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Abstract: Fracture aperture of a fractured reservoir can be affected by both matrix elasticity and
fracture compressibility when the reservoir pressure decreases, namely stress sensitivity. An elasticity
parameter coupling Young’s modulus and Poisson’s ratio was introduced to reflect this geomechanical
behavior, and a new model incorporating geomechanics was developed to analyze the flow behavior
of a horizontal well in a naturally fractured reservoir. Pressure solutions for two cases—uniform-flux
and infinite-conductivity—were derived, respectively. For the uniform-flux case, the effect of
dimensionless elasticity parameter on the pressure-drop profile becomes stronger with continuing
production, and the profile may be like a bow. Nine flow regimes can be observed on the transient
response of the infinite-conductivity case. Stress sensitivity mainly affects the late-flow period and
a larger dimensionless elasticity parameter causes a greater pressure drop. Due to stress sensitivity,
the pressure derivative curve exhibits an upward tendency in the pseudo-radial flow regime, and the
slope is greater than “1” in the pseudo-steady flow regime. For KT-I formation in the North Truva
field, its elasticity parameter decreases with the increase of Young’s modulus or Poisson’s ratio and
ranges from 8× 10−8 Pa−1 to 1.1× 10−7 Pa−1. Meanwhile, the transient response of H519 has a slight
negative correlation with Young’s modulus and Poisson’s ratio in the pseudo-steady flow regime.

Keywords: geomechanical property; elasticity parameter; horizontal well; naturally fractured
reservoir; transient response; North Truva field

1. Introduction

Horizontal wells have been an important technique to improve oil recovery, and naturally
fractured reservoirs are one of the potential targets to use this kind of well type [1–4]. Reservoir
pressure depletion in the naturally fractured reservoirs changes the stress balance of reservoir rock
and then changes fracture permeability, namely stress sensitivity, which is a typical geomechanical
behavior of naturally fractured reservoirs [5–9]. Therefore, it is of great significance to investigate the
flow behavior of a horizontal well in the naturally fractured reservoir, especially after a long period
of production.

The dual-porosity model, including a natural fracture system and a matrix system, is always used
to simulate the fluid flow in a naturally fractured medium [10,11]. The geometric characteristics of
natural fractures may vary over a range of scales. They can increase reservoir capacity and conductivity,
but also can act like a barrier to fluid flow [12,13]. Based on the characteristics of the dual-porosity
model, three classical models are developed to deal with the fluid-flow problems in naturally fractured
reservoirs, including the sugar-cube model presented by Warren and Root [14], the slab-shaped matrix
model presented by Kazemi [15] and the sphere-shaped matrix model presented by de Swaan [16].
Thus, we can easily further investigate the transient flow of various well types in naturally fractured
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reservoirs. However, in these models, stress sensitivity is neglected and petrophysical parameters of
natural fracture system are considered as static properties during the production, which obviously
does not match the characteristics of naturally fractured reservoirs.

As mentioned before, fracture porosity and fracture permeability are variable since they are
related to reservoir pressure. Several approaches have been proposed to incorporate geomechanical
effects into the simulation and characterization of elastic media in the literature [17–22]. Nur and
Yilmaz [17] defined a stress sensitivity coefficient to account for permeability variation, and Kikani
and Pedrosa [18] further rewrote it as a form of exponential function. This exponential relationship
becomes one of the most common expressions and is widely used to describe stress-sensitive
reservoirs. On the basis of this relationship, Ceils et al. [23] and Samaniego and Villalobos [24]
investigated the effect of stress sensitivity on the transient flow behavior of naturally fractured
reservoirs. Similarly, Yao et al. [25] presented a new semi-analytical model for hydraulic fractures
with stress-sensitive conductivity, and Zhang et al. [26] also developed an improved model for
a finite-conductivity fracture with stress-sensitive fracture permeability. These proposed models highly
depend on the exponential relationship between fracture permeability and reservoir pressure. However,
stress sensitivity coefficient is mainly obtained by fitting the experimental data measured from the
laboratory and it may have a certain error due to the difference between the experimental environment
and the actual reservoir conditions [8,17,18]. There are still other approaches to deal with stress
sensitivity. Raghavan and Chin [20] established a numerical model coupling geomechanical and
fluid-flow aspects to examine the fracture permeability reduction from the partial closure of natural
fractures. Rosalind [27] proposed an approach that avoids using pseudo-pressure function to handle
stress sensitivity, but this approach is limited to a linear variation of permeability and porosity.

Generally, in terms of stress sensitivity, most proposed models depends on either an exponential
relationship or a numerical analysis. Depending on these models, many researchers investigate the
transient pressure of vertical wells or fractured wells in stress-sensitive reservoirs [20,23–26]. However,
they do not take the reservoir geomechanical parameters into account. For example, Young’s modulus
and Poisson’s ratio, two key parameters reflecting the reservoirs’ geomechanical properties, are not
incorporated into these models [28]. By using the theory of geomechanics, Jabbari et al. [22] proposed
a fracture permeability model to figure out the dependency of fracture properties on reservoir pressure
change, which couples fracture porosity, fracture compressibility, Young’s modulus and Poisson’s
ratio. This model provides a completely new method to deal with stress sensitivity and consider
geomechanical properties. To be our best knowledge, no research has been done upon horizontal
well incorporating nonlinear geomechanics with the model proposed by Jabbari et al. [22], and the
corresponding analytical solution for this fluid-flow problem is not available.

The objective of this work was to develop a model incorporating geomechanics for a horizontal
well in a naturally fractured reservoir. Firstly, by using a Pedrosa transform, perturbation technique
and spatial integral method, analytical pressure solutions for two cases: uniform flux and infinite
conductivity, were derived, respectively. Secondly, a special case was employed to verify this
uniform-flux pressure solution and the effect of dimensionless elasticity parameter on this horizontal
wellbore’s pressure drop profiles was also discussed. Thirdly, based on the infinite-conductivity
pressure solution, transient pressure, flow regimes and parameters sensitivity of this model were
investigated in detail. Finally, by taking KT-I formation of the North Truva field as an example,
the effects of Young’s modulus and Poisson’s ratio of this formation on the elasticity parameter and
the transient response of H519 were analyzed.

2. Physical Model

Figure 1 shows a sketch of a horizontal well in a naturally fractured reservoir with stress sensitivity.
In order to simplify the mathematical model, basic assumptions are made as follows:



Energies 2018, 11, 2584 3 of 28

(1) This formation consists of two systems, including natural fracture system and matrix system,
and can be represented by Warren-Root model. Two kinds of porous media are homogeneous,
and the closure of natural fractures caused by reservoir pressure depletion is taken into account.

(2) This reservoir is circular and closed at the external boundary of side and bounded by upper and
lower impermeable formation, and has a uniform thickness.

(3) Flow in this reservoir is considered to be a slightly compressible and single-phase fluid with
constant viscosity and obeys Darcy’s law. Pseudo-steady flow from matrix system to natural
fracture system is assumed.

(4) This horizontal well is produced at a constant rate and no fluid is assumed to flow at the tip of
the horizontal wellbore.

(5) Gravity and capillary effects are neglected.
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3. Fracture Permeability vs. Mechanical Elasticity

Warren and Root [14] first proposed a sugar-cube model to describe the naturally fractured
medium (Figure 2). Based on this conceptual model, we can obtain the fracture porosity for a naturally
fractured reservoir:

φ f =
(a + b)3 − a3

(a + b)3 =
3a2b + 3ab2 + b3

a3 + 3a2b + 3ab2 + b3 (1)
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Considering that the fracture aperture is much smaller than the block size, Equation (1) can be
approximated as:

φ f
∼=

3b
a

(2)

In the sugar-cube model, assuming that the ratio of fracture width to block height is very small
and fluid flows only in y-direction in both the vertical and horizontal fractures, the flow paths in
Figure 2 can be approximated by flow through rectangular ducts. Janna [29] proposed the following
equation to describe the average velocity of laminar flow through a rectangular duct:

v =

(
b2

12µ

)
∆p
L

(3)

For a duct, the average velocity also can be described as a function of flow rate and fracture
dimensions:

v =
q
ab

(4)

Equating Equations (3) and (4), we obtain:

q =
ab3∆p
12µL

(5)

Thus, the total flow through multiple fractures becomes:

Q = nq =
nab3∆p

12µL
(6)

Further, Darcy’s Law for linear horizontal flow through a porous medium can be applied:

Q =
k f A∆p

µL
=

k f n(a + b)2∆p
µL

∼=
k f na2∆p

µL
(7)

Combining Equation (6) with Equation (7), fracture permeability with sugar cube geometry is
yielded [22]:

k f =
b3

12a
(8)

Obviously, regarding Equation (8), fracture permeability is a stronger function of the fracture
width, b, than the matrix block size, a. Jabbari et al. [22] take the derivative of Equation (8) with respect
to reservoir pressure and let fracture width be a function of reservoir pressure, and then obtain the
following equation:

dk f

dp
=

1
12

(
3b2

a
db
dp
− b3

a2
da
dp

)
(9)

During the closing of fracture aperture, a positive change in the length of a matrix block
corresponds to a negative change in the fracture width, thus, we get a relationship: ∆a = −∆b.
Substituting this formula into Equation (9), it yields:

dk f

dp
=

b2

4a

(
1 +

b
3a

)
db
dp

(10)

Jabbari et al. [22] came up with the idea that the total change in fracture width, ∆b, caused by
the change of reservoir pressure, is the sum of the change caused by fracture compressibility and
matrix elasticity.
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On the basis of the general relationship between effective stress, total stress, and fracture pore
pressure [30,31], Jabbari et al. [22] presented a formula of the change in fracture width caused by
fracture compressibility:

∆b f = bc f ∆p f (11)

where ∆p f = p− pi is the change in fracture pore pressure.
Similarly, using the theory of geomechanics, Jabbari et al. [22] obtained the change in fracture

width that comes from matrix elasticity:

∆bm =
a(1− 2v)∆p f

E
(12)

where E is Young’s modulus, and v is Poisson’s ratio.
Note that as a feasible assumption, the change in overburden pressure is neglected. Hence,

the total change in fracture width is:

∆bt = ∆b f + ∆bm − bc f ∆pob =

(
bc f +

a(1− 2v)
E

)
∆p f − bc f ∆pob (13)

where pob is the overburden pressure.
The differential form of Equation (13) can be written as:

db =

(
bc f +

a(1− 2v)
E

)
dp− bc f dpob (14)

Further, substituting Equation (14) into Equation (10) and neglecting any change in overburden
pressure, Jabbari et al. [22] developed an expression of fracture permeability incorporating
geomechanics:

dk f

dp
=

b3

4a

(
1 +

φ f

9

)(
c f

(
1− dpob

dp

)
+

a(1− 2v)
bE

)
(15)

If overburden pressure is held constant, Equation (15) is reduced to the following form:

dk f

dp
= 3k f

(
1 +

φ f

9

)(
c f +

a(1− 2v)
bE

)
(16)

Equation (16) is a representation of fracture permeability dependent on reservoir pressure,
which considers two significant geomechanical parameters, Young’s modulus and Poisson’s ratio.

4. Point Sink Model in the Closed Cylindrical System

4.1. Mathematical Model in the Closed Cylindrical System

4.1.1. Governing Equations

According to the law of conservation of mass, we can have the continuity equations for natural
fracture system and matrix system:

→
∇
(

ρ
k f

µ

→
∇p f

)
+ q∗ =

∂
(

ρφ f

)
∂t

(17)

− q∗ = ∂(ρφm)

∂t
(18)

respectively.
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Pseudo-steady flow has been assumed between natural fracture system and matrix system, and
the inter-porosity flow equation can be given as:

q∗ = αkmρ

µ

(
pm − p f

)
(19)

where α is a parameter related to the geometry of natural fractures.
With Equation (19), Equations (17) and (18) can be transformed into:

1
ρ

→
∇
(

ρ
k f

µ

→
∇p f

)
=

∂φ f

∂t
+

∂φm

∂t
(20)

− αkm

µ

(
pm − p f

)
=

∂φm

∂t
(21)

The porosity change of natural fracture and matrix during reservoir production can be described
by the following equations, respectively:

φ f = φ f 0ec f (p f−pi) (22)

φm = φm0ecm(pm−pi) (23)

where φ f 0 and φm0 are the initial porosity of natural fracture system and matrix system; c f and cm are
the compressibility of natural fracture system and matrix system.

If the connate-water saturation in the matrix medium is assumed to be negligible, we can obtain
a reasonable estimate expression of fracture compressibility:

c f =
1
ρ

∂ρ

∂p f
∼= co (24)

where co is the oil compressibility.
Using Equations (22) and (23), we can obtain:

∂φ f

∂t
=

∂
(

φ f 0ec f (p f−pi)
)

∂t
≈ φ f 0c f

∂p f

∂t
(25)

∂φm

∂t
=

∂
(

φm0ecm(pm−pi)
)

∂t
≈ φm0cm

∂pm

∂t
(26)

where φ f 0c f and φm0cm are the storage of natural fracture system and matrix system, respectively.
Substituting Equations (25) and (26) into Equations (20) and (21), we have the governing equations

for the point sink model in the naturally fractured reservoir:

1
ρ

→
∇
(

ρ
k f

µ

→
∇p f

)
= φ f 0c f

∂p f

∂t
+ φm0cm

∂pm

∂t
(27)

− αkm

µ

(
pm − p f

)
= φm0cm

∂pm

∂t
(28)

Considering that fracture permeability depends on reservoir pressure, we can transform the term
on the left-hand side of Equation (27) into:

1
ρ

→
∇
(

ρ
k f

µ

→
∇p f

)
=

k f

µ
∇2 p f +

1
µ

→
∇k f ·

→
∇p f +

k f

µρ

→
∇ρ ·

→
∇p f (29)
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With Equation (16), the second term on the right-hand side of Equation (29) can be rewritten as:

1
µ

→
∇k f ·

→
∇p f =

k f

µ

[
3
(

1 +
φ f

9

)(
c f +

3(1− 2ν)

Eφ f

)]
→
∇p f ·

→
∇p f (30)

Similarly, by introducing Equation (24), the last term on the right-hand side of Equation (29) can
be further rewritten as:

k f

µρ

→
∇ρ ·

→
∇p f =

k f

µ

1
ρ

∂ρ

∂p f

→
∇p f ·

→
∇p f =

k f

µ
co
→
∇p f ·

→
∇p f (31)

Substituting Equations (30) and (31) into Equation (29), we have:

1
ρ

→
∇
(

ρ
k f

µ

→
∇p f

)
=

k f

µ

{
∇2 p f +

[
co + 3

(
1 +

φ f

9

)(
c f +

3(1− 2ν)

Eφ f

)]
→
∇p f ·

→
∇p f

}
(32)

To simplify the model derivation, we define a new elasticity parameter:

ε = co + 3
(

1 +
φ f

9

)(
c f +

3(1− 2ν)

Eφ f

)
(33)

Obviously, this parameter depends on oil compressibility, fracture porosity, fracture
compressibility, Young’s modulus and Poisson’s ratio, thus, Equation (32) can be simplified as:

1
ρ

→
∇
(

ρ
k f

µ

→
∇p f

)
=

k f

µ

(
∇2 p f + ε

→
∇p f ·

→
∇p f

)
(34)

In the cylindrical coordinate system, we have:

→
∇p f =

(
∂p f

∂r
,

∂p f

∂z

)
(35)

∇2 p f =
∂2 p f

∂r2 +
1
r

∂p f

∂r
+

∂2 p f

∂z2 (36)

Combining Equations (34)–(36) with Equation (27), the continuity equation for natural fracture
system becomes:

k f

µ

{(
∂2 p f

∂r2 +
1
r

∂p f

∂r
+

∂2 p f

∂z2

)
+ ε

[(
∂p f

∂r

)2

+

(
∂p f

∂z

)2
]}

= φ f 0c f
∂p f

∂t
+ φm0cm

∂pm

∂t
(37)

4.1.2. Initial Conditions and Boundary Conditions

According to the physical model above, we can obtain the corresponding constraint conditions
for the point sink model as follows:

Initial conditions:
p f (r, z, 0) = pm(r, z, 0) = 0 (38)

Inner boundary condition:

lim
ζ→0

1
ζ

lim
r→0

zw+
ζ
2∫

zw− ζ
2

(2πk f

µB
r

∂p f

∂r

)
dz

 = qpoint(t) (39)

where qpoint(t) is the production rate of point sink.
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Outer boundary condition:
∂p f

∂r

∣∣∣∣
r=re

= 0 (40)

Upper and lower boundary conditions:

∂p f

∂z

∣∣∣∣
z=0

=
∂p f

∂z

∣∣∣∣
z=h

= 0 (41)

In the cylindrical system, Equations (28) and (37)–(41) compose a point sink model incorporating
geomechanical property in the naturally fractured reservoir.

4.2. Point Sink Model Solution

In order to unify and solve the model easily, the dimensionless variables defined in Table 1 are
used to deal with the above equations.

Table 1. Definitions of dimensionless variables.

Parameters Definitions

Dimensionless time tD =
k f t

µ
[
φ f 0c f + φm0cm

]
r2

w

Dimensionless pressure pjD =
2πk f h

(
pi − pj

)
qµB

Dimensionless x-, y-, z-coordinate xD =
x
L

, yD =
y
L

, zD =
z
h

Dimensionless x-, y-, z-coordinate of wellbore xwD =
xw

L
, ywD =

yw

L
, zwD =

zw

h
Dimensionless radius distance rD =

r
L
=
√

x2
D + y2

D

Dimensionless wellbore radius rwD =
rw

L
Dimensionless reservoir boundary radius reD =

re

L
Dimensionless z-coordinate of wellbore zwD =

zw

h
Dimensionless wellbore length LD =

L
h

Dimensionless reservoir thickness hD =
h

rw

Dimensionless infinitesimal vertical distance ζD =
ζ

h
Dimensionless elasticity parameter εD =

qµB
2πk f h

ε

Interporosity flow coefficient λ =
αkmr2

w
k f

Fracture storage capacity ω =
φ f 0c f

φ f 0c f + φm0cm

Dimensionless production rate of point sink qpointD(tD) =
qpoint(t)

q

Dimensionless wellbore storage coefficient CD =
C

2πh
(

φ f 0c f + φm0cm

)
r2

w

Skin factor S =
2πk f h

qµB
∆ps

where rwD LDhD = 1.

Based on these dimensionless variables, Equations (28) and (37)–(41) can be transformed into the
following dimensionless forms:
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Governing equations:

∂2 p f D

∂r2
D

+ 1
rD

∂p f D
∂rD

+ L2
D

∂2 p f D

∂z2
D
− εD

[(
∂p f D
∂rD

)2
+ L2

D

(
∂p f D
∂zD

)2
]
= (LDhD)

2
[
ω

∂p f D
∂tD

+ (1−ω)
∂pmD
∂tD

]
(42)

− λ
(

pmD − p f D

)
= (1−ω)

∂pmD
∂tD

(43)

Initial conditions:
p f D(rD, zD, 0) = pmD(rD, zD, 0) = 0 (44)

Inner boundary condition:

lim
ζD→0

 1
ζD

lim
rD→0

zwD+
ζD
2∫

zwD−
ζD
2

(
rD

∂p f D

∂rD

)
dzD

 = −qpointD(tD) (45)

Outer boundary condition:
∂p f D

∂rD

∣∣∣∣
rD=reD

= 0 (46)

Upper and lower boundary conditions:

∂p f D

∂zD

∣∣∣∣
zD=0

=
∂p f D

∂zD

∣∣∣∣
zD=1

= 0 (47)

4.2.1. Pedrosa Transform and Perturbation Transform

Due to the consideration of geomechanics in the governing equation, Equation (42), we obtain
a strong nonlinear differential system in the cylindrical system, which causes difficulty in solving
the above point sink model. Here we take Pedrosa transform to weaken the strong nonlinearity in
Equation (42) and further apply the perturbation theory in this case to obtain an approximate solution.
Pedrosa [32] provided a useful transform to deal with the nonlinear equation:

p f D = − 1
εD

ln
[
1− εDψ f D(rD, zD, tD)

]
(48)

Using Equation (48), we can obtain a series of differential relationships in the cylindrical system
as follows:

∂p f D

∂rD
=

∂p f D

∂ψ f D

∂ψ f D

∂rD
=

1
1− εDψ f D

∂ψ f D

∂rD
(49)

∂p f D

∂tD
=

1
1− εDψ f D

∂ψ f D

∂tD
(50)

∂2 p f D

∂r2
D

=
εD(

1− εDψ f D

)2

(
∂ψ f D

∂rD

)2

+
1

1− εDψ f D

∂2ψ f D

∂r2
D

(51)

∂p f D

∂zD
=

1
1− εDψ f D

∂ψ f D

∂zD
(52)

∂2 p f D

∂z2
D

=
εD(

1− εDψ f D

)2

(
∂ψ f D

∂zD

)2

+
1

1− εDψ f D

∂2ψ f D

∂z2
D

(53)
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Substituting Equations (48)–(53) into Equations (42)–(47), we have:

∂2ψ f D

∂r2
D

+
1

rD

∂ψ f D

∂rD
+ L2

D
∂2ψ f D

∂z2
D

= (LDhD)
2
[

ω
∂ψ f D

∂tD
+
(

1− εDψ f D

)
(1−ω)

∂pmD
∂tD

]
(54)

− λ
(

pmD − p f D

)
= (1−ω)

∂pmD
∂tD

(55)

ψ f D(rD, zD, 0) = pmD(rD, zD, 0) = 0 (56)

lim
ζD→0

 1
ζD

lim
rD→0

zwD+
ζD
2∫

zwD−
ζD
2

(
rD

1
1− εDψ f D

∂ψ f D

∂rD

)
dzD

 = −qpointD(tD) (57)

∂ψ f D

∂rD

∣∣∣∣
rD=reD

= 0 (58)

∂ψ f D

∂zD

∣∣∣∣
zD=0

=
∂ψ f D

∂zD

∣∣∣∣
zD=1

= 0 (59)

The strong nonlinearity in Equation (42) is substantially weakened in Equation (54), and by taking
perturbation transform [33,34], we can have the approximation of point sink model’s full solution:

ψ f D = ψ f D0 + εDψ f D1 + ε2
Dψ f D2 + · · · (60)

For small εD, these higher-order terms in the series become successively smaller and the
zero-order perturbation solution can satisfy the accuracy requirement. Then, Equations (54)–(59)
can be transformed into:

∂2ψ f D0

∂r2
D

+
1

rD

∂ψ f D0

∂rD
+ L2

D
∂2ψ f D0

∂z2
D

= (LDhD)
2
[

ω
∂ψ f D0

∂tD
+ (1−ω)

∂pmD
∂tD

]
(61)

− λ
(

pmD − p f D

)
= (1−ω)

∂pmD
∂tD

(62)

ψ f D0(rD, zD, 0) = pmD(rD, zD, 0) = 0 (63)

lim
ζD→0

 1
ζD

lim
rD→0

zwD+
ζD
2∫

zwD−
ζD
2

(
rD

∂ψ f D0

∂rD

)
dzD

 = −qpointD(tD) (64)

∂ψ f D0

∂rD

∣∣∣∣
rD=reD

= 0 (65)

∂ψ f D0

∂zD

∣∣∣∣
zD=0

=
∂ψ f D0

∂zD

∣∣∣∣
zD=1

= 0 (66)

4.2.2. Laplace Transform and Fourier Transform

By employing a Laplace transform of Equations (61)–(66) with respect to tD, we can obtain the
following equations in the Laplace domain:

∂2ψ̃ f D0

∂r2
D

+
1

rD

∂ψ̃ f D0

∂rD
+ L2

D
∂2ψ̃ f D0

∂z2
D

= s(LDhD)
2
[
ωψ̃ f D0 + (1−ω) p̃mD

]
(67)

− λ
(

p̃mD − p̃ f D

)
= (1−ω)sp̃mD (68)



Energies 2018, 11, 2584 11 of 28

lim
ζD→0

 1
ζD

lim
rD→0

zwD+
ζD
2∫

zwD−
ζD
2

(
rD

∂ψ̃ f D0

∂rD

)
dzD

 = −q̃pointD(s) (69)

∂ψ̃ f D0

∂rD

∣∣∣∣∣
rD=reD

= 0 (70)

∂ψ̃ f D0

∂zD

∣∣∣∣∣
zD=0

=
∂ψ̃ f D0

∂zD

∣∣∣∣∣
zD=1

= 0 (71)

Combining Equation (67) with Equation (68), we can obtain:

∂2ψ̃ f D0

∂r2
D

+
1

rD

∂ψ̃ f D0

∂rD
+ L2

D
∂2ψ̃ f D0

∂z2
D

= s(LDhD)
2
[

ωψ̃ f D0 +
(1−ω)λ

(1−ω)s + λ
p̃ f D

]
(72)

Applying the Taylor series expansion to Equation (48), it becomes:

p f D = − 1
εD

ln
[
1− εDψ f D(rD, zD, tD)

]
= ψ f D +

1
2

εDψ2
f D + · · · (73)

Similarly, for small εD the zero-order perturbation solution can satisfy the accuracy requirement,
thus, we have in Laplace domain:

p̃ f D ≈ ψ̃ f D0 (74)

Substituting Equation (74) into Equation (72), the governing equation can be simplified as:

∂2ψ̃ f D0

∂r2
D

+
1

rD

∂ψ̃ f D0

∂rD
+ L2

D
∂2ψ̃ f D0

∂z2
D

= s f (s)(LDhD)
2ψ̃ f D0 (75)

where f (s) =
ω(1−ω)s + λ

(1−ω)s + λ
.

Equations (69)–(71) and (75) compose the zero-order mathematical model of a point sink in the
naturally fractured reservoir in Laplace domain. Essentially, this zero-order model is the same as the
conventional point-source model in the closed cylindrical system presented by Ozkan [2].

In order to obtain the zero-order point sink solution, we can take the following finite Fourier
cosine transform with respect to zD for this model:

F
[
ψ̃ f D0(rD, zD, s)

]
= ψ̃ f D0(rD, n, s) =

1∫
0

ψ̃ f D0(rD, zD, s) cos(nπzD)dzD (76)

The inverse of this finite Fourier cosine transform with respect to zD is:

F−1
[
ψ̃ f D0(rD, n, s)

]
= ψ̃ f D0(rD, zD, s) =

∞

∑
n=0

cos(nπzD)

N(n)
ψ̃ f D0(rD, n, s) (77)

where N(n) =
1∫

0
cos2(nπzD)dzD =

{
1, n = 0

1/2, n 6= 0
.

Applying the finite Fourier cosine transform to Equation (75) and combining with Equation (71),
we obtain:

∂2ψ̃ f D0

∂r2
D

+
1

rD

∂ψ̃ f D0

∂rD
=
[
s f (s)(LDhD)

2 + n2π2L2
D

]
ψ̃ f D0 (78)
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Similarly, taking a Fourier transform for the boundary conditions, Equations (69) and (70) become:

lim
ζD→0

rD
∂ψ̃ f D0

∂rD


rD=ζD

= −q̃pointD(s) cos(nπzwD) (79)

∂ψ̃ f D0

∂rD

∣∣∣∣∣∣
rD=reD

= 0 (80)

4.2.3. Model Solution

The governing equation, Equation (78), is a modified Bessel equation. Combining with
Equations (78)–(80), the general solution for the zero-order point sink model can be obtained:

ψ̃ f D0(rD, n, s) = q̃pointD(s) cos(nπzwD)

[
K0(
√

unrD) +
K1(
√

unreD)

I1(
√

unreD)
I0(
√

unrD)

]
(81)

where un = s f (s)(LDhD)
2 + n2π2L2

D, n = 0, 1, 2 · · · .
With the inverse of finite Fourier cosine transform given by Equation (77), the general solution of

a point sink in Laplace domain can be expressed as:

ψ̃ f D(rD, zD, s) = ψ̃ f D0(rD, zD, s) = q̃pointD(s)
{

K0(
√

u0rD) +
K1(
√

u0reD)
I1(
√

u0reD)
I0(
√

u0rD)

+2
∞
∑

n=1

[
cos(nπzD) cos(nπzwD)

(
K0(
√

unrD) +
K1(
√

unreD)
I1(
√

unreD)
I0(
√

unrD)
)]} (82)

Equation (82) is the point sink model solution in the closed cylindrical system. As shown in
Figure 1, the horizontal wellbore is deployed along the x-axis (ywD = 0), so we can get the following

relationship: rD =
√
(xD − xwD)

2 + y2
D. Further, substituting this relationship into Equation (82),

we can rewrite it as:

ψ̃ f D(xD, yD, zD, xwD, zwD, reD, hD, LD, s) = q̃pointD(s)
{

K0

(
√

u0

√
(xD − xwD)

2 + y2
D

)
+

K1(
√

u0reD)
I1(
√

u0reD)
I0

(
√

u0

√
(xD − xwD)

2 + y2
D

)
+2

∞
∑

n=1

[
cos(nπzD) cos(nπzwD)

(
K0

(
√

un

√
(xD − xwD)

2 + y2
D

)
+

K1(
√

unreD)
I1(
√

unreD)
I0

(
√

un

√
(xD − xwD)

2 + y2
D

))]} (83)

5. Horizontal Well Model Incorporating Geomechanics

When fluid flow along the horizontal wellbore is uniform, by integrating with respect to xwD
from −1 to 1 in Equation (83) and letting yD = 0 and zD = zwD + rwDLD [2,35,36], we can obtain the
pressure distribution along the horizontal wellbore face in the naturally fractured reservoir:

sψ̃UFFLX
HW f D (xD, zwD, reD, hD, LD, s) = 1

2

[
1∫
−1

K0(
√

u0|xD − xwD|)dxwD +
K1(
√

u0reD)
I1(
√

u0reD)

1∫
−1

I0(
√

u0|xD − xwD|)dxwD

]

+
∞
∑

n=1

[
cos(nπ(zwD + rwDLD)) cos(nπzwD)

(
1∫
−1

K0(
√

un|xD − xwD|)dxwD +
K1(
√

unreD)
I1(
√

unreD)

1∫
−1

I0(
√

un|xD − xwD|)dxwD

)] (84)

Due to the assumption of uniform flux, the pressure along the horizontal wellbore is not uniform
and changes with the position and time. To represent the pressure behavior of a horizontal wellbore,
no pressure drop in its interior is always assumed, which means that pressure is uniform along the
wellbore, and this kind of well is said to have infinite conductivity. This inner-boundary condition poses
a very difficult boundary-value problem. Generally, the infinite-conductivity solution can be obtained
by selecting a fixed point along the wellbore in the corresponding uniform-flux solution. Clonts and
Ramey [37] proposed that the uniform-flux solution with a dimensionless distance of 0.732 was a good
approximation of the infinite-conductivity case, and this fixed point was taken by Ozkan [2] to evaluate
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the pressure for the infinite-conductivity horizontal well. However, the uniform-flux solution at
a dimensionless distance of 0.7 or 0.68, presented by Daviau et al. [38] and Rosa and de Carvalho [4],
is also used to simulate the flow behavior of infinite-conductivity horizontal well. Therefore, there is
no definite result on the selection of the fixed point at present. In this study, the pressure averaging
technique based on the uniform-flux solution, proposed by Kuchuk et al. [39], was used to approximate
the infinite-conductivity solution. Firstly, integrate along the horizontal wellbore (x-axis) with respect
to xD from −1 to 1 in Equation (84). Then, divide the integral result by the dimensionless wellbore
length. Finally, we obtain an average wellbore pressure for the infinite-conductivity horizontal well:

sψ̃INFCD
HW f D (zwD, reD, hD, LD, s) = 1

4

1∫
−1

1∫
−1

K0(
√

u0|xD − xwD|)dxwD +
K1(
√

u0reD)
I1(
√

u0reD)

1∫
−1

I0(
√

u0|xD − xwD|)dxwDdxD

+ 1
2

∞
∑

n=1

[
cos(nπ(zwD + rwDLD)) cos(nπzwD)

1∫
−1

1∫
−1

K0(
√

un|xD − xwD|)dxwD +
K1(
√

unreD)
I1(
√

unreD)

1∫
−1

I0(
√

un|xD − xwD|)dxwDdxD

] (85)

Further, the effects of wellbore storage and skin can be easily incorporated into the uniform-flux
solution (Equation (84)) and the infinite-conductivity solution (Equation (85)), and we can get the
following expressions [40,41]:

ψ̃UFFLX
HW f DSS(xD, yD, zD, zwD, reD, hD, LD, CD, S, s) =

sψ̃UFFLX
HW f D (xD ,yD ,zD ,zwD ,reD ,hD ,LD ,s)+S

s
{

1+sCD

[
sψ̃UFFLX

HW f D (xD ,yD ,zD ,zwD ,reD ,hD ,LD ,s)+S
]} (86)

and:

ψ̃INFCD
HW f DSS(zwD, reD, hD, LD, CD, S, s) =

sψ̃INFCD
HW f D (zwD, reD, hD, LD, s) + S

s
{

1 + sCD

[
sψ̃INFCD

HW f D (zwD, reD, hD, LD, s) + S
]} (87)

respectively.
By applying the Stehfest numerical algorithm [42] to Equations (86) and (87), the pressure solution

in real domain can be obtained. Then, with Pedrosa transform, Equation (48), we can get the pressure
response, including the uniform-flux and infinite-conductivity case, for a horizontal well incorporating
geomechanics in the naturally fractured reservoir:

pUFFLX
HW f DSS(xD, zwD, reD, hD, LD, CD, S, εD, tD) = − 1

εD
ln
[
1− εDψUFFLX

HW f DSS(xD, zwD, reD, hD, LD, CD, S, tD)
]

(88)

and:

pINFCD
HW f DSS(zwD, reD, hD, LD, CD, S, εD, tD) = − 1

εD
ln
[
1− εDψINFCD

HW f DSS(zwD, reD, hD, LD, CD, S, tD)
]

(89)

According to the definition of dimensionless elasticity parameter εD, when εD = 0 it means
no consideration of stress sensitivity in the model. We can obtain the pressure solution under this
condition by calculating the limit in Equations (88) and (89) as εD approaches zero:

pUFFLX
HW f DSS(xD, zwD, reD, hD, LD, CD, S, εD = 0, tD) = ψUFFLX

HW f DSS(xD, zwD, reD, hD, LD, CD, S, tD) (90)

and:

pINFCD
HW f DSS(zwD, reD, hD, LD, CD, S, εD = 0, tD) = ψINFCD

HW f DSS(zwD, reD, hD, LD, CD, S, tD) (91)

6. Results and Discussion

6.1. Verification of the Solution

de Carvalho and Rosa [3] presented an infinite-conductivity solution for a horizontal well in
the naturally fractured reservoir, but did not consider the effect of the geomechanics, which just
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corresponds to εD = 0 in our model. Note that their pressure was calculated at a fixed point along the
wellbore, xD = 0.68, by using the uniform-flux solution. They presented a series of type curves for
a horizontal well in a dual-porosity reservoir. Thus, we can let xD = 0.68 in our uniform-flux solution,
Equation (90), to verify our uniform-flux solution.

Due to the difference of the reference length in dimensionless variables between two models,
a reasonable transformation of the parameters value should be conducted before the verification.
Base on the data presented in the work of de Carvalho and Rosa [3], the parameter values used for
the verification are listed in Table 2. Meanwhile, the reservoir boundary in their model is assumed
infinite, which is different from our outer boundary. Therefore, we can only select the result in the
early time (tD ≤ 103) to verify our solution. As shown in Figure 3, there is an excellent agreement
on pressure response at xD = 0.68 between our result and the work of de Carvalho and Rosa [3] for
different parameters value. It is also verified that the method in this work can calculate accurately.

Table 2. Basic data used for verification of the model.

Parameters in this Work Values Parameters in Figure 5 of SPE 18302 [3] Values

ω 100~10−4 ω∗ 100~10−4

λ 10−9 λ∗ 10−3

reD 100,000 reD
∗ infinite

hD 200 hD
∗ 0.2

xD 0.68 xD
∗ 0.68

yD 0.001 yD
∗ 0.001

rwD 0.001 rwD
∗ 0.001

zwD 0.5 zwD
∗ 0.5

CD 0 CD
∗ 0

S 0 S∗ 0
LD 5
εD 0
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6.2. Effect of Dimensionless Elasticity Parameter on Horizontal Wellbore Pressure-Drop Profiles

For the uniform-flux case, pressure drop is not uniform along the wellbore face. By using the
data in Table 3, Figure 4 discusses the effect of dimensionless elasticity parameter on the wellbore
pressure-drop profiles at different time.

Table 3. Basic data used in Figure 4.

Parameters Values Parameters Values

ω 0.1 rwD 0.00025
λ 0.003 zwD 0.5

reD 4 LD 16
hD 250 CD 0.5
xD −1~1 S 0.25
yD 0 εD 0, 0.01, 0.05, 0.1
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at different time. (a) tD = 103; (b) tD = 105; (c) tD = 107; (d) tD = 109.

Figure 4a,b present the pressure drop profiles with respect to horizontal wellbore position xD
from −1 to 1 for different εD at tD = 103, 105, respectively. We can find that the curves for different
εD almost overlap together in each figure, which means the effect of stress sensitivity is very weak
and can be neglected at small time. Meanwhile, the pressure drop profiles in Figure 4a,b are close to
a horizontal line and only the pressure drop at both ends of the wellbore is slightly lower than that
at the rest of the wellbore. It demonstrates that the ends of the wellbore cause a lower pressure drop
under the uniform-flux condition. Figure 4c shows the horizontal wellbore’s pressure-drop profiles
at tD = 107. It can be seen from Figure 4c that when the dimensionless production time increases
to 107, the pressure drop at the same wellbore position xD slightly increases with the increase of εD,
so a stronger stress sensitivity will lead to a larger pressure drop at this time. All the pwD − xD curves
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in Figure 4c are symmetric around the vertical line, xD = 0, and form a bow shape, and a farther
position away from the center of the wellbore corresponds to a lower pressure drop. Figure 4d presents
the pressure drop profiles for different εD at tD = 109. Like the profiles in Figure 4c, the pwD − xD
curve for εD = 0.1 in Figure 4d also looks like a bow. The pwD − xD curves for εD = 0, 0.01 and 0.05
should also be like a bow, but their shapes are not very obvious due to a large scale of pwD. Compared
with Figure 4c, as εD increases, the pressure drop at the same wellbore position xD increases more
obviously at this time. Overall, we can conclude that the effect of dimensionless elasticity parameter on
the pressure-drop profiles becomes stronger with the stress sensitivity increasing and the production
going on, for the reason of a larger fracture permeability reduction from the closure of natural fractures.

6.3. Comparison with a Model Not Considering Geomechanics

Since we have established a model of a horizontal well incorporating geomechanics, it is necessary
to make a comparison with a model not considering geomechanics. In this study, let εD equal to 0.1
and 0, which represent the model incorporating and not incorporating geomechanics, respectively.
Based on the infinite-conductivity solutions, Equation (89) and (91), Figure 5 presents the comparison
result of the wellbore pressure and pressure derivative curves of these two models.
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Figure 5. Comparison of horizontal wellbore pressure incorporating geomechanics (εD 6= 0) and not
incorporating geomechanics (εD = 0).

As shown in Figure 5, in the early- and middle-flow periods (tD ≤ 10−1), the transient pressure
almost overlap together, and the pressure derivative curves almost overlap together, too. As the
production time gets longer, especially in the late-flow period, the pressure drop of the model
incorporating geomechanics becomes larger than that not incorporating geomechanics, so does the
pressure derivative. It can be interpreted by that for the model incorporating geomechanics, the closure
of natural fractures gets more and more serious, and more reservoir energy will be consumed to
produce the same amount of oil.

6.4. Flow Regime Recognition on Transient Wellbore Pressure Curves

The identification of flow regimes is one of the most important procedures of transient pressure
analysis. Similarly, we use the infinite-conductivity solution to analyze this case’s flow regimes. Figure 6
shows the transient pressure and pressure derivative responses of a horizontal well incorporating
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geomechanics in a naturally fractured reservoir (εD = 0.05) and nine typical flow regimes can be
observed in Figure 6:

(1) Pure wellbore storage regime. At small dimensionless time, flow is mainly governed by the
wellbore storage effect, and the transient pressure and pressure derivative curves align in
an upward straight line with a unit slope.

(2) First transition flow. This regime is marked by a hump on the pressure derivative curve.
(3) Radial flow in the natural fracture system. A short radial flow may occur after a transition

flow if the reserve ratio in the natural fracture system is large enough. As presented in Figure 6,
the pressure derivative curve in this regime is a horizontal line with a value of “1/(4LD)” and
the corresponding streamline distribution in the reservoir is shown in Figure 7a.

(4) Inter-porosity flow. This regime represents the cross flow from matrix system to natural fracture
system. The pressure derivative curve in this regime shows a concave-shaped segment, which is
the main characteristic of naturally fractured reservoirs.

(5) Radial flow in the compound system. When the inter-porosity flow finishes, fluid flow in
two systems reaches a dynamic balance, and a second radial flow begins to occur in the compound
system. A horizontal line with a value of “1/(4LD)” can be also observed on the pressure
derivative curve in this regime and its streamline distribution is the same with that in the third
flow regime (as shown in Figure 7a).

(6) Linear flow in the compound system. In this regime, the dominating flow is linear flow in the
horizontal plane, and the streamlines are parallel to the upper and lower boundary (as shown in
Figure 7b). Its pressure derivative curve shows an upward straight line with a half slope.

(7) Second transition flow. As the drainage area expands, a second transition flow may occur in the
reservoir before it reaches a pseudo-radial flow in the horizontal plane.

(8) Pseudo-radial flow in the compound system. When reservoir radius is large enough,
a pseudo-radial flow in the horizontal plane may be formed after the second transition flow
(as shown in Figure 7c). Unlike the conventional reservoir, due to the effect of stress sensitivity,
the pressure derivative curve is not a horizontal line with a value of “0.5” but exhibits
an upward tendency.

(9) Pseudo-steady flow in the compound system. When the transient wave reaches the outer
boundary, both the transient pressure curve and pressure derivative curves go up rapidly,
and their slopes are greater than “1” due to stress sensitivity (as shown in Figure 6).
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6.5. Analysis of Parameters’ Influence on Transient Pressure Behavior

In this section, we investigated several important parameters’ influence on the transient response
of the proposed model in this work. Note that these investigations are based on the infinite-conductivity
solution proposed in this work. The influence of wellbore storage coefficient, skin factor, interporosity
flow coefficient and fracture storage capacity, has been discussed in the literature, and will not be
further discussed here.

6.5.1. Dimensionless Elasticity Parameter

Figure 8 shows the influence of dimensionless elasticity parameter εD on the transient response. Its
influence is mainly concentrated in the late-flow period. For the case not incorporating geomechanics
(εD = 0), the pressure derivative curve is a horizontal line with a value of 0.5 in the pseudo-radial
regime, and is an upward straight line with a unit slope in the pseudo-steady flow regime. However,
when the geomechanics is incorporated, the pressure derivative curve bends upward in the late-flow
period. It can be concluded that with the increase of εD, the slope of the derivative curve in the
late-flow period becomes larger, which means a greater pressure drop.
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6.5.2. Dimensionless Reservoir Radius

Figure 9 presents the effect of dimensionless reservoir radius reD on the transient pressure behavior.
Due to the closed boundary, this parameter also mainly influences the oil flow in the late-flow period,
and a smaller dimensionless reservoir radius will cause the final pseudo-steady flow to occur earlier.
We also can see in Figure 9 that in the pseudo-steady flow regime, at the same production time, in terms
of the pressure and pressure derivative, their differences between the models incorporating and not
incorporating geomechanics, are increasing significantly with the decrease of dimensionless reservoir
radius. It can be interpreted by that, with the production going on, the continuous fracture closure is
more serious for the reservoir with a smaller dimensionless reservoir radius, and the effect of stress
sensitivity on the transient response becomes stronger, too.
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6.5.3. Dimensionless Reservoir Thickness

Figure 10 demonstrates the effect of dimensionless reservoir thickness hD on transient pressure
dynamics of a horizontal well in the naturally fractured reservoir. Obviously, it has a great influence on
the early-flow period, including the following regimes: first transition flow, radial flow in the natural
fracture system, inter-porosity flow and radial flow in the compound system, but has no influence on
the middle- and late-flow periods. There is an implicit relationship between dimensionless wellbore
radius, wellbore length and reservoir thickness, rwDLDhD = 1. In this study, let hD equal to 200,
250 and 400, and the corresponding LD is 300, 400 and 500, respectively. As shown in Figure 10,
the concave-shaped segment gradually uplifts with the increase of dimensionless reservoir thickness
and the value of the pressure derivative in two radial flow regimes is 1/80, 1/64 and 1/40, respectively.
However, the change of dimensionless reservoir thickness does not enhance or weaken the effect of
stress sensitivity like dimensionless radius reservoir and its effect will not extend to the late-flow period.
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6.5.4. Dimensionless Horizontal Wellbore Length

Figure 11 shows the effect of dimensionless horizontal wellbore length LD on transient pressure
behavior. As presented in Figure 11, the influence of dimensionless wellbore length is similar to
that of dimensionless reservoir thickness on the transient pressure behavior and this parameter also
mainly affects the early-flow period. Their differences lie in that the concave-shaped segment gradually
descents with the increase of dimensionless wellbore length.
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6.5.5. Dimensionless Wellbore Vertical Position

Figure 12 shows the effect of dimensionless wellbore vertical position zwD on transient response.
This parameter only influences the duration and occurrence of radial flow in the compound system.
Similarly, the change of wellbore vertical position will not enhance or weaken the effect of stress
sensitivity and its impact does not extend to the late-flow period.
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pressure behavior.

6.6. Analysis of the Influence of Geomechanical Parameters in North Truva Field

Here we take KT-I formation of North Truva field in Kazakhstan, a typical fractured formation,
as an example to understand the influence of geomechanical parameters on the elasticity parameter
and transient response. Note that the elasticity parameter ε is dimensional and its unit is Pa−1.

6.6.1. Influence of Geomechanical Parameters on the Elasticity Parameter

Considering the data of KT-I formation presented in Table 4, we focused on two important
geomechanical parameters, Young’s modulus E and Poisson’s ratio ν, to investigate their influence on
the elasticity parameter ε.

Table 4. Basic data of KT-I formation in North Truva field.

Formation Parameters Values

Poisson’s ratio 0.15–0.45
Young’s modulus 1.0 × 1010–9.5 × 109 Pa
Fracture porosity 0.015–0.055

Fracture compressibility 2.39 × 10−8 Pa−1

Oil compressibility 2.26 × 10−9 Pa−1

According to the definition of elasticity parameter ε in Equation (28), we calculate the valve of
elasticity parameter for different Young’s modulus at φ f = 0.015, 0.035 and 0.055 respectively, and then
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plot the curves of ε− E (as shown in Figure 13a). It can be observed that for a given fracture porosity,
as the Young’s modulus of reservoir rock increases, the elasticity parameter first decreases sharply,
and then decreases slowly, and finally decreases very slowly and even this slight decrease can be
neglected. Similarly, we plot the curves of ε− ν at φ f = 0.015, 0.035 and 0.055 (as shown in Figure 13b).
We can see that the elasticity parameter linearly decreases with the increase of Poisson’s ratio at a given
fracture porosity. Combining Figure 13a with Figure 13b, it can be concluded that under the same
values of Young’s modulus and Poisson’s ratio, the elasticity parameter will decrease with the increase
of fracture porosity. Using the properties of KT-I formation, its elasticity parameter ε ranges from
8× 10−8 Pa−1 to 1.1× 10−7 Pa−1.
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Figure 13. Effect of geomechanical parameters on elasticity parameter (ε) in North Truva field.
(a) Young’s modulus (E) (co = 2.26× 10−9 Pa−1, c f = 2.39× 10−8 Pa−1, v = 0.203); (b) Poisson’s ratio
(ν) (co = 2.26× 10−9 Pa−1, c f = 2.39× 10−8 Pa−1, E = 2.17× 1010 Pa−1).
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6.6.2. Influence of Geomechanical Parameters on the Transient Response of H519

We select a horizontal well in KT-I formation, H519, to observe the influence of Young’s modulus
and Poisson’s ratio on this horizontal well’s transient pressure behavior. The reservoir and fluid
parameters used to calculate the transient pressure are presented in Figures 14 and 15, respectively.
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As demonstrated in Figure 14, for H519 in North Truva field, when Young’s modulus increases
from 1.0× 10−10 Pa−1 to 4.0× 10−10 Pa−1, and then to 7.0× 10−10 Pa−1, the early- and middle-time
transient responses of this horizontal well are almost the same, but a slight difference between them
occurs in the late-time flow period. Through the enlarged image of the late-time curves, we can see
that both the transient pressure and pressure derivative in the pseudo-steady flow regime decrease
with the increase of Young’s modulus. Similarly, from Figure 15, the early- and middle-time transient
response is also not affected by the change of Poisson’s ratio, and when Poisson’s ratio varies from 0.15
to 0.45, the transient pressure and pressure derivative in the late-time flow period gradually decrease.
Overall, the transient response of H519 has a slight negative correlation with Young’s modulus and
Poisson’s ratio in the late-time flow period, especially in the pseudo-steady flow regime.
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7. Conclusions

This paper presents a new model of a horizontal well incorporating geomechanics in the naturally
fractured reservoir. The analytical pressure solutions for the uniform-flux and infinite-conductivity
horizontal wells including Young’s modulus and Poisson’s ratio are derived by using Pedrosa
transform, perturbation technique and spatial integral method. Based on this study, several important
conclusions are obtained:

(1) For a uniform-flux horizontal well, the effect of dimensionless elasticity parameter on the
pressure drop profiles becomes stronger as the production time gets longer, due to a larger
fracture permeability reduction caused by the closure of natural fractures. When the effect of
dimensionless elasticity parameter is strong enough, the profile looks like a bow, and a farther
position away from the center of the horizontal wellbore corresponds to a lower pressure drop.

(2) For an infinite-conductivity horizontal well, while the production going on, especially in the
late-flow period, the pressure drop of the model incorporating geomechanics becomes larger than
that not incorporating geomechanics, and more reservoir energy will be consumed to produce
the same amount of oil.

(3) Nine typical flow regimes can be observed on the transient response of the infinite-conductivity
horizontal well incorporating geomechanics. The differences between the models incorporating
and not incorporating this property lie in the final flow regimes. Due to the stress sensitivity, the
pressure derivative curve is not a horizontal line with a value of “0.5” but exhibits an upward
tendency in the pseudo-radial flow in the compound system, and in the pseudo-steady flow
regime, both the transient pressure curve and the pressure derivative curve rise quickly and their
slope is greater than “1”.

(4) Analysis of parameters’ influence on the transient pressure behavior shows that dimensionless
elasticity parameter and dimensionless reservoir radius mainly affect the late-flow period,
but dimensionless reservoir thickness, dimensionless wellbore length and dimensionless wellbore
vertical position mainly influence the early-flow period. There is a larger pressure drop with the
increase of dimensionless elasticity parameter or the decrease of dimensionless reservoir radius
in the late-flow period.

(5) For the KT-I formation of the North Truva field, the elasticity parameter decreases with the
increase of Young’s modulus or Poisson’s ratio at a given fracture porosity and this parameter
ranges from 8× 10−8 Pa−1 to 1.1× 10−7 Pa−1 in this formation. Calculation results show that the
transient response of H519 has a slight negative correlation with Young’s modulus and Poisson’s
ratio in the late-flow period, especially in the pseudo-steady flow regime.
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Nomenclature

Field variables
a matrix block side length, m
b fracture width, m
∆b f fracture width change caused by fracture compressibility, m
∆bm fracture width change caused by matrix elasticity, m
k f permeability of natural fracture system, mD
km permeability of matrix system, mD
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Field variables
µ fluid viscosity, cp
B formation volume factor, dimensionless
α shape factor, m−2

φ f porosity of natural fracture system, fraction
φm porosity of matrix system, fraction
φ f 0 porosity of natural fracture system under the initial condition, fraction
φm0 porosity of matrix system under the initial condition, fraction
c0 oil compressibility, Pa−1

c f fracture compressibility, Pa−1

cm matrix compressibility, Pa−1

v Poisson’s ratio, dimensionless
v average velocity, m/s
E Young’s modulus, Pa
ρ fluid density, kg/m3

p reservoir pressure, Pa
pi initial reservoir pressure, Pa
p f pressure in natural fracture system, Pa
pm pressure in matrix system, Pa
∆ps pressure drop caused by skin effect, Pa
∆p f pressure change in natural fracture system, Pa
∆pob overburden pressure, Pa
t time, s
q total wellbore flow rate, kg/s
q∗ inter-porosity flow from matrix to natural fracture, kg/s
qpoint(t) production rate of the point sink, kg/s
C wellbore storage coefficient, m3/Pa
ω fracture storage capacity, fraction
λ inter-porosity flow coefficient, dimensionless
ε elasticity parameter, Pa−1

x distance in the x axis, m
y distance in the y axis, m
z distance in the z axis, m
xw distance of a point sink in the x axis, m
yw distance of a point sink in the y axis, m
zw distance of a point sink or a horizontal well in the z axis, m
r reservoir radius distance, m
rw wellbore radius, m
re reservoir boundary radius, m
h reservoir thickness, m
L half-length of horizontal wellbore, m
ζ infinitesimal vertical distance, m
Dimensionless variables: real domain
p f D dimensionless pressure in natural fracture system
pmD dimensionless pressure in matrix system
ψ f D dimensionless pressure in natural fracture system after Pedrosa transform

ψ f Di
i-order dimensionless pressure in natural fracture system after perturbation transform, i =
0, 1, 2, 3 . . .

tD dimensionless time
xD dimensionless distance in the x axis
yD dimensionless distance in the y axis
zD dimensionless distance in the z axis
rD dimensionless radius distance
xwD dimensionless distance of a point sink in the x axis, m
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Dimensionless variables: real domain
ywD dimensionless distance of a point sink in the y axis, m
zwD dimensionless distance of a point sink or a horizontal well in the z axis, m
rwD dimensionless wellbore radius
reD dimensionless reservoir boundary radius
zwD dimensionless z-coordinate of horizontal wellbore
LD dimensionless length of horizontal wellbore
hD dimensionless reservoir thickness
ζD dimensionless infinitesimal vertical distance
εD dimensionless elasticity parameter
CD dimensionless wellbore storage coefficient
S skin factor
qpointD(tD) dimensionless production rate of point sink
Dimensionless variables: Laplace domain
s dimensionless time variable in Laplace domain
p̃ f D dimensionless pressure in natural fracture system in Laplace domain
p̃mD dimensionless pressure in matrix system in Laplace domain
ψ̃ f D0 i-order dimensionless pressure in natural fracture system in Laplace domain
Special functions
K0(x) modified Bessel function (2nd kind, zero order)
K1(x) modified Bessel function (2nd kind, first order)
I0(x) modified Bessel function (1st kind, zero order)
I1(x) modified Bessel function (1st kind, first order)
Special subscripts
f fracture property
m matrix property
w horizontal wellbore
D dimensionless variable
∼ Laplace transform
− Fourier transform
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