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Abstract: As a result of the high efficiency of ice-melting and the small power supply capacity,
DC ice-melting devices are widely used in relation to transmission lines in the power grid.
However, it needs to consume reactive power when ice-melting, and voltage fluctuation of the
substation may be caused when the demand for reactive power is large. It also generates a large
number of 5th and 7th harmonics when ice-melting. In this paper, combined with the demand for
ice-melting for transmission lines and the dynamic reactive power of substations, a low-harmonic DC
ice-melting device capable of simultaneous reactive power compensation is studied. The function of
ice-melting and reactive power compensation can be operated simultaneously and the rectifier’s main
harmonics can be eliminated. The simulation and experimental research on the device was carried out
in the 500 kV Chuanshan substation. The actual ice melting was carried out on the 500 kV Chuansu I
line and took only 68 min to melt the ice. The 500 kV bus voltage had no negative deviation, and the
positive deviation decreased from +3.09% to +1.57% within 24 h of testing. The results prove the
feasibility of the proposed DC ice-melting device in this paper.

Keywords: low-harmonic DC ice-melting device; transmission line; voltage fluctuation; harmonic;
dynamic reactive; substation’s voltage stability

1. Introduction

Winter icing of transmission lines is one of the natural disasters of the power system. The rare
long-term freezing disaster in early 2008 caused serious damage to the power grid in southern China,
resulting in a large number of tower collapses, line interruptions, substation outages, and so on,
which caused huge losses in many southern provinces of China.

For transmission line icing, manual deicing or improving line anti-icing designs were the main
methods up until recently, but efficiency was low or investment was high. In order to cope with
the impact of more and more frequent ice disasters on power system facilities, research into various
ice-melting technologies has been receiving more and more attention [1–5].

Among them, DC current ice-melting has the advantages of high efficiency, a wide ice-melting
range for different transmission lines, and small power supply. A previous study [6] proposes
a diode-based uncontrolled rectifier DC ice-melting device, which only has the function of
ice melting, and which is only used during the covering-ice period of transmission lines in winter.
However, it has low utilization rate, and consumes system reactive power when ice-melting,
which affects voltage stability. Another study [7] proposes a Static Var Compensator (SVC) type DC
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ice-melting device, which can run in two modes: DC ice-melting or SVC reactive power compensation.
However, the ice-melting and reactive power compensation cannot run at the same time and it cannot
meet the reactive demand of ice melting. Further more, the harmonics of ice-melting are large,
and a huge filter device is needed. Further studies [8–12] propose a new modular multi-level
DC ice-melting device, which combines the dynamic reactive power compensation capability of
a chain Static Var Generator (SVG) with the four-quadrant operation capability of a half-bridge
modular multi-level converter (MMC). It can output DC voltage at the same time to meet the DC
ice-melting demand, but the reactive power compensation and DC ice-melting need to be designed in
the same capacity. The cost is high, and it is still in the theoretical research stage.

In view of the above problems associated with the ice-melting device, this paper proposes a
low-harmonic DC ice-melting device that can compensate for simultaneous reactive power when
ice melting. The harmonics injected into the power grid are small without a filtering device when
ice melting. The device itself achieves a reactive power balance ensuring grid voltage stability.
The paper is organized as follows:

Firstly, the topology of the low-harmonic DC ice-melting device with simultaneous reactive power
compensation is proposed. The SVG and the ice-melting rectifier share the ice-melting transformer,
which eliminates the SVG’s connection reactance and reduces the SVG’s output voltage and
the insulation design. The design enables simultaneous operation of ice melting and reactive
power compensation.

Secondly, the output voltage ripple characteristics of the low-harmonic DC ice-melting device
is analyzed. The 12-pulse rectification structure is adopted, and the ripple factor value is only 0.994,
which effectively reduces the output DC current fluctuation.

Thirdly, using the Fourier series, the harmonics injected into the power grid are mainly 5th and
7th harmonic currents when ice-melting. Increasing the number of power modules and the triangular
carrier frequency can effectively eliminate the SVG’s lower harmonic.

Fourthly, injecting low-order harmonic multi-carrier phase-shift modulation algorithm which
injects 5th and 7th harmonics into a modulated wave is put forward. Using the simultaneous operation
of ice melting and reactive power compensation, the algorithm can eliminate the harmonic injected
into the grid when ice melting.

Finally, the simulation and experimental research on the low-harmonic DC ice-melting device
which was built in the 500 kV Chuanshan substation is carried out. The results verify that DC
ice-melting has low-harmonic characteristics and that the reactive power compensation function can
effectively improve grid voltage stability.

2. Low-Harmonic DC Ice-Melting Device Structure

2.1. Overall Topology

The structure of the low-harmonic DC ice-melting device capable of simultaneous reactive power
compensation is shown in Figure 1. It is mainly composed of an ice-melting transformer, SVG1, SVG2,
Rectifier1, Rectifier2, and Isolation switch. SVG1 and SVG2 are connected to the two low-voltage
winding sides of the transformer which can effectively reduce the SVG’s output voltage. The SVG can
absorb harmonics generated on the input side when the rectifier is running.

The SVG and the transformer realize dynamic reactive power compensation. The SVG can provide
fast and flexible dynamic reactive power for the power grid, support the grid voltage especially
when ice-melting, and improve the stability and power quality of the power system [13–15]. In the
structure shown in Figure 1, the leakage reactance of the transformer is used as a connection reactance
to replace the special reactor connected to the SVG and the grid, reducing the land occupation and cost
of the SVG. The low-harmonic DC ice-melting device has the characteristics of optimized configuration
of ice-melting capacity and reactive power compensation capacity. The capacity of each component
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of the ice-melting device can be configured according to the ice-melting and dynamic reactive power
requirements of the substation avoiding the excessive design of the ice-melting or reactive capacity [16].
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Figure 1. Structure diagram of low-harmonic DC ice-melting device.

The topology shown in Figure 1 can make full use of the transformer, providing dynamic reactive
power support for the grid system during daily operation. The SVG can also eliminate harmonics and
reactive power generated by the rectifier during the ice-melting operation mode.

2.2. SVG Structure

The SVG structure of the low-harmonic DC ice-melting device is shown in Figure 2. The SVG1
and SVG2 are connected to the triangular and star-shaped windings of the transformer’s sub-edge
without special connection reactance which is replaced by the transformer’s leakage reactance.

In order to meet the requirements of the connection between SVG and power grid, the value of
the transformer leakage reactance range is 8–13%. The calculation formula is as shown in Equation (1):

Ukz% =
49.6 f · IWΣDρK

etH × 106 , (1)

where f —Frequency (Hz); I—Rated current (A); W—Coil number (Turn); et—Every potential (V);
H—Average reactance height of two coils (m); ΣD—Magnetic flux leakage area (m2);
ρ—Rockwell coefficient; K—Additional reactance coefficient, generally take 1.

The SVG’s output voltage is connected to the grid after being boosted by the transformer,
which reduces the SVG’s insulation voltage design difficulty [17,18], reduces the number of each phase
power modules connected in series, and simplifies the design of the control system. In order to improve
the reactive output current and meet the demand for large-capacity reactive power compensation
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above 100 MVar, the SVG’s power modules adopt dual IGBT (Insulated Gate Bipolar Transistor)
parallel structure. The parallel IGBT adopts the same control pulses.Energies 2018, 11, x FOR PEER REVIEW  4 of 18 
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3. Output Characteristics of Low-Harmonic DC Ice-Melting Device

3.1. Output Voltage Ripple Characteristicsof Rectifier

The low-harmonic DC ice-melting device uses two 6-pulse rectifier bridges in
series or parallel configuration. Each 6-pulse rectifier bridge consists of several diodes,
damping absorption resistors, and capacitors. The number of series diodes in each bridge
arm is proportional to the input voltage. The two 6-pulse rectifier bridges realize series or parallel
12-pulse DC voltage output through the switch K1, K2, and K3. The output DC voltage is as shown in
Equation (2):

Ud =
1

2π

∫ π
2 +

π
m

π
2 −

π
m

√
2U2L sinωtd(ωt) =

m
√

2
π

U2L sin
π

m
, (2)

In Equation (2), m is the number of DC voltage pulse waves output from the rectifier. U2L is the
RMS (Root Meam Square) value of the AC voltage which is input to the rectifier.

The output voltage of the 12-pulse rectifier is as shown in Equation (3) where U2 is the RMS value
of the input AC voltage of the rectifier.

ud0 = (1/
π

12
)
∫ π

24

− π24

√
2U2 cosωtd(ωt) =

√
2U2, (3)

Perform Fourier series decomposition on Equation (3):

ud0 = Ud0 +
∞

∑
n=mk

bn cos nωt = Ud0[1−
∞

∑
n=mk

2 cos kπ
n2 − 1

cos nωt], (4)
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where k = 1, 2, 3 . . . . Ud0 takes the form:

Ud0 =
√

2U2
m
π

sin
π

m
, (5)

bn takes the form:

bn = −2 cos kπ
n2 − 1

Ud0, (6)

The voltage ripple factor γu is the ratio of the effective value of the harmonic component of the
output DC voltage ud0 to the average value Ud0 of the rectified voltage, namely:

γu =
UR
Ud0

, (7)

In Equation (7) UR is equal:

γu =
UR
Ud0

, (8)

where U is equal:

U =

√√√√ m
2π

∫ π
m

− πm
(
√

2U2 cosωt)
2
d(ωt) = U2

√
1 +

sin 2π
m

2π
m

, (9)

According to the Equations (4)–(9) we can get the following:

γu =
UR
Ud0

=
[− 1

2 −
m
4π sin 2π

m + (m
π )

2 sin2 π
m ]

1
2

m
π sin πm

, (10)

The ripple factor values of the output voltages of different pulse wave rectifiers obtained by
Equation (10) are shown in Table 1.

Table 1. The voltage ripple factor values of different pulse number m.

m γu (%)

3 18.27
6 4.18

12 0.994
∞ 0

It can be seen from Table 1, the more the pulse wave number of the rectifier, the smaller the output
voltage ripple value. The 12-pulse rectification structure of the ice-melting device can greatly reduce
the voltage ripple factor value and reduce the fluctuation of the output DC current, which is useful to
facilitate line ice-melting.

3.2. Output Harmonic Characteristics of Ice-Melting

In Figure1, since the inductance component of the impedance Zd of the ice-transmission line is
very large, the waveform of the DC output current is basically straight, and the input currents of the
upper and lower 6-pulse rectifier bridges are rectangular waves, as shown in Figure 3. It is shown that
each phase is turned on by 120◦, and the current phases of the corresponding phases of the upper and
lower bridges are different by 30◦, and the amplitude is Id/2.

The input currents of the two sets of 6-pulse rectifier bridges are decomposed by Fourier series,
and the input current expressions of the two rectifier bridges are respectively:

iayϕ = 2
√

3
π Id

{
sin ωt + ∑k=1,2,···(−1)k

[
1

6k−1 sin(6k− 1)ωt + 1
6k+1 sin(6k + 1)ωt

]}
, (11)
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iadϕ = 2
π Id

{
sin ωt + ∑k=1,2,···

[
1

6k−1 sin(6k− 1)ωt + 1
6k+1 sin(6k + 1)ωt

]}
, (12)
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It can be obtained from Equations (11) and (12): the number of harmonics on the AC side of
the rectifier of the low-harmonic DC ice-melting device is 5, 7, 11, . . . , 6k ± 1 times, k = 1, 2, 3, . . . .
The RMS of the fundamental current and each harmonic are:{

I1 =
√

6
π Id

In =
√

6
nπ Id

, (13)

The RMS value of each harmonic is inversely proportional to the harmonic order. The ratio
of the RMS value to the fundamental value is the reciprocal of the harmonic order. The higher the
harmonic order, the smaller the harmonic amplitude, so the harmonics injected into the grid during the
ice-melting are mainly the 5th and 7th harmonic currents, which are 0.156Id and 0.111Id, respectively.

3.3. Output Harmonic Characteristics of Reactive Power Compensation

In Figure 1, the number of cascaded power modules per phase is N in SVG1 and SVG2. In order
to increase the reactive output current, each power module adopts a dual IGBT parallel structure,
and the output phase voltage is Fourier-decomposed:

Uug
Udc

= Nm sinωt+∑∞
n=1

(
4

nπ

)
cos
( nπ

2
)

sin
[mnπ

2 sinωt
]
·[cos nθ1 . . . + cos nθN ] cos(nωct)+

∑∞
n=1

(
4

nπ

)
cos
( nπ

2
)
·sin

[mnπ
2 sinωt

]
[sin nθ1 . . . + sin nθN ] sin(nωct),

(14)

where Udc is the power module DC bus voltage, m is the modulation degree, ω is the sinusoidal
modulation wave angle frequency, ωc is the carrier triangle wave angular frequency, and θk (k = 1, 2,
. . . , N) is the power module carrier phase-shifted angle.

When n is an odd number, cos
( nπ

2
)
= 0.

When n is even, take the carrier ratio: kc = fc/ f .
fc is the triangular carrier frequency and f is the sinusoidal modulation wave frequency.

sin(xsiny) = 2 ∑∞
l=1 J2l−1(x) sin(2l− 1)y, (15)

where Jn is an n-time Bessel function.
According to Bessel’s Equation (15), Equation (14) can be expressed as:

Uug
Udc

= Nm sinωt + ∑∞
n=1

(
4

nπ

)
cos
( nπ

2
)

∑∞
k=1 Jk

(mnπ
2
)
·[Asin(k± nkc)ωt + 2Bsin(kωt) sin(nωct)], (16)

among them: {
A = cos nθ1 + cos nθ2 . . . + cos nθn

B = sin nθ1 + sin nθ2 . . . + sin nθn
, (17)

In the Equation (17), θk (k = 1, 2, . . . , N) is a carrier phase-shifted angle. When the carrier
phase-shifted PWM (Pulse Width Modulation) technique is adopted, the carrier angle of each power
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module is sequentially increased by π/N. It is not difficult to prove “B = 0” because “n = 2, 4, 6, . . .
” and “A = 0” when “n < 2N”. It can be seen that the output voltage Uug/Udc will no longer contain
“2Nkc ± 1” or less harmonics. Therefore, as the number N of cascaded power modules per phase
increases and the triangular carrier frequency fc increases, the low harmonics of SVG1 and SVG2 can
be effectively eliminated [19–21].

4. Injection Low-Order Harmonic Multi-Carrier Phase-Shifted Modulation Algorithm

In high-power equipment, the switching frequency of power electronics devices is so low
that good control performance can’t be obtained with a single converter. In order to overcome
this problem, multi-carrier phase-shifted modulation algorithms were researched. A multi-carrier
phase-shifted modulation algorithm is the combination of the multi-modular technique and SPWM
(Sine Pulse Width Modulation) technique. The high equivalent switching frequency can be obtained
with low switching frequency devices. This technique improves the equivalent switching frequency
through the counteraction of lower order harmonics though not simply through processing the
harmonic from lower order to higher order to get a perfectly performing harmonic feature with
no filter. The American Robincon Company first invented the technology and applied for a patent
(P.W.Hammond. Medium voltage PWM drive and method. U.S. Patent 5 625 545, April 1997).

In the multi-carrier phase-shifted modulation algorithm of the SVG with cascaded power module,
the DC voltage utilization of the in-phase modulation algorithm is the highest, and the practical
application is the most extensive. When the in-phase modulation algorithm is used, the modulation
waves of the left and right bridge arms of each power module in Figure 2 are for:{

f1(t) = m sinωt
f2(t) = −m sinωt

, (18)

The control method of each power module with three-phase AC input and the single-phase
AC output adopts a sinusoidal pulse width modulation method. The power modules of the same
phase have the same carrier frequency, but the phases are sequentially different by 1/N carrier period,
as shown in Figure 4a.

Energies 2018, 11, x FOR PEER REVIEW  8 of 18 

 

0

0.5

1

-0.5

-1
1 2 3 4 5 t/ms

TΔ/N TΔ/N

1 2 N

TΔ/N

 

tpw

t

t
0

0

A

A

TΔ

 
(a) (b) 

Figure 4. Modulation: (a) Carrier phase-shifted modulation (Different colors represent different 

carriers); (b) sine pulse width modulation. 

The formula for calculating the pulse width is: 

1[1 sin ] / 2= +pwt T m t , (19) 

where TΔ is the period of the triangular carrier, m1 is the modulation ratio of the sine wave and the 

triangular wave. 

In each power module of Figure 2, the power devices IGBT S11 and S21 are connected in parallel, 

S12 and S22 are connected in parallel, S13 and S23 are connected in parallel, and S14 and S24 are connected 

in parallel. The two parallel IGBT pulse control signals are the same, and the power module upper 

and lower arms S11 and S12, S13, and S14 pulse control signals are complementary. In order to avoid 

solving complex transcendental equations, the power switching device pulse control signal is 

obtained by using the regular sampling method. The calculation principle is shown in Figure 5a. 

0

0

A

t

t

A

tg

td

θi

TΔ

 

0

0

A

t

t

tg

td

θi

TΔ

A

 
(a) (b) 

Figure 5. Pulse control signal calculation principle: (a) S11; (b) S13. 

In Figure 5a, θi is the angle value of the midpoint sampling time of the triangular wave. 

1(1 sin )
4

= −g i

T
t m  , (20) 

1

3
(1 sin )

4

= +d i

T
t m  , (21) 

The calculation results of Equations (20) and (21) are the offset time between the start and stop 

times of each pulse control signal of S11 in the power module and the corresponding triangle wave 

midpoint. 

In Figure 5b: 

Figure 4. Modulation: (a) Carrier phase-shifted modulation (Different colors represent different
carriers); (b) sine pulse width modulation.

The pulse calculation method of each power module adopting sinusoidal pulse width modulation
methodis shown in Figure 4b.

The formula for calculating the pulse width is:

tpw = T∆[1 + m1 sinωt]/2, (19)

where T∆ is the period of the triangular carrier, m1 is the modulation ratio of the sine wave and the
triangular wave.
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In each power module of Figure 2, the power devices IGBT S11 and S21 are connected in parallel,
S12 and S22 are connected in parallel, S13 and S23 are connected in parallel, and S14 and S24 are connected
in parallel. The two parallel IGBT pulse control signals are the same, and the power module upper
and lower arms S11 and S12, S13, and S14 pulse control signals are complementary. In order to avoid
solving complex transcendental equations, the power switching device pulse control signal is obtained
by using the regular sampling method. The calculation principle is shown in Figure 5a.
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In Figure 5a, θi is the angle value of the midpoint sampling time of the triangular wave.

tg =
T∆

4
(1−m1 sin θi), (20)

td =
3T∆

4
(1 + m1 sin θi), (21)

The calculation results of Equations (20) and (21) are the offset time between the start and
stop times of each pulse control signal of S11 in the power module and the corresponding triangle
wave midpoint.

In Figure 5b:

tg =
T∆

4
(1 + m1 sin θi), (22)

td =
3T∆

4
(1−m1 sin θi), (23)

The calculation results of Equations (22) and (23) are the offset time between the start and
stop times of each pulse control signal of S13 in the power module and the corresponding triangle
wave midpoint.

In order to eliminate the 5th and 7thharmonic currents injected into the grid during the
ice-melting [22–24], the 5th and 7th harmonic voltages are modulated into the power module
modulation wave of SVG1 and SVG2. The harmonic amplitudes are k1 and k2, respectively, so that
the generated harmonic current is equal to the amplitude of the harmonic current injected into grid
when ice-melting, and the direction is opposite. After the 5th and 7th harmonic voltages are injected
into the modulated wave of the left and right bridge arms of each power module, the waveform of the
modulated wave is as shown in Figure 6. The calculation formulas of the modulated wave of the left
and right bridge arms are as shown in Equation (24):{

f1(t) = m sinωt + k1m sin 5ωt + k2m sin 7ωt
f2(t) = −m sinωt− k1m sin 5ωt− k2m sin 7ωt

(24)
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According to Equations (14)–(17) and (24), after the 5th and 7th harmonics are injected, the phase
voltages of each phase of SVG1 and SVG2 are:

Uug = NmUdc(sinωt + k1 sin 5ωt + k2 sin 7ωt) (25)

where k1 and k2 are obtained by detecting the 5th and 7th harmonic currents injected into the grid by
the ice-melting rectifier and performing Fourier decomposition.

The principle of IGBT control pulse generation in each power module of the SVG is shown in
Figure 7 [25–29].
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5. Simulation and Test Results

The 500 kV Chuanshan substation is located in Hengyang City, Hunan Province, China. It is an
important hub substation in southern Hunan Province. In Hunan Power Grid’s extremely large ice
disaster in 2008, several lines of the Chuanshan substation were in a state of suspension, the icing of
each line was serious, and a large area of the inverted tower and broken line appeared. The parameters
of icing lines in the Chuanshan substation are shown in Table 2.

Table 2. Parameters of the icing lines in the Chuanshan substation.

Line Name Voltage Level Wire Type Length (km)

Changchuan line 500 kV 4 × LGJ–400 102
Chuangu line 500 kV 4 × LGJ–500 130.3
Chuansu line 500 kV 4 × LGJ–400 127

Chuanmei line 220 kV 2 × LGJ–500 111
Chuanzhou line 220 kV 2 × LGJ–500 13.1
Chuanzhen line 220 kV 2 × LGJ–400 28
Chuangou line 220 kV 2 × LGJ–300 52
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At the 500 kV voltage level of Hunan Power Grid, it can be found that the area with low voltage
transient instability is concentrated in the south of the Hunan Province. The local voltage distribution
map of southern Hunan is enlarged as Figure 8. A low voltage problem in a steady state and a
voltage instability problem in the disturbed state exist in the southern Power Grid of Hunan Province.
With high-speed rail, electric irons, and other impact loads, the dynamic reactive power demand
is large in the Chuanshan substation. Therefore, it is necessary to install a dynamic reactive power
compensation device of a certain capacity in southern Hunan.
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Combined with the demand for ice-melting of the lines in the Chuanshan substation and
the dynamic reactive demand in southern Hunan, a low-harmonic DC ice-melting device with
simultaneous reactive power compensation was installed in the Chuanshan substation to solve
the problem of dynamic reactive power and line ice-melting at the same time. The ice-melting
capacity is 120 MW, and the reactive power compensation capacity of SVG1 and SVG2 are all 50 MVar.
The ice-melting transformer has a rated capacity of 120 MVA, a rated input voltage of 35 kV, a rated
output voltage of 17.1 kV, and a short-circuit impedance of 15%. The ice-melting rectifier has a
rated capacity of 120 MW, a rated output DC voltage of 21 kV, and a rated output DC current of
5700 A. SVG1 and SVG2 have a rated output voltage of 17.1 kV and a rated output current of 1688 A.
The number of power modules per phase is 20, which is half the number of power modules compared
with the 35 kV grid-connected without a transformer. This greatly improves the stability of the SVG.

5.1. Simulation Results

Using PSCAD (Power System Computer Aided Design)/EMTDC (Electro Magnetic Transient
in DC System) simulation software, the ice-melting and dynamic reactive power compensation
characteristics of the low-harmonic DC ice-melting device installed in the 500 kV Chuanshan substation
were simulated. The transformer was connected with the 35 kV low voltage system bus in the
substation. The simulation results of each function are describing in following subsections:

5.1.1. DC Ice-Melting

Taking the DC ice-melting of the 500 kV Chuangu line as an example, its DC resistance per phase
was 1.88 Ω, the line length was 130.3 km, and the wire type was 2 × LGJ–500. When ice melting,
the A phase and C phase are connected in a series, the output voltage of the ice-melting transformer is
17.1 kV, and the 12-pulse rectifier is connected in parallel by two bridges. During the simulation, it was
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possible to obtain an output DC voltage of the ice-melting device of 18.9 kV, an output DC current
of 5685 A, and the voltage and current waveforms are shown in Figure 9a,b. The ripple factor value
of the output voltage is small in Figure 9a and the output current waveform is smooth in Figure 9b.
The actual output is consistent with the previous theoretical analysis.
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Figure 9. The output waveforms of DC ice-melting: (a) voltage; (b) current.

Figure 10 is a low-order harmonic simulation analysis of the current waveform of the input side
of the ice-melting rectifier when ice-melting. When the rectifier is working, it will generate large 5th
and 7th harmonics on its input side, but it can be seen from Figure 5 that the 5th and 7th harmonics in
the input current are effectively eliminated by the SVG1 and SVG2 connected in parallel to the input
side of the rectifier, and the content is less than 0.5%.
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5.1.2. Output Voltage Waveform of SVG

In order to reduce the amount of calculations for the controller, the carrier frequency is generally
taken as an integral multiple of the fundamental frequency. The single power module’s carrier
frequency is 350 Hz and the output voltage is about 494 V in SVG1 and SVG2. The output three-level
voltage waveform of the single power module is as shown in Figure 11a.
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Arbitrarily selecting five power modules connected in the A phase of SVG1 or SVG2 to simulate,
the output of the eleven-level voltage waveform is as shown in Figure 11b. The output level of SVG is
equal to “2n + 1” where n is the number of power module per phase, n = 1, 2, 3.....

5.1.3. SVG Compensation 35 kV System Reactive

If the capacitive reactive demand of the 35 kV system in the substation is 60 MVar, the reactive
current in the system can be fully compensated when the SVG is put into operation at 0.2 s. Each SVG
outputs reactive power 30 MVar. The system voltage, reactive load current, system reactive current,
SVG1 output current, and SVG2 output current are shown in Figure 12. As can be seen from the figure,
the SVG can effectively compensate the reactive load current to maintain the voltage stability of the
35 kV system voltage.Energies 2018, 11, x FOR PEER REVIEW  13 of 18 
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5.2. Test Results

The low-harmonic DC ice-melting device of the 500 kV Chuanshan substation with simultaneous
reactive power compensation is shown in Figure 13. It consists of a transformer, a rectifier, SVG1,
SVG2, and a cooling system.

On 28 January 2018, the 500 kV Chuansu I line had ice as thick as 50 mm. There was a risk of
an inverted tower and broken line. The low-harmonic DC ice-melting device was used to melt the
ice on lines. The output voltage of the transformer was 17.1 kV. The 12-pulse rectifier adopted two
bridges in parallel. The DC ice-melting current was 4060 A, and the ice-melting voltage was 18.12 kV.
First, the A and C phases were melted in series for about 35 min, and then the B and C phases were
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melted in series which took about 33 min to melt the ice. The output voltage, current and line falling
ice is as shown in Figure 14a when ice-melting.
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voltage waveform.

The output voltage of the ice-melting is shown in Figure 14b. The voltage ripple number
is 12 in each cycle, and the output voltage ripple value is about 0.99, which is consistent with
the theoretical calculation. When ice-melting, SVG1 and SVG2 run in parallel with the injected
low-harmonic multi-carrier phase-shift modulation algorithm. The 5th and 7th harmonic currents
injected into the grid by the rectifier are effectively eliminated as shown in Figure 15.
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The single power module’s carrier frequency is 300 Hz in SVG1 and SVG2, the output voltage is
about 482 V. The output three-level voltage waveform of each power module is as shown in Figure 16a.
The SVG’s A phase output voltage waveform is as shown in Figure 16b.The actual test results are
consistent with the previous simulation results.
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Figure 16. The output voltage waveform: (a) Single power module; (b) one-phase.

When the inductive reactive power requirement of the substation’s power system is reduced
from 80 MVar to 20 MVar, the single SVG output reactive power is reduced from 40 MVar to 10 MVar.
The output current waveforms of the A and C phase are shown in Figure 17a. When the system
inductive reactive power requirement is increased from 20 MVar to 80 MVar, the single SVG output
reactive power is increased from 10 MVar to 40 MVar, and the A and C phase output current waveforms
are as shown in Figure 17b.
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Figure 17. Output two-phase current waveform: (a) 40 MVar to 10 MVar; (b) 10 MVar to 40 MVar.

When the reactive power requirement of the power system changes from 80 MVar sensibility to
−80 MVar capacitive, the single SVG output reactive power is changed from 40 MVar to −40 MVar,
and the A and C phase output current waveforms are shown in Figure 18.

The SVG output reactive response time is less than 10 ms which can well meet the reactive power
demand of power system according to the Figures 17 and 18.

After the low-harmonic DC ice-melting device in Chuanshan substation was put into operation,
the power quality of Chuanshan substation was tested for 24 h using the power quality tester according
to the test procedures. The 500 kV bus voltage had no negative deviation, and the positive deviation of
500 kV bus voltage was about 0.80–2.0% within 24 h of testing, as shown in Figure 19. The ninety-five
percent probability of the positive deviation value (phase B) was about 1.57%, which was 1.52% lower
than the 3.09% when there was no timely reactive power compensation at runtime.

So the low-harmonic DC ice-melting device capable of simultaneous reactive power compensation
can effectively improve the voltage stability in southern Hunan Province.
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6. Discussion

The simulated and measured results in Section 5 can be explained as follows:
The topology of a low-harmonic DC ice-melting device capable of simultaneous reactive power

compensation is feasible. The SVG uses transformer leakage reactance instead of connecting reactance.
It can realize the simultaneous operation of ice-melting and reactive power compensation. The running
harmonics are small, and no filtering device is needed.

The twelve-pulse rectification structure in the low-harmonic DC ice-melting device can effectively
reduce the fluctuation of output DC current and the ripple factor value is only 0.994.

The ice-melting and SVG reactive power compensation are simultaneously operated, and the
injected low-harmonic multi-carrier phase-shift modulation algorithm can effectively eliminate the 5th
and 7th harmonics mainly generated during ice melting without the need of a filter device.

After the SVG was put into operation in 500 kV Chuanshan substation, the 500 kV bus voltage had
no negative deviation and the positive deviation decreased from 3.09% to 1.57% within 24 h of testing,
which effectively improves the voltage stability in southern Hunan Province, China.

7. Conclusions

In this paper, a topology of a low-harmonic DC ice-melting device capable of simultaneous
reactive power compensation has been proposed. The ice-melting device is mainly composed of
a transformer, SVG1, SVG2, and an ice-melting rectifier. The two SVGs are connected to the two
low-voltage winding sides of the transformer, which is also connected to the rectifier. The SVG can
effectively absorb harmonics generated by the rectifier and improve the voltage stability.

The simulation and experimental research is carried out. The results verify the feasibility and
effectiveness of the low-harmonic DC ice-melting device which provides an effective method for the
research and development of the DC ice-melting device.
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