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Abstract: The modular high temperature gas-cooled reactor (MHTGR) based nuclear steam supplying
system (NSSS) is constituted by an MHTGR, a once-through steam generator (OTSG) and can generate
superheated steam for industrial heat or electric power generation. The wide range closed-loop
stability is achieved by the recently proposed coordinated control law, in which the neutron flux and
the temperatures of both main steam and primary coolant are chosen as controlled variables, and the
flowrates of both primary and secondary loop and the control rod speed are chosen as manipulated
variables. However, the thermal power is only controlled in open loop manner and hence could be
further optimized through feedback. Motivated by this, a dynamic matrix control (DMC) is proposed
for optimizing the thermal power of MHTGR based NSSS. A simple step-response model with the
thermal power response data is utilized in designing the DMC. The design objective of DMC is to
optimize the deviation of the thermal power from its reference under its rate constraint. Then, by the
virtue of strong stability of existing control law and optimization ability of DMC, a cascade control
structure is implemented for the thermal power optimization, with the coordinated control law
in the inner loop and DMC in the outer loop. Numerical simulation results show the satisfactory
improvement of thermal power response. This cascade control structure inherits the advantages of
both proportional-integral-differential (PID) control and DMC, by which the zeros offset and the
short settling time of thermal power are realized.

Keywords: nuclear energy; optimization; dynamic matrix control; cascade control; modular high
temperature gas-cooled reactor (MHTGR)

1. Introduction

Nuclear steam supply system (NSSS), which utilizes the nuclear fission to produce high-pressure
steam and then to drive some thermal load devices, occupies an important role in nuclear power plants
(NPPs). Modular high temperature gas-cooled reactor (MHTGR) is a representative small modular
reactors (SMRs) and has received a lot of attention due to its virtues of inherent safety and strongly
efficient energy source [1,2]. A MHTGR-based NSSS module consisted of a helical-coil once-through
steam generator (OTSG), a one-zone pebble-bed MHTGR arranged side-by-side with the OTSG is
shown in Figure 1. The power-level control of MHTGR-based NSSS, which regulates the neutron
flux, temperatures of both helium and steam by changing the control rod speed, rotation-rate of feed
water pump and helium blowers, is a critical technique for the efficient and safe operation of NPPs.
Currently, in China, stimulated by the need in the carbon emission reduction, local power demand
and heat sources for industrial complexes, control performance optimization and guaranteed inherent
stability are two promising directions of MHTGR-based NSSS power control [3].
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During load-following operation of NPPs, the severe nonlinearity and model uncertainty of NSSS
dynamics have resulted in stability issue to NSSS power control engineers. In the past two decades,
particular concern has been given to the NSSS or reactor power control. Some promising nonlinear
control (NC) methods have been developed, e.g., the sliding mode control introduced by Shtessel,
Huang, Qaiser and Ansarifar [4–7], the physics-based techniques given by Dong [8,9], and the feedback
linearization method with disturbance observer proposed by Eom [10]. The previous works [4–10]
show satisfactory results in enhancing closed-loop stability and robustness for NPPs. However, since
most reported works are only focused on stability issues of NPPs operation, the operational efficiency
needs to be further optimized.
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Figure 1. Schematic view of a MHTGR-based NSSS module.

Model predictive control (MPC) belongs to a class of optimal control methods that generate a
sequence of control inputs based on an explicit mathematical model for a finite future and has made
a significant impact on energy control systems [11,12]. The main advantage of MPC is its ability to
improve the operational efficiency while explicitly taking physical constraints into controller design.
The first MPC design in the nuclear reactor control field was the work proposed by Na et al. [13],
and, since then, the application of MPCs in power-level control of NPPs were deeply studied [14–17].
However, to guarantee the robustness and closed-loop stability of MPC, more constraints must
be involved, which may lead to numerical issues and hence impede the industrial practice [18].
Based on the above analysis, a natural and attractive way to take both optimization and stability into
consideration, is to combine the MPC-based optimizer and NC-based stabilizer together forming the
cascade control structure shown in Figure 2. However, the existing MPCs [13–17] directly take the
process variables (control rod, pump, etc.) as the manipulated variables, which implies that these
MPCs have to play the role of both optimizer and stabilizer, and hence cannot be utilized for the
cascaded control with NC. Therefore, the investigation of an optimization-oriented MPC with cascade
connection to NC-based stabilizers, is promising.

Furthermore, an accurate mathematical model with reasonable modeling cost is the prerequisite
for successful MPC application. Because of the model complexity, parameterized models, including
nonlinear model derived by first principles, local linearization of a nonlinear physical model
and controlled autoregressive and integrated moving average (CARIMA) model, etc., are widely
utilized in different kinds of MPCs design for NSSS power control [13,16,17]. However, due to
the strong uncertainty, nonlinearity and complexity, an MPC-oriented parameterized model of
MHTGR-based NSSS is very difficult to develop. To get an efficient mathematical model, the data-based
modeling approach, which gives mathematical models based on operational data, are investigated
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extensively [3,19]. One widely used nonparametric model in the field of MPC is step-response model
and the corresponding MPC is the so-called dynamic matrix control (DMC). The data for building
the step response model are very easy to access and the coding of DMC algorithm is relatively
simple to be implemented by computer and has been applied to many industrial processes [20,21].
Many commercial software packages have been developed based on step-response model including
RMPCT, DMC+, HIECON and SMC [22]. However, there are still few DMC reports of NSSS power
control, thus it is meaningful to generate the step-response model from the operational data for the
DMC design.
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Figure 2. Schematic diagram of NSSS cascade control system (Inner loop: NC-based controller; Outer
loop: MPC-based optimizer).

According to the cascade structure shown in Figure 2, the NC proposed in Reference [9] is
considered as stabilizer in the inner loop. Although the wide range closed-loop stability can then
be achieved by regulating the temperatures of both main steam and helium as well as neutron flux,
by means of adjusting the control rod speed, rotation-rate of feed water pump and helium blowers,
the thermal power is controlled in the open loop manner. Since the thermal power response represents
the energy balance between the turbine and NSSS, it is significant to ensure a desirable thermal power
transience. Motivated by this, for the outer loop, a DMC is newly designed for MHTGR-based NSSS
thermal power control. This scheme has the following three features. First, a DMC is design over the
existing NC. Second, the thermal power response by this cascade control is insensitive to the parameter
data of NSSS step-response model. Third, both the zero offset and the short settling time of thermal
power are realized. The results of numerical simulation under both wide range power ramp conditions
show the improved thermal power response of this newly-built DMC cascade control scheme.

2. MHTGR-Based NSSS

2.1. System Description

Figure 1 shows the diagram of one MHTGR-based NSSS module designed by Institute of Nuclear
and New Energy Technology in Tsinghua University [23] and has been extensively analyzed and
referred to in many studies [2,3,8,9]. The MHTGR-based NSSS module mainly consists of coherently
connected submodules, which are described by neutron kinetic, heat transfer, and hydrodynamic
equations. Therefore, the overall MHTGR-based NSSS is extremely complicated and is modeled in the
MATLAB environment.

The MHTGR utilizes helium as primary loop coolant and graphite as both the moderator and
structural material. As shown in Figure 1, cold helium is pressurized in the blower, which is installed
on the top of OTSG, and then the pressurized helium leaves the OTSG to enter the MHTGR through
the cold gas pipeline. The cold helium rises along the channel inside the reflector from the bottom to
the top to cool down the reflector, and then falls vertically through the pebble bed. During this process,
the enormous amounts of thermal energy from fission is absorbed by the helium, which is heated
to a very high temperature. The hot helium reaches the chamber in the bottom of reflector and then
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flows into the primary side of OTSG, where it is cooled down by transferring heat to the secondary
steam stream and flows toward the blower as cold helium again. The main design parameters of the
MHTGR-based NSSS are listed in Table 1.

2.2. Inner Loop Control Scheme

The MHTGR-based NSSS is a tightly coupled system with multiple inputs and multiple outputs.
To guarantee the closed-loop stability, a coordinated control scheme is shown in Figure 3 [9] with the
control input and output listed in Table 2.
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Table 1. Main design parameters (at rated condition) of MHTGR-based NSSS module.

Parameters Unit Value

Thermal power of reactor module MWth 250
Core power density MW/m3 3.22
Electricity efficiency % 42

Core diameter/height m 3/11
Helium pressure MPa 7

Helium temperature at reactor inlet/outlet ◦C 250/750
Helium flowrate kg/s 96
Steam pressure MPa 13.24

Steam temperature ◦C 576
Steam flowrate kg/s 96

Table 2. Control input and output of MHTGR-based NSSS module.

Module Input Output

MHTGR Rod speed Neutron flux

OTSG
Helium flowrate Helium temperature
Feedwater flow Live steam temperature

The set-point of NSSS thermal power is given by the load demand which is determined by manual
setting from operator, load frequency control or the peak adjustment from the power grid. In Figure 3,
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the neutron flux controller adjusts the rod speed to follow the nuclear power set-point by changing the
reactivity in the core. The primary temperature controller utilizes the deviation of both primary and
secondary temperature from their set-points to compute the revision of helium flowrate. The secondary
temperature controller determines the revision of feedwater flowrate and forms a cascade structure
with connection to the inner loop feedwater flowrate controller.

The mapping tables is a static mapping from the set-point of thermal power to the set-points
of flowrates, neutron flux and temperatures. Moreover, the mapping tables depends on the
thermal-hydraulic and physical design and is implemented online through a look-up table.
Thus, the set-point trajectories fed to the coordinated control in Figure 3 are just generated by simple
linking of the steady values of flowrates, neutron flux and temperatures and obviously can only reflect
the balance between the nuclear power and thermal power of NSSS in the steady-state.

Remark 1. The inner loop coordinated control law in Figure 3 has the proportional-differential (PD) or

proportional-integral (PI) form u(s) = G(s)y(s) where, u =
[

u1 u2 u3

]T
, y =

[
y1 y2 y3

]T
, and

G(s) =


k1 + k2

s
k3s+1 0 0

0 k4 +
k5
s −

(
k4 +

k5
s

)
0 0 k6 +

k7
s

 (1)

where k1, · · · , k7 are controller parameters and detailed information about this kind of coordinated control
scheme can be found in the work of Dong [9].

2.3. Problem Formulation

The satisfactory closed-loop stability of both neutron flux and temperatures can be guaranteed
by the control scheme shown in Figure 3. However, the thermal power is controlled in the open
loop manner, as shown in Figure 4. The heat capacities of submodules such as reflector, pebble bed,
and OTSG have significant difference. Thus, eliminating the errors of flowrates, neutron flux and
temperatures from their set-point given by mapping tables may not produce a desirable thermal
power response.
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Problem. Consider the MHTGR-based NSSS with the coordinated control law given in [9] as
the inner loop controller. How should an optimization-oriented controller with the cascade control
structure shown in Figure 2 be designed so that the thermal response is improved?

3. Dynamic Matrix Control for Thermal Power

Due to the characteristics of zero offset property, small computation burden and strong robustness,
DMC is considered as optimization-oriented controller in the outer loop. The standard method is
adopted in the design of DMC [20,21], namely the step response model, optimization, and estimator.
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3.1. Cascade Control Scheme

The proposed cascade control scheme is shown in Figure 5, where z−1, Pr,
.
Pr, and ∆

.
PDMC are

unit delay block, thermal load, its derivative and derivative revision of the thermal load, respectively.
Obviously, compared with the coordinated control law shown in Figure 3, DMC is added in the outer
loop to form a cascade structure, which is explained in the following subsections. The aim of DMC is, at
every sampling instant, to inject a first derivative revision signal to the first derivative of thermal load.
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Remark 2. The first derivative signal of thermal load instead of its step signal, which is a more common choice
in MPC industrial application area, is considered in Figure 5 and is explained below. The principle for designing
the DMC is not to change the original controller structure, which means the DMC should give the revision
signal Prevision and superposes with original thermal load signal. Thus, the thermal load signal Pth fed to the
mapping tables is chosen to be,

Pth = Pr + Prevision (2)

A potential constraint from Equation (2) is that Pr and Prevision should be fed to mapping tables at the
same sampling rate. However, since Prevision is given by DMC, the sampling rate is usually one or two orders of
magnitude slower than Pr, whose sampling rate is usually the same as PID, in millisecond range. Hence, by
choosing first derivative signal, DMC can work efficiently cascaded with PID at different sampling rate, and give
a relatively smooth thermal load signal [24].

3.2. Step Response Model

3.2.1. Step Signal Test

To build the step response model of thermal power, a step signal is applied to the first derivative
of thermal load, as shown in Figure 6, and the resultant thermal power response data are then stored.
At the steady state of 50% reactor full power (RFP), the derivative of thermal load is increased by
1%FP/min and the step responses of thermal power are shown in Figure 7.

When the reference derivative signal is increased by 1%FP/min at t = 90,000 s, thermal power is
increased to track the ramp controlled by the inner loop controller, and gradually reaches a “stable
state” for about 200 s. From the perspective of modeling cost, step response model can be easily built
based on the existing control system and the implementation of DMC is relatively simple. The thermal



Energies 2018, 11, 2651 7 of 15

power step response is sampled at every sampling instant and is stored in step response coefficient
matrix S

S := [S1 S2 . . . SN ]
T (3)

where si is the amplitude of thermal power step response at the ith sampling step and N is the
sampling number.

Remark 3. In Figure 7, the “stable state” after about 200 s transient implies that the future thermal power
can be approximate fitting by a linear affine function. Thus, it is reasonable to truncate the step response when
thermal power response has reached the “stable state”.
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3.2.2. State Space Model

By the observation of Figure 7, suppose the dynamic response of thermal power enters the “steady
state” after N sampling time under a step input. Then, as discussed in Remark 3,

y(k + N) = 2y(k + N − 1)− y(k + N − 2) (4)

where y is thermal power and k is sampling instant. To obtain a state space model, define the state at
kth sampling instant as,

Y(k) :=

{
[y(k), y(k + 1), · · · , y(k + N − 2), y(k + N − 1)]T

∆u(k + i) = ∆d(k + i) = 0, i = 0, 1, · · · , N − 1

}
(5)
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where ∆u and ∆d are the derivative revision signal and derivative variation of thermal load ∆d(k− 1) =
.
Pr(k)−

.
Pr(k− 1), respectively. Thus, the free thermal power response is,

Y(k) = MY(k− 1) (6)

where

M =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · −1 2


N×N

(7)

Based on the coefficient matrix S , the state space model can then be represented by,{
Y(k) = MY(k− 1) + S(∆u(k− 1) + ∆d(k− 1))
y(k) = CY(k)

(8)

where C =
[

1 0 · · · 0
]

1×N
.

3.3. Optimization

The goal of the optimization (see Figure 5) is to calculate a sequence of derivative revision signals
such that the prediction of thermal power tracks the thermal load in a desirable manner under the
inequality constraints on the thermal power rate. The desirable sequence of derivative revisions is
obtained by minimizing a cost function, appropriately defined over a finite future as follows:

min
∆u(k+i|k),i=0,1,··· ,Nc−1

J(k) (9a)

subject to the following.
Initial State:

Y(k|k) = Ŷ(k) (9b)

Prediction Equations:{
Y(k + i|k) = MY(k + i− 1|k) + S(∆u(k + i− 1|k) + ∆d(k + i− 1))
y(k + i|k) = CY(k + i|k), i = 1, · · · , Np

(9c)

Constrains on Input:{ .
Pmin ≤ ∆u(k + i− 1|k) + d(k + i− 1) ≤

.
Pmax, i = 1, · · · , Nc

∆u(k + i− 1|k) = 0, i = Nc + 1, · · · , Np
(9d)

The objective function takes the following quadratic form:

J(k) =
Np

∑
i=1

(Pr(k + i|k)− y(k + i|k))2 + R
Nc−1

∑
i=0

∆u(k + i|k)2 (10)

where •(k + i|k) represents the numerical value of the variable • obtained at the sampling instant k + i,
based on current measurements and information at instant k. Np, Nc,

.
Pmax and

.
Pmin are prediction

horizon, control horizon, maximum and minimum value of thermal power rate, respectively. Ŷ is the
estimation of the system state derived from an estimator, which is given in next subsection.
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By solving the optimization problem in Equation (9), although more than one optimal derivative
revision signal is obtained, only the first portion is implemented. At the next sampling instant, when
the new system state Ŷ is ready, the above optimization is then repeated.

Remark 4. The constrained optimization problem in Equation (9), with objective function given by Equation (10)
can boil down to a quadratic program (QP) and is available to be solved efficiently by commercial software [25].

3.4. Estimator

Since only the first portion of Y can be measured, it is necessary to estimate the state of the model
in Equation (8). As shown in Figure 5, the estimator is given as,

Ŷ(k) = MŶ(k− 1) + S(∆u(k− 1) + ∆d(k− 1)) + K f
(
y(k− 1)− CŶ(k− 1)

)
(11)

where K f is the gain of the estimator.

Remark 5. The controllability and observability of the model in Equation (8) can be easily validated by checking
the following algebraic expression,

rank


C

CM
...

CMN−1

 = rank


S

(MS)T

...(
MN−1S

)T


T

= N (12)

Remark 6. In general, the error dynamics of the estimator is,

e(k) = Ŷ(k)−Y(k) =
(

M− K f C
)

e(k− 1) + ∆S(∆u(k− 1) + ∆d(k− 1)) (13)

where ∆S is the model mismatch between the step response coefficient matrix stored in Equation (3) and the true
thermal power dynamic. Thus, the K f should be chosen to make

(
M− K f C

)
nominal asymptotically stable.

Remark 7. The estimator in Equation (11) can be implemented efficiently by unit delay block, as shown in
Figure 5. The delay blocks z−1 in the left, bottom and right of Figure 5 are used to obtain ∆u(k− 1), Ŷ(k− 1)
and y(k− 1), respectively. The differentiator 1− z−1 is used to obtain ∆d(k− 1).

3.5. Tuning of the DMC

Theoretically, large prediction and control horizon together with small sampling time are preferred,
which increases the online computational burden for solving QP (Equation (9)). Usually, the sampling
time of discrete control should be no more than 10% of the minimum time constant and the prediction
horizon should be long enough to cover the whole thermal power dynamic response. In Figure 7,
the sampling time is chosen to be 5 s for the DMC design.

The two terms in the cost function in Equation (10) are expressed as (Pr(k + i|k)− y(k + i|k))2

and ∆u(k + i|k)2, which indicate the error for thermal power and the change in the derivative revision
signal, respectively. The goal is to find ∆u(k + i|k), i = 0, · · · , Nc − 1 that is small (if possible) and
makes the residual Pr − y small. Then, a positive parameter R is added in the objective function in
Equation (10) to minimize the weighted sum of squared norms. In the DMC, a large value of R should
be selected due to the following considerations:
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• A large value R adds the cost of using large values of the derivative revision signal, to the cost of
missing a small amount of the thermal power tracking. Since the step response coefficient matrix
is sampled around a specified operating point, the inevitable model error makes it meaningless to
tune the parameter R aggressively by solving the QP.

• By solving Equation (9), small value of R may result in a large ∆u. From Equation (13), a large ∆u
causes large variation in estimator error, and hence should be avoided.

4. Application to NSSS Thermal Power Control

In this section, the designed DMC consisting of Equations (9) and (11) is applied for the thermal
power control of a MHTGR-based NSSS module. The numerical simulation results of power ramping
between 100% and 50% RFP are shown, and necessary discussions are also provided.

4.1. Implementation of DMC

Figure 5 shows the proposed DMC for optimizing the thermal power of the MHTGR-based NSSS
module, which has a classical cascade control structure with DMC in the outer loop for optimization
and the PID in the inner loop for stabilization. The input and output of the DMC are the thermal power
measurements with its reference and the derivative revision signal to the set-point of thermal power,
respectively. The gain of the estimator K f is based on the duality principle, and a linear quadratic

regulator (LQR) feedback gain for system
(

MT CT
)

is chosen. In the DMC, the QP is solved using
the MATLAB function “quadprog” at each sampling instant. Although the numerical simulation is
performed on a personal computer, the computation speed is very fast and negligible compared with
the sampling time. Thus, the proposed DMC can be easily implemented in real-time without any
further code optimization.

4.2. Simulation Setting and Results

This simulation and the step test in Figure 7 are executed on the MATLAB/Simulink environment,
and the simulation program is the same as that given in Reference [9], which consists of the dynamic
modules of the OTSG, MHTGR and secondary loop fluid network [26]. The parameters of the PID
controller are the same with those given in Reference [9]. The parameters of the DMC are given as
Np = 50, Nc = 10, R = 1000,

.
Pmax = 10% FP/Min, and

.
Pmin = −10% FP/Min.

The simulation results of power ramping between 100% and 50% RFP are shown here. Initially,
the MHTGR-based NSSS module operates at RFP. The thermal power set-point begin to ramp down
from 100% to 50% RFP with the rate of 5% RFP/min manually set by operator at 8000 s, and then ramp
up to 100% RFP also with the same rate at 12,000 s. The dynamic responses of the normalized nuclear
power, the temperatures of both reactor outlet helium and OTSG steam, and the thermal power with
and without DMC are shown in Figure 8. The dynamic responses of control rod speed, the flowrates
of helium and feedwater with and without the DMC as well as revision of thermal power derivative
revision signal are shown in Figure 9. The error dynamic of the estimator between true state and
estimated state is shown in Figure 10.
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Figure 8. Responses of key process variables of NSSS module: (a,b) normalized nuclear power;
(c,d) reactor outlet helium temperature; (e,f) live steam temperature; and (g,h) NSSS thermal power.
The solid line is DMC with PID in Figure 5 and the dashed line is only PID in [9].
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4.3. Discussion

In the thermal power ramping simulation of NSSS module, the change in the set-point of thermal
power directly causes the change in the set-points of flowrates, neutron flux and temperatures.
The errors between actual values and their set-points are then enlarged. Immediately, proper set-points
of the flowrates and the control rod speed are generated by the inner loop PID controller to suppress
these errors. Obviously, the NSSS thermal power is not directly controlled by the PID, which is
important to improve to keep the energy balance between the second loop and NSSS. To improve
the transient performance of thermal power, the DMC shown in Figure 5 is implemented in the
outer loop, whose input and output are, respectively, the tracking error of thermal power and the
derivative revision to the set-point of thermal power. In Figures 8 and 9, by adding the DMC in the
outer loop, a slight overshoot can be observed in helium and feedwater flowrate, thermal power,
helium temperature and neutron flux. The zeros offset and the short settling time of thermal power
are realized while the closed-loop stability is well maintained.

The reasons for the different thermal responses with and without DMC are analyzed as follows.
In the case without DMC, when the set-point of thermal power reaches the reference, then the
set-points of neutron flux, temperature and flowrate remain unchanged. With these key variables
approaching the set-points, input errors of PID gradually decreases, and thus the function of the PID
is gradually diminished. Due to the great inertia delay between nuclear power and thermal power,
the dynamic characteristics of thermal power is very slow to approach its reference, as shown in
Figure 8. Here, the DMC in the outer loop is responsible for computing thermal power derivative
revision signal at every sampling instant. Then, the set-points of nuclear flux, temperature and flowrate
is revised by thermal power measurement in real time setting, thus better power balance between
nuclear power and thermal power can be obtained.

Only one linear model (Equation (8)), developed at 50% RFP, is utilized to predict the thermal
power within the prediction horizon. Then, QP is solved online to optimize the error between the
predicted thermal power trajectory and thermal power setpoint while keeping the derivative revision
signal relatively small. According to Equation (13), a bias between true state and estimated state is
seen in Figure 10. The robustness of the DMC is validated by the simulation results and is enhanced
by updating the estimated state given by Equation (11), at every sampling time so that the modeling
error is partially compensated.
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5. Conclusions

In this paper, DMC is proposed to improve the thermal power response of MHTGR based NSSS.
From the viewpoint of the modeling cost, DMC is very simple and easy to develop. Moreover, this
DMC can be implemented by leaving the current PID controller in the inner loop and optimizing the
thermal power in the outer loop. Wide range power maneuverings were performed with large-scale
Simulink models. The proposed method outperformed existing PID, which is designed mainly for
stabilizing the NSSS system, and show the satisfactory improvement in the thermal power response.
The thermal performance was only mildly affected by nonparametric model mismatch. This cascade
control structure inherits the advantages of both PID and DMC, by which the zeros offset and the short
settling time of thermal power are realized.
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