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Abstract: Groundwater contamination is a major issue for human health, due to its largely diffused
exploitation for water supply. Several pollutants have been detected in groundwater; amongst
them arsenic, cadmium, chromium, vanadium, and perchlorate. Various technologies have been
applied for groundwater remediation, involving physical, chemical, and biological processes.
Bioelectrochemical systems (BES) have emerged over the last 15 years as an alternative to conventional
treatments for a wide variety of wastewater, and have been proposed as a feasible option for
groundwater remediation due to the nature of the technology: the presence of two different redox
environments, the use of electrodes as virtually inexhaustible electron acceptor/donor (anode and
cathode, respectively), and the possibility of microbial catalysis enhance their possibility to achieve
complete remediation of contaminants, even in combination. Arsenic and organic matter can be
oxidized at the bioanode, while vanadium, perchlorate, chromium, and cadmium can be reduced at
the cathode, which can be biotic or abiotic. Additionally, BES has been shown to produce bioenergy
while performing organic contaminants removal, lowering the overall energy balance. This review
examines the application of BES for groundwater remediation of arsenic, cadmium, chromium,
vanadium, and perchlorate, focusing also on the perspectives of the technology in the groundwater
treatment field.

Keywords: groundwater; bioelectrochemical systems; microbial fuel cell; microbial electrolysis cell;
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1. Introduction

Groundwater contamination is a highly important issue, due to the exploitation of this resource
for water supply (drinking, irrigation, industrial process water). Several contaminants can be detected
in groundwater and consequently limit its use: nitrate [1], perchlorate [2,3], arsenic [4,5], chromium [6],
cadmium [4,7], and vanadium [8] are widely diffused. Those contaminants can be naturally occurring
or the consequence of anthropic activities [9].

To perform groundwater remediation of the abovementioned contaminants, several technologies
can be applied, namely chemical, biological, biochemical, biosorptive and physico-chemical [10].
Besides conventional and well established approaches, novel technologies are being developed and
investigated to increase remediation effectiveness and sustainability. Amongst these, bioelectrochemical
systems (BES) have remarkably emerged in the last fifteen years. BESs can be defined as electrochemical
systems in which electrochemically active microorganisms act as catalyzers for anode and/or cathode
reactions [11]. Research in the BES field initially focused on the production of electric energy from the
degradation of organic matter at the anode of microbial fuel cells (MFC). Simple organic compounds
such as acetate [12], methanol [13], and glucose [14] have been successfully used as the organic matter
source in anolytes. Additionally, MFCs were reported as being able to produce energy from more complex
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substrates such as domestic and industrial wastewater: dairy [15–18], food-processing [19], leachate [20,21],
pharmaceutical [22], brewery [23,24], winery [25], oil [26] and petroleum refinery wastewater [27] are
amongst the principal examples.

After the initial exclusive interest as possible net energy producers from organic matter
degradation, which had somehow disappointed researchers’ initial development expectations [28–32],
BES technology has been used as a flexible platform for fulfilling several other tasks: brackish water
desalination in microbial desalination cells (MDC) [33,34], hydrogen production in the microbial
electrolysis cell (MEC) setup [35,36], microbial electrosynthesis (MES) of valuable chemicals and
commodities [37,38], power-to-gas energy storage [39], nutrient recovery [40,41], and biosensing [42,43]
are some notable examples.

Due to the intrinsic characteristics of the technology, BES has been identified as a promising
technology for groundwater bioremediation [44]. In BESs, both oxidation and reduction reactions can
occur, respectively at the anode and at the cathode [45–47], and thus oxidized contaminants such as
nitrate, vanadium, perchlorate or chromium can be reduced in the cathodic environment, while arsenic
and/or organic matter can be oxidized in the anodic environment (Figure 1), with possible complete
groundwater remediation due to the integration in a single treatment sequence.
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Figure 1. Scheme of the bioelectrochemical reactions involving the considered contaminants and their
redox potentials. In the figure, microorganisms catalyze the reactions at both anode and cathode; cathodic
reaction may also occur at an abiotic cathode. The redox potentials (E0) in the figure are under standard
conditions and arevreferred to the standard hydrogen electrode (SHE); the sources for the values are listed
below: CH3COO−/HCO3

−: reference [48]; As(III)/As(V): references [49,50]; ClO4
−/Cl−: reference [51];

Cr(III)/Cr(VI): reference [52]; V(V)/V(IV): reference [53]; Cd(II)/Cd(0): reference [54].

In addition, BES application for in situ treatment has been proposed; in conventional
bioremediation, a continuous addition of chemical amendments (O2, H2, nutrients, organic matter)
is necessary to increase the naturally occurring microbial removal activity [44], and this factor may
limit the diffusion and applicability of the process due to connected costs and practical issues [55].
On the other hand, BES may overcome these limitations due to the possible use of anode and cathode
as virtually inexhaustible electron acceptor and donor [44,56], avoiding (or drastically lowering) the
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amount of chemicals added in the matrix; moreover, the electrodes may serve as physical support for
microorganisms’ growth [44].

The aim of this review is to illustrate and discuss known applications of BES for groundwater
remediation of several pollutants: arsenic, chromium, vanadium, cadmium, and perchlorate.
The removal of nitrate is not discussed in this review, as it has been extensively scrutinized and
analyzed in recently published reviews [51,56,57].

2. Groundwater Contamination Issues

Arsenic is a contaminant known for its toxicity and carcinogenicity [58]. Exposure to
arsenic-contaminated groundwater can lead, over the long period, to development of kidney, lung,
bladder, and skin cancer and to other severe pathologies [59–61]. It is naturally occurring in the
environment in different oxidation states: As(V), As(III), As(0), and As(-III). In water, its most
common valences are As(V) (arsenate), stable in aerobic surface waters, and As(III) (arsenite), stable
in anaerobic groundwater [62]. Biologically, As(III) is about 60 times more toxic than As(V) [63].
The presence of arsenic in groundwater is related to anthropic activities (mainly agricultural or
industrial practices) [64,65] or to the leaching from rocks and sediments [66]. In the former case,
the cause of the contamination may lie in the use (or overuse) of As-containing materials (dyes, wood
preservatives, pesticides, pharmaceutical substances, additives) [67] that may also accumulate in
groundwater, sediments, and surface water [68–70]. In the latter case, rocks may naturally contain
As and cause its dissolution in groundwater [70]. Arsenic poisoning is widespread in Asia, Africa,
and South America, however its occurrence in groundwater has also been reported worldwide and
is not unknown in developed countries either, including Canada [71], Italy [72] and USA [73,74].
The World Health Organization (WHO) identified a guideline value for arsenic presence in drinking
water of 10 µg L−1; this value is adopted as the limit in different areas of the world (Table 1).

Table 1. Standards in drinking water prescribed by national/regional regulations and international
guidelines for the contaminants considered in the review.

Contaminant Limit/Guideline Value (µg L−1) Country/Organization

Arsenic 10 USA [75], WHO [76], EU [77], China [78]

Chromium
100 USA [75]
50 EU [77], WHO [76], China [78]

Cadmium
5 EU [77], USA [75], China [79]
3 WHO [76]

Vanadium

140 Italy [80]
100 Ukraine [81]
5 Bosnia and Herzegovina, Croatia, FYROM [81]
1 Serbia [81]

Perchlorate

70 WHO [76], China [78]
15 USA [82]
6 California (USA) [82]
2 Massachusetts (USA) [82]

Hexavalent chromium (Cr(VI)) is a toxic heavy metal, found in effluents from industries such as
electroplating, steel and metal alloys production, leather tanning, cement, dye/pigment manufacturing,
mining, photographic materials, paints, and fungicide production [6,83]. Its accumulation in the
environment is a serious threat since Cr(VI) is a known mutagen, teratogen, and carcinogen, besides
being also highly corrosive [84,85]. Its high solubility makes it a highly mobile element in the environment.
Different limits for Cr(VI) concentration in drinking water have been issued by national authorities (Table 1).

Exposure to cadmium, a heavy metal, has been correlated to several pathologies: high blood
pressure, cancer, diabetes, DNA hypomethylation, cardiovascular diseases, and other health issues [86–89].
Cadmium presence in groundwater is due mainly to anthropogenic activity, such as industrial and mining
processes [90,91]; a recently-identified source of cadmium in groundwater is the informal recycling process
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of e-wastes, a growing problem in China and India, other than in the African continent [92]. The WHO
recommends a guideline value for cadmium in drinking water of 3 µg L−1 [76], while a higher value of
5 µg L−1 is prescribed in the European Union [77] and in China [79] (Table 1).

Vanadium is a naturally occurring element in nature, and can be detected in different types of
rock [93]. In addition, it can be easily located in water originating from volcanic springs [8,94,95].
Additional anthropogenic sources of vanadium in groundwater are metallurgic, mining, and the
chemical and polymer industries [93]; vanadium contamination of groundwater from the deposition
of ashes produced from crude oil or coal burning is still controversial [96,97]. Vanadium is an essential
element for human life, and its consumption in a low dose may have a positive effect on human
health [98]; yet, acute vanadium poisoning may result in several disorders, including palpitations,
coronary insufficiency, and reduced neurobehavioral activities [99,100]. Due to its toxicity, the threshold
for vanadium’s concentration in drinking water has been set at 140 µg L−1 by Italian law [80]; lower
values are prescribed in some Balkan countries [81] (Table 1).

Perchlorate contamination in groundwater is mainly attributed to human activity: it is
widely used in the production of rocket propellers, fireworks, and ammunitions, and the
related industries can be identified as the major contributors in the anthropogenic perchlorate
contamination of groundwater [101,102]. Nevertheless, there is some evidence of the presence of natural
perchlorate deposits [103], frequently associated with the occurrence of natural nitrate deposits [104].
The perchlorate consumption in drinking water, even in low concentration, is linked to alterations
in thyroid hormone levels, that may negatively affect fetal neurodevelopment outcome [105,106].
U.S. EPA set the perchlorate standard in drinking water at 15 µg L−1, with lower standards existing in
Massachusetts and California (2 and 6 µg L−1, respectively) [82]; a higher standard (70 µg L−1) has
been set by the Chinese government [78] and by the WHO [76] (Table 1).

3. Contaminants Removal from Groundwater Using BES

3.1. Arsenic

As stated in Section 2, due to a predominantly reducing environment in groundwater, arsenic is
generally present in the As(III) form, less soluble and more toxic than As(V); in addition As(V) has been
reported as being easier to remove in physical processes [107–110]. Therefore, a common strategy for
As(III) removal from groundwater is the application of microbially-catalyzed oxidation of As(III) to obtain
As(V), which is then usually physically removed, e.g., by adsorption on a variety of adsorbents [111–113].

The application of BES in this field is mostly connected to the first phase of arsenic removal,
the biological oxidation of As(III) to As(V), using the electrode as a virtually unlimited electron
acceptor [50,56]. Some notable examples of application of BES technology for As(III) oxidation are reported
in Table 2.

Table 2. Arsenic removal using bioelectrochemical systems (BES).

BES Type Electrode(s) Type Applied Potential/Voltage As (III) Removal Rate Energy Production Ref.

Polarized bioanode Graphite rod +0.497 V vs. SHE 0.42 mg L−1 day−1 - [49]

MFC
Carbon-fiber felt

(anode), plain carbon
paper (cathode)

- n.a. a 752.6 ± 17 mW m−2 b [114]

MFC Carbon paper - 13.2 mg L−1 day−1 1–3 mV c [115]

Polarized bioanode d Carbon paper +0.500 V vs. SHE 29.6 mg L−1 day−1 - [115]

Polarized bioanode e Carbon paper 1 V 29.6 mg L−1 day−1 - [115]

MDC Carbon brush - n.a. 7.67 ± 0.71 mA f [116]

BES: bioelectrochemical system. MFC: microbial fuel cell. MDC: microbial desalination cell. SHE: standard hydrogen
electrode. n.a.: data not available. a Removal efficiency was reported being similar to ref. [49]. b Maximum current
density. c Voltage. d The bioanode was polarized using a potentiostat and coupled with a denitrifying biocathode.
e The bioanode was polarized using a DC supply and coupled with a denitrifying biocathode. f Peak current.
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Bioelectrochemical As(III) oxidation was firstly demonstrated by Pous et al. [49]: a polarized
graphite electrode was used as electron acceptor for As(III)-oxidizing microorganisms in an anaerobic
BES; the potential was chosen based on the formal potential for NT-26 autotrophic bacteria As(III)
oxidase (+0.497 V vs. Standard Hydrogen Electrode, SHE) reported by Bernhardt and Santini [117].
The BES showed an almost identical rate of As(III) removal and As(V) formation (420 ± 38 and 428
± 59 µg L−1 day−1, respectively); the decrease in As(III) concentration was linear in the presence of
electrode polarization (Figure 2).
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Figure 2. Evolution of As(III), As(V) and AsTOT concentration during batch tests with the polarized
electrode described in Pous et al. [49]. Black lines represent the As(III) removal rate, and the As(V)
formation rate. Error bars represent the standard deviation of replicated analytical measurements.
Reprinted from Pous et al. [49] with permission from Elsevier.

No phenomena of adsorption on the electrode or precipitation were reported, as the concentration
of total As remained constant. The application of cyclic voltammetry highlighted the absence of
peaks related to redox mediators’ occurrence, suggesting a direct extracellular electron transfer; As(III)
oxidation potential was measured at +0.500 V vs. SHE, very close to the cathodic poised potential.
The dominant population at the anode was composed of gamma-proteobacteria [49].

The spontaneous As(III) oxidation at the anode of single-cell MFCs, with carbon-fiber felt
anode and plain carbon paper cathode was investigated by Li et al. [114]: As(III) was almost
completely removed in 7 days; electrochemical oxidation of As(III) was excluded, as the control
abiotic fuel cells achieved practically no removal. The addition of As(III) led to a modification in
the MFC’s microbial composition, with the appearance of Actinobacteria and the increase of Chlorobi
and Firmicutes. Glucose was used as organic carbon source, and removal efficiency was similar
to that obtained by the poised bioanode reported by Pous et al. [49], with the advantage of a
spontaneous process. Nevertheless, due to the general lack of organic matter in groundwater, glucose
or another organic carbon source should be dosed carefully, in order not to create an additional
groundwater contamination.

Nguyen et al. [115] demonstrated the feasibility of coupling As(III) oxidation at the bioanode
and NO3

− reduction at the biocathode of a BES, proving that anaerobic oxidation of As(III) can
provide electrons for biocathodic denitrification; the application of a DC supply (operated at 1 V)
or the use of a potentiostat (to poise the anode potential at +0.5 V vs. SHE) were necessary to
achieve complete bioelectrochemical oxidation of As(III), which was only incomplete in MFC mode.
The higher density of the microbial species and electrode surface were deemed responsible for the
higher removal rates compared to that reported by Pous et al. [49] (29.6 and 0.42 mg L−1 day−1,
respectively). While no differences were noticed in As(III) anodic oxidation using DC supply and the
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potentiostat, an accumulation of nitrite was reported at the DC supply-operated cathode due to the
less stable potential [115].

While the described works dealt with the biological oxidation of As(III), the chemical oxidation of
As(III) was obtained by a hybrid system composed by an MFC coupled with a zero valent iron process
(ZVI) (Figure 3) [118].
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Xue et al. [118] with permission from Elsevier.

In the ZVI process strong oxidants (hydroxide H2O2 and hydroxyl radical •OH) are produced via
a sacrificial corrosion process releasing Fe(II), oxidized to Fe(III): the oxidants are then able to oxidize
As(III) to As(V). A current flowing in the electrolyte of the system is necessary to control the corrosion
process, and avoid the consumption of H2O2 by Fe(II). In the MFC–ZVI system, the bioelectricity
generated by the MFC was used for this purpose, and As(III) was removed by the associated ZVI
system, obtaining better results than the conventional ZVI process [118].

As(III) removal can be achieved also using another technology in the BES family: Brastad and
He [116] showed that arsenic, due to its charge, can be parenthetically removed from the influent during
a hardness-removal treatment using a microbial desalination cell (MDC), obtaining an 89% removal.

A growing field for BES applications is their use as biosensors for contaminant
monitoring [119–122]; Rasmussen and Minteer [123] reported the use of an MFC inoculated with
Enterobacter cloacae for arsenic monitoring: the MFC was able to quantify both As(III) and As(V)
with low detection limits (4.4 µM for As(III) and 46 µM for As(V)), showing a decrease in power
output in the presence of inorganic arsenic. A BES-based arsenic specific biosensor was developed
by Webster et al. [124] by genetically modifying the component of the metal reduction pathway of
Shewanella oneidensis and placing it under the control of an arsenic sensitive promoter, obtaining an
As(III) detection limit of 40 µM, and a linear range up to 100 µM.

As shown in the applications above, the use of BES for bio(electro)remediation of As-contaminated
groundwater is extremely interesting, due to several factors. The introduction of electrodes in an aquifer
(similarly to permeable reactive barriers) could allow development of localized in situ treatment zones,
allowing the oxidation of As(III) to As(V). The necessity of a sole polarized electrode with no need for
chemicals is particularly attractive from a sustainability-related viewpoint; the electrons harvested in
the As(III) oxidation process can be used for the reduction of other groundwater contaminants (e.g.,
nitrate) in the biocathode. With apposite adsorbing material next to the anode, a complete treatment
train would be achieved. In addition, cathodic polarization could reduce the corrosion process of
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adsorbents (usually metal oxides or conductive metals), allowing an extension of their lifetime and
increasing the sustainability of the process. As alternative, an ex situ treatment can be achieved, which
is usually easier to implement, even though it may be more energy-expensive [57].

3.2. Chromium

Cr(VI) is an excellent terminal electron acceptor, due to its half-cell reduction reaction potential
of +1.33 V vs. SHE, higher than that of O2 (+1.23 V vs. SHE) [52,125]. Therefore, two main options
for Cr(VI) reduction to Cr(III) are available using BES technology: the use of an abiotic cathode or a
biocathode (Table 3).

Table 3. Chromium removal using BES.

BES Type Cathode Electrodes Material Cr(VI) Removal Rate Maximum Power Density Maximum Current Density Ref.

MFC Abiotic Graphite plates n.a. 150 mW m−2 0.04 mA cm−2 [52]

MFC Abiotic Carbon cloth n.a. 767.01 mW m−2 2.08 mA cm−2 [126]

MFC Abiotic
Rutile-coated

graphite plate (cat.),
graphite plate (an.)

n.a. n.a. n.a. [127]

MFC Abiotic Carbon brush (an.),
carbon cloth (cat.) n.a. 5367 mW m−2 n.a. [128]

MFC Abiotic Graphite felt (an.),
carbon rod (cat.) 4.28 mg L−1 h−1 3.3 W m−3 5.1 A m−3 [129]

MFC Biotic Graphite plates 0.46 mg gVSS−1 h−1 55.5 mW m−2 123.4 mA m−2 [130]

MFC Biotic Graphite felt n.a. n.a. 32.5 mA m−2 [131]

MFC Biotic
Graphite plate (an.),
graphite plate and

granules (cat.)
2.4 ± 0.2 mg gVSS−1 h−1 2.4 ± 0.1 W m−3 6.9 A m−3 [132]

MFC Biotic Graphite felt 0.66 ± 0.01 mg L−1 h−1 9.7 ± 0.4 mW m−2 69.7 ± 1.4 mA m−2 [133]

MFC Biotic Graphite fiber 20.6 mg gVSS−1 h−1 15 W m−3 48 A m−3 [134]

MFC Biotic Graphite brush (an.),
graphite felt (cat.) 1.24 ± 0.01 mg L−1 h−1 n.a. a n.a. b [135]

a Power density not available. The reported maximum power is 48 µW. b Current density not available. The reported
maximum current is 369 µA.

The first option was first explored by Wang et al. [52], who demonstrated the feasibility of
cathodic reduction of Cr(VI) to Cr(III) using electrons harvested from a bioanode, simultaneously
with energy production (0.04 mA cm−2 as maximum current density). The best performances in
terms of removal efficiency and speed (complete reduction of 100 mg L−1 of Cr(VI) in 150 h) were
obtained at pH = 2. The same value of pH vas reported as being optimal for cathodic reduction by
Gangadharan and Nambi [126], who obtained a complete reduction of Cr(VI) in 48 h and 99.85%
removal of total chromium by precipitation on the electrode surface over 168 h. The low value of
the pH was reported as increasing the Cr(VI) reduction due to the protons taking part in the reaction
and increasing the reduction potential. The addition of a rutile coating to the cathode of an MFC to
perform photoelectrocatalytic reduction of Cr(VI) was reported by Li et al. [127]: the coating enhanced
the reduction speed by 1.6 times compared to the dark control where no photocatalysis was performed.
No Cr(VI) removal was shown in the control cell with the sterile anode, meaning that the presence of
the bioanode was crucial for the cathodic photocatalytic reduction. Even though the results using an
abiotic cathode are interesting, their application for groundwater treatment is rather limited due to
the sensibility of the cathodic reduction reaction to the pH: the use of pH = 2 is not feasible for any
successive use of the groundwater (e.g., drinking water production or restitution to the aquifer) and
would require a pH adjustment; the presence of higher values of pH would not prevent the reduction
reaction occurring, but would need an excessive amount of time to complete the Cr(VI) reduction due
to low proton presence (protons are necessary in the reduction reaction) and formation of a Cr(OH)3

monolayer on the electrode surface [52,125].
Based on this premise, the application of biocathodes in which bacteria catalyze the desired Cr(VI)

reduction to Cr(III) reaction using an electrode as electron donor have been explored parallel. The first
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attempt to biologically reduce Cr(VI) in the biocathode of an MFC inoculated with a denitrifying
mixed culture was reported by Tandukar et al. [130]: a control MFC equipped with an abiotic cathode
showed slower removal rates (7–15% slower) than the MFC with biocathode. Direct relationships were
detected between Cr(VI) concentration and the specific reduction rate, also affecting power generation
(Figure 4): the maximum specific reduction rate recorded was 0.46 mgCr(VI) gVSS−1 h−1 at initial
Cr(VI) concentration of 63 mg L−1, and no soluble chromium was detected in the effluent, meaning
that it precipitated and/or was adsorbed on the biomass or on the electrode surface.
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A microbial inhibition was shown at a 80 mg L−1 Cr(VI) concentration, with a decrease in
reduction rates, meaning that a high concentration of Cr(VI) may slow down the desired reactions [130].

Other than the denitrifying mixed culture reported by Tandukar et al. [130], the use of other
inocula have been reported: Xafenias et al. [131] obtained a biocathode using a Shewanella oneidensis
MR-1 strain, while a chromate contaminated soil was used by Huang et al. [132]. The development
of a Cr(VI)-reducing biocathode by the reversal of an anodic exoelectrogenic biofilm was reported
by Wu et al. [133], who obtained a higher microbial density compared to a conventionally grown
biocathode; the analysis of the microbial structure of the biofilm showed similar dominant bacteria
species (Gamma-proteobacteria and Bacteria) in both biofilms. A similar procedure was applied by
Beretta et al. [136], growing bioelectrodes in the anode of an MFC, and then transferring them to the
cathode compartment of MEC reactors: the biocathode poised at −0.300 V vs. SHE showed higher
removal efficiency (93%) and rate compared to the biocathode poised at +0.700 V vs. SHE and to the
open circuit system’s biocathode. This strategy is analogous to a procedure used for the development of
denitrifying biocathodes [3,137]. Another option for the development of a Cr(VI) reducing biocathode
is the application of a set potential of −0.3 V vs. SHE: the start-up time of the system was reduced
compared to a control MFC biocathode due to the applied selective pressure for microorganisms’
adaptation, with an additional improvement in the Cr(VI) reduction rate [134].

3.3. Cadmium

In order to be removed/recovered from water, the reduction of Cd(II) to Cd(0), which is easier
to be physically removed by precipitation and/or adsorption [54], is a common strategy. The first
Cd bioelectrochemical recovery was achieved by Modin et al. [54], operating a BES with a biological
anode to perform cathodic Cd recovery from a wastewater stream: the cathode potential was poised at
−0.66 V, with the necessity of an additional applied voltage of 0.51 V due to the low redox potential of
Cd(II). Differently from other heavy metals (e.g., Cr(VI) or Cu(II), whose redox potentials are 1.14 V vs.
SHE and 0.34 V vs. SHE, respectively), the low redox potential of Cd (−0.52 V vs. SHE, lower than
that of organic matter, ca. −0.30 V vs. SHE) cannot allow its spontaneous reduction in the cathode of
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an MFC, and thus there is the need for additional energy to fulfill the task [135]. Cathodic reduction of
Cd(II) was achieved using two MFCs connected in series in a double two-chamber MFC arrangement
(d-MFC): this strategy allowed the power and voltage in excess produced by a Cr(VI) reducing MFC
to sustain the cathodic reduction at neutral pH of Cd(II) in the second MFC. The system achieved
Cd(II) reduction of 89.73 ± 0.28%, 93.30 ± 0.74%, and 93.43 ± 0.17% for 200 mg L−1, 100 mg L−1,
and 50 mg L−1 respectively [128]. A similar strategy was applied by Zhang et al. [129], that stacked
a Cr(VI)-reducing MFC and a Cu(II)-reducing MFC to drive cathodic Cd(II) reduction in an MEC,
obtaining a simultaneous recovery of Cd, Cr, and Cu. The possibility of a sequential treatment of Cu
and Cd contaminated water was shown by Wang et al. [138], who demonstrated that the deposition of
Cu in the first phase enhanced the Cd(II) reduction, and H2 production in the following stage MEC.

The feasibility of Cd(II) removal using the biocathode of a MEC was demonstrated by
Huang et al. [135]: the biocathode was obtained by means of an adaptive acclimatization at a low
concentration of a mixture of metals (starting from 1.0 mg L−1 Cd(II), 1.0 mg L−1 Cu(II), 3.0 mg L−1

Cr(VI) and up to 5.0 mg L−1 of each metal); the MEC scored a 0.98 mg L−1 h−1 Cd(II) removal rate.
Additional details on the above mentioned works are reported in Table 4.

Table 4. Cadmium removal using BES.

BES type Cathode Electrodes Material Potential/Voltage Applied Cd removal Rate Ref.

Bioanode + potentiostatically-controlled cathode Abiotic Carbon felt (an.),
Ti wire (cat.) −0.66 V vs. SHE n.a. [54]

Double MFC arrangement Abiotic Carbon brush (an.),
carbon cloth (cat.)

Energy harvested from
upstream MFC n.a. [128]

MEC Abiotic Graphite felt (an.),
Ti sheet (cat.)

Energy harvested from
2 stacked MFC n.a. [129]

MEC Abiotic Graphite felt (an.),
carbon cloth (cat.) 0.7 V 6.59 mg L−1 h−1 [138]

MEC Biotic Graphite brush (an.),
graphite felt (cat.) 0.5 V 0.98 ± 0.01 mg L−1 h−1 [135]

MEC: microbial electrolysis cell.

Neither of the described BES deals directly with groundwater but rather with heavy
metal-contaminated wastewater; nevertheless, the lack of organic matter needed for the cathodic
reduction suggests the suitability of these processes in a (biotic or abiotic) cathode, with the aid of a
power supply or a potentiostat to overcome the limitation imposed by the Cd(II) low redox potential.

3.4. Vanadium

Vanadium may occur in two different forms in water: V(V), which is considered the most toxic
form, and V(IV), less toxic and is characterized by insolubility at alkaline and neutral pH [125].
Therefore, a common strategy for V remediation in BES is the reduction of V(V) to V(IV) using V(V)
as terminal electron acceptor. Some notable examples of application of BESs for V(V) reduction are
reported in Table 5.

Table 5. Vanadium removal using BES.

BES Type Cathode Electrodes Material V(V) Removal Rate Maximum Power Density Maximum Current Density Reference

MFC Abiotic Carbon fiber felt n.a. 572.4 ± 18.2 mW m−2 1094.0 ± 50.6 mA m−2 [139]

MFC Abiotic Carbon fiber felt n.a. 970.2 ± 60.5 mW m−2 2462.5 ± 23.1 mA m−2 [53]

MFC Biotic Carbon fiber felt n.a. 529 ± 12 mW m−2 n.a. [140]

The reduction of V(V) to V(IV) was obtained at the abiotic cathode of an MFC, using the oxidation
of sulfide and glucose as sorce for the electrons, then used in the biocathodic V(V) reduction process; the
MFC obtained a V(V) reduction rate of 25.3 ± 1.1% [139]. Zhang et al. [53] investigated the simultaneous
reduction of V(V) and Cr(VI) in the cathode of a MFC, obtaining a 67.9 ± 3.1% and 75.4 ± 1.9% removal,
respectively; Cr(III) was deposited on the surface of the electrode, while V(IV) was precipitated by
pH adjustment.
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Even though good results were shown by Zhang et al. [53,139], their approach is difficult to apply
for groundwater remediation: in both cases the pH at the cathode was set at pH 2 (to increase the
electrochemical redox potential), which is far from usual groundwater pH, and then adjusted to pH 6 to
allow the precipitation of V(IV). Therefore, the application of biological reduction that may operate at
neutral pH values is desirable, and the use of a biocathode is a feasible option. Qiu et al. [140] succeeded
in reducing V(V) at the biocathode of an MFC, obtaining a complete removal in 7 days starting from an
initial concentration of 200 mg L−1, and a maximum bioelectricity production of 529 ± 12 mW m−2; the
neutral pH was optimal for microbial activity and allowed the precipitation of V(IV) without the need of
pH conditioning. Dysgonomonas was identified as responsible for V(V) reduction [140].

Other than biocathodes, BESs have been applied for V(V) reduction in hybrid schemes:
bioelectricity produced in a single-chamber MFC was used to operate a bioelectrochemical reactor
(BER) with the purpose of bioelectrochemically reducing V(V) to V(IV) contained in groundwater
(Figure 5) [141]. The BER achieved the best results in vanadium reduction (93.6%) at the maximum
power density produced by the MFC (543 mW m−2), and the addition of organic matter had little effect
on the reduction process; differently from Zhang et al. [53,139]—in this case the V(V) was reduced via
the anaerobic microbial metabolism, with Lactococcus and Enterobacter reducing V(V) using products
from fermentative Macellibacteroides [141].
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3.5. Perchlorate

Perchlorate is an excellent electron acceptor for microbial reduction due to the high reduction
potential of the ClO4

−/Cl− couple (0.87 V vs. SHE), close to that of the NO3
−/N2 couple (0.75 V vs.

SHE) [51]; this potential makes perchlorate suitable for reduction at the cathode of BES, as shown by
examples in Table 6.

Table 6. Perchlorate removal using BES.

BES Type Cathode Electrodes Material ClO4
− Removal Rate Potential/Voltage Applied Power Density Current Density Ref.

MFC Biotic Graphite granules 12 mg L−1 day−1 - n.a. n.a. a [142]

MFC Biotic Graphite granules 24 mg L−1 day−1 - 0.3 mW m−2 0.17 mA m−2 [143]

MEC Biotic
Polyaniline modified

graphite (cat.), graphite
electrode (an.)

n.a. −0.4 V vs. SCE - - [144]

MFC Biotic
Carbon cloth (an.),
Pt-coated carbon

cloth (cat.)
25.0 mg L−1 h−1 - n.a. b n.a. b [145]

MFC Biotic Ti wire–carbon fiber
brushes 2 mg m−2 day−1 - n.a. n.a. [146]

SCE: saturated calomel electrode. a The average current at the reported maximum perchlorate removal was 0.28 mA.
b The maximum voltage reported was 68 mV.
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Perchlorate reduction in an MFC biocathode was first reported by Shea et al. [142], showing the
feasibility of the process in the absence of exogenous electron shuttles, as previously done in a half-cell
by Thrasher et al. [147]. The development of a perchlorate-reducing biocathode was obtained from a
denitrifying biocathode, by gradually increasing the perchlorate concentration (from 0.1 to 20 mg L−1)
and simultaneously decreasing the nitrate concentration (from 20 to 1 mg NO3

−-N L−1) [142]. A similar
strategy was used to obtain a perchlorate reducing biocathode by Butler et al. [143]: a maximum
perchlorate removal of 24 mg L−1 day−1 coupled with an 84% cathodic conversion efficiency were
obtained, with no need for fixing the cathode potential or adding exogenous electron shuttles. While the
optimal pH value for bioelectrochemical cathodic denitrification was reported as being in the range
7–7.5 [148,149], a higher value (8.5) was shown to enhance biocathodic perchlorate reduction [143].
Perchlorate was reported to be reduced via autotrophic H2 reduction in a biocathode [150]: the analysis
of the biofilm revealed the presence of Aureibacter tunicatorum, Fulvivirga kasyanovii, Thermotalea
metallivorans, bacterium WHC2-6, and Thauera sp. Q20-C. Perchlorate removal was affected by the
current intensity applied to the biocathode, and its maximum (98.99%) was obtained at 60 mA;
perchlorate reduction showed a zero-order kinetics [150]. The presence of biofilm on a polyaniline
(PANI) modified graphite cathode of an MEC was responsible for an increase of 12% in perchlorate
reduction compared to an identical abiotic cathode, showing also that the biofilm (composed of
Azospiraoryzae strain DSM 13638 of the class Proteobacteria) was involved in facilitation of the electron
transfer from the cathode to the electrolyte (using its pili-like structure) rather than in perchlorate
reduction [144]. The addition of an external redox mediator (resazurin) in the biocathode of an MFC
was shown to enhance the perchlorate reduction ratio up to 101.6% at a dosage of 9 µM of resazurin,
compared to a mediator-less MFC, and to alter the microbial communities [145].

An enrichment procedure for the development of perchlorate-reducing and nitrate-reducing
precultures was proposed by Mieseler et al. [146], using a mixed culture sludge from a membrane
bioreactor plant as inoculum and acetate as electron donor in the bioanode; the preculture was
then used as inoculum for the biocathodes. The microbial community of the perchlorate-reducing
biocathode was unique compared to the denitrifying biocathode community [146].

Other than having a similar redox potential, nitrate and perchlorate presence in water and
groundwater are often concomitant, and thus the combination of perchlorate and nitrate reduction
has been investigated. The interaction between the presence of perchlorate and nitrate acting as
electron acceptors in a biocathode poised at −0.50 V vs. SCE (saturated calomel electrode) was
investigated by Xie et al. [151], who reported a slowing effect in perchlorate reduction induced by the
presence of nitrate even at low (0.07 mM) concentrations; a higher concentration (2.10 mM) completely
inhibited the perchlorate reduction process. The analysis of the bacterial community revealed that the
cathodic biofilm was composed of Alfa-proteobacteria, Beta-proteobacteria, Gamma-proteobacteria, Bacilli,
and Clostridia, known denitrifiers, and this may have led to the preferred reduction of nitrate over
perchlorate [151]; the decrease in the perchlorate reduction rate in the presence of NO3

− was also
reported in a single-chamber MFC by Lian et al. [152]. The autotrophic reduction of nitrate and
perchlorate in the biocathode of an MFC was investigated by Jiang et al. [153]: in the presence of
the sole NO3

− and sole ClO4
− the MFCs obtained an excellent current density (1.52 mA m−3 and

3.00 mA m−3, respectively) and substrate reduction (87.05% and 53.14%, respectively); the combined
presence of NO3

− and ClO4
− in a molar ratio of 1:1 led to the maximum current density (3.10 mA m−3)

and to a 40.97% removal for ClO4
− 86.03% for NO3

−. The reduction of both contaminants was
attributed to the autotrophic denitrifying biofilm, that showed a predominance of Beta-proteobacteria,
known denitrifiers; cyclic voltammetry highlighted no evident distinctions in the curves of biofilm fed
with NO3

− and ClO4
− [153].

4. Perspectives

Several factors should be considered in the future development of BES research for the removal
of the considered contaminants: the upscaling of the technology, the application of in situ treatment,
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the simultaneous treatment of several contaminants, and the development of models to simulate the
treatment of the considered contaminants.

The described applications are still at laboratory scale; some BES applications at full scale for
wastewater treatment have been reported [154–156], but no data are available for full scale or pilot
scale BES applications regarding groundwater treatment. Recently, the application of small scale
BES in series has been proposed as an alternative to the increase in dimension for the upscaling of
the technology [157]: the application of several small-scale BES in series may be a feasible option
to both remove different contaminants (e.g., biocathodes poised at different potential focused each
on a different contaminant, similar to the setup reported by Huang et al. [135]) and increase energy
production. The engineering and optimization of novel high-performing electrodes should include
both a porous structure and a highly conductive material to allow a vast microbially accessible specific
surface area, and the development of high current areal densities [158]; the making of such electrodes
would drastically help in the upscaling of the technology.

BESs have been proposed for in situ application due to the possibility of using the electrodes
as virtually inexhaustible electron acceptor and donor, without the need to add expensive chemicals
that may also further contaminate the water resource [44]; to do so, research should focus on the
development of a specially designed BES setup. Some attempts in doing so have been reported for
hydrocarbons [159] and nitrate [160–162] removal, but more research should conducted to allow the
presence of optimal conditions for bioelectroremediation (e.g., continuous contact between substrate
and microorganisms, pH control).

More attention should also be focused on the treatment of a contaminants mixture: the competition
between nitrate and perchlorate has been investigated [143,151], as the competition between vanadium
and chromium in BES cathodes [53]. Arsenic and nitrate have been treated contemporarily in
the anode and cathode of a BES [115], and shown that it is possible to simultaneously exploit
the different available redox environment for groundwater remediation. This approach should
be implemented, considering industry-originating organic carbon sources or organic contaminants
commonly detected in groundwater (e.g., petroleum hydrocarbons) to enhance the sustainability of
the treatment. Eventual inhibition effects due to the combination of different contaminants should also
be assessed.

In the knowledge of the authors, no modeling attempts have been made to simulate the removal
of the considered contaminants. Modeling of the MFC operation has reached good maturity, being
able to predict both organic matter removal and energy production [163–165]. Also the MEC and MDC
processes have been successfully modeled [166,167]. Statistical methods have been applied also to BES
technology [168,169]. Based on existent models, the removal of the considered contaminants should
be modeled, also taking into consideration the competition between the different electron acceptors,
as performed for example for the biocathodic denitrification process [170].

5. Conclusions

BESs have been proposed, in recent years, as a feasible alternative for groundwater remediation:
their ability in the removal of arsenic, cadmium, chromium, vanadium, and perchlorate has been
described and discussed in this review. In the case of arsenic removal, BESs intervene to oxidize
As(III) to As(V), which is then precipitated and/or adsorbed. In the case of the other considered
contaminants, the treatment occurs at the cathode. Even though some of the applications involved the
use of an abiotic cathode, biocathodes for contaminant removal have shown several advantages and
higher applicability, due to the lack of requirement of chemical addition and the possibility of bacteria
exploitation for microbial catalysis. It has to be highlighted that the totality of the considered studies
dealt with ex situ applications, while more attention should be given to the development of in situ
treatments, as is happening with the removal of other contaminants. In addition, neither modeling
attempts nor full scale applications for the removal of the considered contaminants have been reported,
showing a lack of research in these fields.
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