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Abstract: Rechargeable Li metal batteries have attracted lots of attention because they can achieve
high energy densities. However, the commercialization of rechargeable Li metal batteries is delayed
because Li dendrites may be generated during the batteries’ electrochemical cycles, which may
cause severe safety issues. In this research, a Li-B alloy is investigated as an anode for rechargeable
batteries instead of Li metal. Results show that the Li-B alloy has better effects in suppressing
the formation of dendritic lithium, reducing the interface impedance and improving the cycle
performance. These effects may result from the unique structure of Li-B alloy, in which free lithium is
embedded in the Li7B6 framework. These results suggest that Li-B alloy may be a promising anode
material applicable in rechargeable lithium batteries.
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1. Introduction

Energy storage systems with high energy densities are urgently needed to satisfy the continuously
growing demands of consumer electronics, electric vehicles and grid storage systems [1–5]. In this
area, rechargeable Li metal batteries have attracted more and more attention because Li metal has
an extremely high theoretical capacity (3860 mAh g−1) and the lowest negative potential (−3.04 V
versus the standard hydrogen electrode) [6–10]. However, rechargeable Li metal batteries have
not been commercialized because of the potential formation of Li dendrites [11–13] which may
pierce through the separator and create a dangerous internal circuit [14]. In addition, during the
deposition/dissolution of Li, the original solid electrolyte interface (SEI) is destroyed, and some
amount of fresh Li metal will be exposed to the electrolyte and new SEI layers will be continuously
produced during cycling. This repeated breakage and repair of the SEI layers will continuously
consume both Li metal and electrolyte, leading to lower coulombic efficiency and poorer cycling
performance [15]. Many efforts have been made to improve the performance of Li metal by modifying
the Li metal surface [16,17]. Wang et al. deposited a 30 nm amorphous Li3PO4 thin film on a Li metal
surface via magnetron sputtering to suppress the lithium dendrite growth and improve the battery life
span [18]. Li et al. used a chemical method to build an artificial SEI layer on Li metal and obtained
a much better cycling performance [19]. Herein, instead of Li metal, Li-B alloy is investigated as an
anode for rechargeable batteries.

Lithium-boron (Li-B) alloy is commonly used as an anode in thermal batteries [20]. It is a
two-phase material made by heating together lithium and boron. Its structure can be described
as free lithium embedded in the Li7B6 framework [21]. Li-B alloy has good electric conductivity
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and an acceptable Li ion diffusion rate. When Li-B alloy is used as anode, its free metal lithium
participates preferentially in electrochemical reactions [22]. Compared with Li metal, Li-B alloy has
a different chemical composition and surface microstructure, which may impact the deposition of
Li metal, and hence present different Li metal deposition/dissolution properties [23]. Thus, in this
paper, we analyzed the structures and morphologies of Li-B alloy and studied its electrochemical
performance as an anode in rechargeable batteries.

2. Experimental

Li-B alloy was obtained from China Energy Lithium Co. Ltd. (Tianjin, China), and it was punched
into a small 14 mm diameter disk. The Li-B alloy and Li metal were characterized by X-ray diffraction
(XRD) on a D8 X-ray diffractometer (Bruker, Karlsruhe, Germany) using K-α radiation (λ = 1.5406 Å).
The surface morphologies of the electrodes were measured by scanning electron microscopy (SEM)
using a SU8010 scanning electron microscope (Hitachi, Tokyo, Japan). After electrochemical treatments,
the electrodes were washed with dimethyl carbonate (DMC) and dried, and then transferred into the
SEM chamber as quickly as possible. The total transfer time lasted only a few seconds.

For electrochemical measurements, the cathodes were composed of LiFePO4, super P and
polyvinylidene fluoride (PVDF) at a weight ratio of 8:1:1. Aluminum foil was used as current collector,
and the diameter of each electrode was 12 mm. CR2032 coin cells were assembled in a glovebox (Vigor,
Suzhou, China) filled with a high purity argon atmosphere (O2 and H2O < 0.05 ppm). The Li-B alloy or
Li metal were used as both counter and reference electrode. The electrolyte was 1 M LiPF6 dissolved in
ethylene carbonate (EC) and dimethyl carbonate (DMC) with a volume ratio of 1:1. All the cells were
cycled using an automatic battery tester (Land, Wuhan, China) at room temperature at a current density
of 0.5 C (85 mA g−1 of LiFePO4). The cycling performances were tested by the constant current (CC)
mode in the voltage range of 4.3–2 V. Electrochemical impedance spectroscopy (EIS) measurements
were tested on a reference 3000 electrochemical workstation (Gamry, Warminster, PA, USA) in the
frequency range from 100 kHz to 5 mHz with a perturbation amplitude of 5 mV.

3. Results and Discussion

Figure 1a shows the XRD patterns of Li metal and Li-B alloy. The bumps around 20◦ are
related to the Kapton® films with which the samples were covered during the XRD experiments.
Characteristic peaks of the Li and Li7B6 are marked beneath for comparison. It could be seen that the
diffraction pattern of Li metal reported in this manuscript corresponds well to the PDF card of Li. As to
the Li-B alloy, it is reported to be composed of two phases, rhombohedral Li7B6 compound (JCPDS
41-0773) and cubic lithium (JCPDS 15-0401). The peaks of the Li-B alloy in this research correspond
well with these two phases. The SEM images of Li metal and Li-B alloy are shown in Figure 1b,c,
respectively. It could be seen that the surface of Li metal is relatively smooth. As to the Li-B alloy,
the surface is not very smooth, which may be due to the rolling process used in the preparation of the
alloy foil.
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structures and different surface micromorphologies may lead to different polarization voltages and
cycling performances. As to Li-B alloy, Li7B6 makes up the framework and free Li is embedded in it,
which is a unique structure that may present a different Li dissolution/deposition performance. In this
study, the Li-B alloy used contains 47% free metal lithium (Li7B6·15Li) and possesses a theoretical
capacity of 3495 mAh g−1 [22]. The effects of Li-B alloy were verified by a comparative study between
LiB/LiFePO4 and Li/LiFePO4 cells cycled at a rate of 0.5 C (1 C means accomplishing discharge and
charge in an hour). The 1st charge-discharge profiles of both batteries are exhibited in Figure 2a.
It could be seen that the charge and discharge plateaus of the LiB/LiFePO4 battery are similar to those
of the Li/LiFePO4 battery, which means the polarization voltage of Li-B alloy is analogous to that
of the Li metal one. However, after 200 cycles, the charge and discharge curves of the two batteries
(Figure 2b) show some differences. The charge and discharge capacities of the LiB/LiFePO4 battery
are much larger than those of Li/LiFePO4. The reason may be that in the Li/LiFePO4 cell, during the
deposition/dissolution of Li, the original solid electrolyte interface (SEI) is destroyed and new SEI
layers will be continuously produced during cycling, which causes the repeated breakage and repair
of the SEI layers, continuously consumes both Li metal and electrolyte, and finally leads to smaller
capacities. On the other hand, the discharge plateau of the LiB/LiFePO4 battery is slightly lower than
that of the Li/LiFePO4 battery, which indicates that during the electrochemical cycles, the surface
composition of the Li-B alloy may be changed and the polarization voltage thus enlarged, but the
detailed mechanism of this phenomenon still needs further research. The discharge capacities during
the cycles are presented in Figure 2c. The LiB/LiFePO4 battery shows much better cycling performance,
and could maintain 95% capacity after 300 cycles. As to the Li/LiFePO4 battery, it could only maintain
75% of its pristine capacity after 300 cycles. These results indicate that the Li-B alloy might suppress
the formation of lithium dendrites during long cycles.

1 

 

 
Figure 2. Charge and discharge profiles of Li/LiFePO4 and LiB/LiFePO4 battery of the 1st cycle (a)
and 200th cycle (b); cycling performances of these two batteries (c).

In order to further confirm these effects, cells were disassembled after 300 cycles and the surface
morphologies of the two electrodes were observed. The results are shown in Figure 3.
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The surface of Li metal is totally different from the pristine state. It had become much rougher
and dendritic lithium could be obviously observed, but the surface of Li-B alloy remained unchanged.
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This result demonstrates that lithium tends to deposit uniformly on the surface of Li-B alloy,
which might suppress the dendritic Li deposition, and improve the safety performance. Also,
the suppression of dendritic Li deposition and pulverization may avoid the consumption of electrolytes
on the exposed surface area of anode, and enhance the electrochemical performances.

We also used electrochemical impedance spectroscopy (EIS) measurements to study the interface
stabilities of Li metal and Li-B alloy during dissolution/deposition cycles. As shown in Figure 4,
after the 1st cycle, the cell with metallic Li electrode has lower resistivity than the one with Li-B alloy.
The reason may be Li metal has higher electrical conductivity than Li-B alloy. After 100 and 300 cycles,
the charge transfer resistances of both cells increase, but with different times. After 300 cycles,
the resistance of Li/LiFePO4 battery increases to about four times the value of the 1st cycle, while the
resistance of LiB/LiFePO4 battery only becomes slightly larger than that of the 1st cycle. These results
demonstrate that the Li-B alloy has a more stable interface during the electrochemical cycles.
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