 36.3%

Jul. to Sept.

ARIMA 77.0 47.4 0.959 −12.1%
EMD-LSSVM-Volterra 49.0 33.7 0.984 28.7%
LMD-LSSVM-Volterra 58.2 38.7 0.977 15.3%

EMD-LMD-LSSVM-Volterra 46.1 29.9 0.986 32.9%

Oct. to Dec.

ARIMA 46.2 31.5 0.950 37.8%
EMD-LSSVM-Volterra 37.6 26.3 0.968 49.4%
LMD-LSSVM-Volterra 36.7 21.5 0.969 50.6%

EMD-LMD-LSSVM-Volterra 32.4 20.2 0.976 56.4%

The forecast skill values obtained by the EMD-LMD-LSSVM-Volterra models were improved by
11.37–32.48% and 10.94–115.03%, and the RMSE values were decreased by 5.92–13.83% and 9.61–20.79%
for all the datasets, compared to the EMD-LSSVM-Volterra and the LMD-LSSVM-Volterra, respectively.
Moreover, the values of MAE obtained by the EMD-LMD-LSSVM-Volterra model, which has a
significant decrease compared to the EMD-LSSVM-Volterra model and the LMD-LSSVM-Volterra
model, were also lower than that of the persistence models presented in Table 3. The correlation
coefficient (R) values of the EMD-LMD-LSSVM-Volterra models achieved 0.974–0.986 for all the
datasets, which indicates that the forecasting value has a strong correlation with the measured value of
GHI. The ARIMA is a widely used modeling method for solar radiation forecasting, the results obtained
by the ARIMA were also provided in Table 7. It can be easily found that the EMD-LMD-LSSVM-Volterra
models were significantly better than the ARIMA models. Overall, the EMD-LMD-LSSVM-Volterra
models achieved the best forecasting accuracy in terms of all the statistical parameters (RMSE, MAR,
R, and Forecast Skill).

The correlation between the forecasted and measured values of GHI is plotted in
Figure 9 to show the effectiveness of the forecasting approaches. The forecasted values of the
EMD-LMD-LSSVM-Volterra model were strongly correlated with the measured GHI data.
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Figure 9. Scatter plot of measured and forecasted GHI for the EMD-LMD-LSSVM-Volterra model. Black
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Figure 10 provided the comparison results of the EMD-LMD-LSSVM-Volterra method for hourly
forecast. As shown in Figure 10, except night time periods (i.e., the band whose amplitude is
close to 0), the proposed method can also forecast the variation trend of solar radiation. Notably,
the EMD-LMD-LSSVM-Volterra model can forecast GHI in sunny days with high accuracy as well as
in other weather conditions, even cloudy weather when solar radiation is less. The forecasted value of
the model is consistent with the measured value. Compared with existing methods [47], the proposed
method can be used without considering weather conditions and is thus considered effective for solar
radiation forecasting.
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Figure 10. Comparison between the measured and calculated values of hourly solar radiation through
the EMD-LMD-LSSVM-Volterra model. (a) Jan. to Mar.; (b) Apr. to Jun.; (c) Jul. to Sept.; (d) Oct. to Dec.
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5.4. The Forecasting Results for GHI Series Using the Persistence Model with Clear-Sky Index Forecasting
under the ARIMA, the LSSVM, the Volterra, and the EMD-LMD-LSSVM-Volterra Models

The persistence model with clear-sky index is another widely used physical model for GHI
forecasts. In this model, the clear-sky index has a great effect on the model accuracy. The clear-sky
index time series not only contains the solar radiation information, but it also contains the information
of other environmental physical quantities. Usually, the clear-sky index in time t + ∆t was calculated
based on actual solar radiation data and clear-sky radiation data in the time t (see Equation (20)). This is
an approximate method which ignores the variation of the clear-sky index between the time t and
t + ∆t; hence, in order to obtain more accurate forecasting results obtained by persistence model, it is
necessary to develop a forecasting model for the clear-sky index. In this study, the persistence model
combined with the ARIMA, the LSSVM, the Volterra, and the EMD-LMD-LSSVM-Volterra model were
also used for solar radiation forecast. Firstly, the clear-sky indexes k(t) are calculated through using
measured values of solar radiation I(t) divided by the calculated values of the clear-sky solar radiation
Iclr(t). Here, Iclr(t) were obtained based on the Bird model. Then the ARIMA, the LSSVM, the Volterra
and the EMD-LMD-LSSVM-Volterra models were separately built to forecast the clear-sky index
k̂(t + 1) using historical data of k(t). Finally, the forecasted value of Î(t + 1) can be achieved using
k̂(t + 1) multiplied by the Iclr(t+1). The final results obtained by these methods were shown in Table 8.
It also can be found that the EMD-LMD-LSSVM-Volterra models combined with persistence model
gained the best performance compared with other three methods and had a similar performance with
Table 7. In conclusion, the EMD-LM-LSSVM-Volterra models can accurately forecast solar radiation
whether it’s only using original GHI series or based on the clear sky index series which contains
enough information of environmental physical quantity.

Table 8. The forecasting accuracy comparisons of the persistence model combined with the ARIMA,
the LSSVM, the Volterra, and the EMD-LMD-LSSVM-Volterra model.

Period Models RMSE (W/m2) MAE (W/m2) R Forecast Skill

Jan. to Mar.

ARIMA 81.8 46.1 0.961 31.8%
LSSVM 90.5 46.5 0.954 24.6%
Volterra 88.4 46.8 0.956 26.3%

EMD-LMD-LSSVM-Volterra 54.3 26.5 0.984 54.8%

Apr. to Jun.

ARIMA 124 66.6 0.936 −2.48%
LSSVM 115 62.3 0.943 4.96%
Volterra 116 64.6 0.942 4.13%

EMD-LMD-LSSVM-Volterra 67.0 36.1 0.981 44.6%

Jul. to Sept.

ARIMA 83.4 44.1 0.952 −21.4%
LSSVM 72.0 38.3 0.967 −4.80%
Volterra 73.1 40.6 0.969 −6.40%

EMD-LMD-LSSVM-Volterra 52.8 28.5 0.982 23.1%

Oct. to Dec.

ARIMA 46.4 22.9 0.957 37.6%
LSSVM 45.7 20.8 0.953 38.5%
Volterra 46.0 21.6 0.952 38.1%

EMD-LMD-LSSVM-Volterra 26.3 12.3 0.984 64.6%

6. Conclusions

A novel hybrid method combining EMD, LMD, LSSVM and Volterra algorithms was proposed as
a statistical tool for forecasting hourly solar radiation only dependent on GHI series. The performance
of the newly proposed models was checked on the gathered data from Golden, (CO, USA) and
compared with the performance of the respective single and simple hybrid models. The main
conclusions of this paper are summarized as follows: firstly, the EMD-LMD method effectively
decomposes the original GHI series into a series of stable components for different frequencies
which accurately reflect the original feature information. Secondly, different LSSVM and Volterra



Energies 2018, 11, 68 19 of 21

sub-models established according to the law of variation of these components can achieve the best
results. Lastly, the EMD-LMD-LSSVM-Volterra model accurately forecasts the solar radiation whether
it’s only using original GHI series or based on the clear sky index series.

A whole series of simulations validated the effectiveness of the proposed
EMD-LMD-LSSVM-Volterra model on forecasting the complex and strongly nonlinear solar
radiation time series. In the application stduies against a renewable energy background, we believe
that this method can also effectively decompose and forecast other nonstationary time series signals,
such as the wind speed series for wind power generation and energy load time series forecasting.
In this study, only one-step forecasting (i.e., using current and previous radiation data to forecast solar
radiation values in the next hour) was studied; the application effect of the proposed method in the
long-term forecast of solar radiation is an issue that needs to be studied in the future. On the other
hand, one year of data from one site was used in this study, further research is needed by including
solar radiation data form more locations and under different sky conditions over a wider time period.
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Nomenclature

ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
EMD Empirical Mode Decomposition
FNN False Nearest Neighbor
GHI Global Horizontal Irradiance
IMF Intrinsic Mode Function
LMD Local Mean Decomposition
LSSVM Least Squares Support Vector Machine
SVM Support Vector Machine
PF Product Function
RH Relative Humidity
R Correlation Coefficient
RMSE Root Mean Square Error
MAE Mean Absolute Error
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