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Abstract: In single phase DC-AC systems, double-line-frequency power ripple appears at the DC side
inherently. Normally a large electrolytic capacitor can be used to reduce the power ripple at the DC
side. But there are several problems with this method as it decreases the power density and reliability
of the converter. In addition, a double-line-frequency current ripple appears in case a voltage source
serves at the DC side, which is undesired in specific applications. This paper proposes a single
phase DC-AC DAB (dual active bridge) converter with an integrated buck/boost stage for power
decoupling purpose under low power condition. The proposed active power decoupling method
is able to completely eliminate the double-line-frequency power ripple at the DC side. Therefore,
a constant DC current can be obtained for requirements in specific DC-AC applications.

Keywords: DC-AC; dual active bridge; integrated buck/boost stage; power decoupling; series
resonant converter

1. Introduction

Proposed in the 1990s, the DAB (dual active bridge) converter attracts much research interests
for its high-power-density, isolated and bidirectional power transfer characteristics [1]. It is widely
used in various industrial applications such as battery chargers for plug-in hybrid electric vehicles
(PHEVs) [2,3], interfaces for renewable energy sources like photovoltaic power systems [4–7],
uninterruptible power supplies (UPS) [8,9] and vehicle-to-grid (V2G) [10,11].

In single phase DC-AC systems, high power ripple appears at the DC side due to the
double-line-frequency characteristics of the transmission power at the AC side. In some situations such
as photovoltaic applications, more stable transmission power is required to achieve high accuracy of
maximum power point tracking (MPPT). If a large electrolytic capacitor is simply used at the DC side,
the power density and the reliability of the converter can be decreased significantly and it is not able
to completely eliminate the ripple power. If a battery serves at the DC side, the double-line-frequency
charging or discharging current would decrease the lifetime of the battery [12,13]. To eliminate
the double-line-frequency ripple power at the DC side in single phase power converters, different
power decoupling techniques are introduced [14,15]. However, most of the proposed active power
decoupling topologies require additional power switches which not only decrease the power density
and reliability of the converter, but also bring more cost. The concept of the “parasitic” boost-integrated
phase-shift full-bridge converter is proposed in [16]. Two boost-integrated and unidirectional DC-DC
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topologies, i.e., the symmetric and asymmetric full-bridge converters are presented for specific
multi-port applications with one or two integrated boost stages respectively. Compared with the
symmetric topology [17], a DC block capacitor in the HF (high frequency) link is indispensable for
the asymmetric topology as the average voltage difference between the phase-nodes appears in this
case. By adjusting the duty cycles of the legs, bidirectional power flow is realized for the two ports
at the primary side of the HF transformer. Similar with the asymmetric topology presented in [16],
an active power decoupling method is introduced for CLLC-type resonant DC-AC DAB converter
operating in open loop, which is able to effectively realize power decoupling and reduce the capacitance
requirement of the converter [18]. In this case, the double-line-frequency ripple power is effectively
steered into the passive power decoupling capacitor by adjusting the duty cycle of the modulated
leg. Based on this, if the duty cycle of the modulated leg can be appropriately controlled, then the
double-line-frequency ripple power can be eliminated due to the mentioned bidirectional power
transfer characteristic between the passive energy storage capacitor and the DC source. Therefore,
a constant charging or discharging current of the battery can be achieved.

This paper presents the power decoupling of a single phase DC-AC dual active bridge converter
based on the integrated bidirectional uni-phase buck/boost stage. The double-line-frequency ripple
power is effectively eliminated by the proposed control method on the duty cycle of the bridge leg.
The mathematical model of the proposed converter is analyzed in Section 2. The analysis of the control
strategy for the proposed converter is presented in Section 3. Simulation and experimental results are
illustrated in Section 4. Conclusions are given in Section 5.

2. Mathematical Model of the Converter

The proposed converter is shown in Figure 1. This is a single-stage DC-AC DAB converter with
a pseudo intermediate DC link between the synchronous rectifier and the dual active bridges, which
is free of the large electrolytic capacitor at the DC link required for the dual-stage DC-AC converter.
The AC voltage vg is folded into the voltage vDC1 with a frequency twice that of the AC voltage, which
is given by

vDC1 =
∣∣vg
∣∣ = ∣∣Vg sin

(
ωgt

)∣∣ (1)

where Vg is the magnitude of vg and ωg is the angular frequency of vg.
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Figure 1. The proposed DC-AC DAB converter. 
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Figure 1. The proposed DC-AC DAB converter.

The DAB converters are normally controlled by a triple phase shift (TPS) modulation scheme
which is shown in Figure 2 [19].

Two legs in the primary side are phase shifted by ϕ1 and two legs in the secondary side are phase
shifted by ϕ2. The phase shift angle θ between the voltages vAB and vCD is the third element of this
TPS modulation scheme, which determines the direction of the power transfer. In this paper, the duty
cycles of the switches on leg A can be regulated, while the duty cycles of other switches are fixed
at 50%.
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The Fourier-series method is adopted for the mathematical analysis of the converter in this paper.
In this approach, the significant harmonics of the circuit waveforms are all taken into account, and the
basic AC-circuit theory is used to analyze the resonant converter. The voltage vAO across the switch
Sp2 and the voltage vBO across the switch Sp4 with the duty cycle modulation are given by

vAO = DvDC +
2vDC

π

∞

∑
n=1

1
n

sin nDπ cos[n(ωst− Dπ)] (2)

vBO =
vDC

2
+

2vDC

π

∞

∑
n=1

1
n

sin
nπ

2
cos
[
n
(

ωst− π

2
− ϕ1

)]
(3)

From (2) and (3), vAB is given by

vAB = vAO − vBO =
(

D− 1
2

)
vDC + 2vDC

π

∞
∑

n=1

1
n [sin nDπ cos n(ωst− Dπ)− sin nπ

2 cos n(ωst− π
2 − ϕ1)] (4)

Also, vCD is given similarly by

vCD =
4vDC1

π

∞

∑
n=1,3...

1
n

sin
nϕ2

2
cos
[
n
(

ωst− ϕ1

2
− θ
)]

(5)

This converter can be simplified by using the circuit model as shown in Figure 3.

Energies 2018, 11, x FOR PEER REVIEW  3 of 16 

 

vsp2

vsp4

vAB

vCD

φ1

θ 

vDC

vDC1

vDC

vDC

φ2

2πD
(1-D)2π

 

Figure 2. TPS plus duty cycle modulation scheme. 

The Fourier-series method is adopted for the mathematical analysis of the converter in this 

paper. In this approach, the significant harmonics of the circuit waveforms are all taken into account, 

and the basic AC-circuit theory is used to analyze the resonant converter. The voltage vAO across the 

switch Sp2 and the voltage vBO across the switch Sp4 with the duty cycle modulation are given by 

 DC
AO DC s

1

2 1
sin cos

n

v
v Dv nD n t D

n
  







       (2) 

DC DC
BO s 1

1

2 1
sin cos

2 2 2n

v v n
v n t

n

 
 







  
     

  
  (3) 

From (2) and (3), vAB is given by 

 DC

AB AO BO DC s s 1

1

21 1
sin cos sin cos

2 2 2n

v n
v v v D v nD n t D n t

n

 
    







    
            

    
   (4) 

Also, vCD is given similarly by 

DC1 2 1
CD s

1,3...

4 1
sin cos

2 2n

v n
v n t

n

 
 







  
    

  
  (5) 

This converter can be simplified by using the circuit model as shown in Figure 3. 

vCD' 

Lr Cr

ir

vAB

 

Figure 3. Simplified circuit model of the converter. 

The nth harmonic component of ir is given by 

Figure 3. Simplified circuit model of the converter.



Energies 2018, 11, 2746 4 of 16

The nth harmonic component of ir is given by

.
Irn =

jnωsCr

1− n2ω2
s LrCr

(
.

VABn −
.

VCDn

N

)
(6)

where N is the turns ratio of the HF transformer,
.

VABn and
.

VCDn are the phasors of the nth harmonic
component of vAB and vCD.

.
VABn and

.
VCDn are given by

.
VABn =

2vDC

nπ

{
sin nDπ(cos nDπ − j sin nDπ)− sin

nπ

2

[
cos n

(π

2
+ ϕ1

)
− j sin n

(π

2
+ ϕ1

)]}
(7)

.
VCDn =

4vDC1

nπ
sin

nϕ2

2

[
cos n

( ϕ1

2
+ θ
)
− j sin n

( ϕ1

2
+ θ
)]

(8)

The nth harmonic average power component Pan is given by

Pan = Re
[ .
VABn

.
Irn
∗
]
=

nωsCr

(n2ω2
s LrCr − 1)N

×VABnVCDn sin(ϕABn − ϕCDn) (9)

where VABn and VCDn represent the magnitudes of
.

VABn and
.

VCDn, ϕABn and ϕCDn represent the
arguments of

.
VABn and

.
VCDn.The transmission power of the converter is given by

Pa =
4vDCvDC1ωsCr

π2 N

∞
∑

n=1,3...
sin nϕ2

2
1

n(n2ω2
s LrCr−1)

×
[

sin nDπ sin n
( ϕ1

2 + θ − Dπ
)
−

sin nπ
2 sin n

(
θ − π+ϕ1

2

) ]
(10)

By substituting relevant parameters of the converter, the denominator of (10), namely
n(n 2ω2

s LrCr − 1), increases rapidly with higher harmonics. Its value is 1.27, 58.18, 278.26 and
770.26 for fundamental, third, fifth and seventh harmonics respectively. Thus only the fundamental
transmission power of the converter will be considered to calculate the transmission power as shown
in (11)

Pa1 =
4vDCvDC1

π2X1N
sin

ϕ2

2

[
sin Dπ sin

( ϕ1

2
+ θ − Dπ

)
− sin

(
θ − π + ϕ1

2

)]
(11)

where the reactance X1 of the resonant tank at fundamental frequency is given by

X1 = ωsLr −
1

ωsCr
(12)

If D is ideally near 1/2, then (11) can be simplified as

Pa1 =
8vDCvDC1

π2X1N
sin

ϕ1

2
sin

ϕ2

2
sin θ (13)

From (13) it is evident that the phase shift angle θ between the voltages vAB and vCD determines
the direction of the power transfer. When vAB leads vCD by the phase shift angle θ, the power transfers
from the DC side to the AC side. When vAB lags vCD by θ, then the power transfers from the AC side
to the DC side. The bidirectional power transfer feature of the DAB converters is thus realized through
the control of the phase shift angle θ. The average power transferred to the AC side is given by

Pavg =
4VgvDC sin

( ϕ1
2
)

sin θ

π2X1N
(14)

Then the magnitude of ig is given by

Ig =
2Pavg

Vg
=

8vDC sin
( ϕ1

2
)

sin θ

π2X1N
(15)
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According to (13), if ϕ1 and θ are fixed, then ϕ2 should be regulated as ϕ2 = 2ωgt in order to
achieve unity power factor at the AC side [20–22], which is shown in Figure 4. Tg represents the AC
voltage period. This modulation method for ϕ2 ensures the balance between the transmission power of
the DAB converter and the AC side power, which realizes a pseudo DC link between the DAB converter
and the synchronous rectifier free of the large electrolytic capacitor used in the dual-stage converter.
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According to (11), assuming θ = π/2, two three-dimensional plots of the transmission power
characterization with dmax = 0.05 and dmax = 0.35 (dmax is defined as the maximum deviation
magnitude of the duty cycle D) are shown in Figure 5. p is defined as p = Pa1/PN, where PN is given by

PN =
8vDCVg

π2X1N
(16)
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The transmission power of the DAB converter fluctuates at 100 Hz frequency and the transmission
power increases with bigger phase shift angle ϕ1. As shown in Figure 5, it is obvious that the
transmission power of the DAB converter is near the ideal 100 Hz sinusoidal waveform with
dmax = 0.05, and is greatly distorted with higher dmax = 0.35. The distorted transmission power
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with dmax = 0.35 can cause distortion in the AC side current. Therefore, it is reasonable to use the
simplified (13) if a small dmax value can be obtained.

3. Control Strategy

The integrated buck/boost stage at the primary side of the HF transformer for power decoupling
is shown in Figure 6. Cs, Ls, two switches of the leg A and the DC bus form a bidirectional Buck/Boost
topology inherently, by which the power decoupling is realized. If is > 0, the topology works in Buck
mode. If is < 0, then the topology works in Boost mode.
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Figure 6. The integrated buck/boost stage at the primary side of the HF transformer for power decoupling.

The two working modes of the integrated buck/boost stage are illustrated in Figure 7. Ls works
as a part of the low-pass filter in the Buck mode, and works as a Boost inductor in the Boost mode.
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Figure 7. Two working modes of the integrated buck/boost stage (a) Buck mode with is > 0; (b) Boost
mode with is < 0.

Assuming that the AC side voltage and current are in phase, vg and ig are given by{
vg = Vg sin

(
ωgt

)
ig = Ig sin

(
ωgt

) (17)

Then the AC side power Pg is given by

Pg = vg · ig =
1
2

Vg Ig −
1
2

Vg Ig cos
(
2ωgt

)
(18)

It is clear that Pg consists of two components, i.e., the average part 1
2 Vg Ig and the oscillating part

1
2 Vg Igcos(2ω gt). As the battery serves at the DC side, the DC side power is required to be constant,
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which equals to the average part of Pg. Therefore, the oscillating power should somehow be mitigated
through energy storage buffers.

The ideal power decoupling performance of the integrated buck/boost stage is shown in Figure 8.
Pg represents the AC side power, Pavg represents the average power of Pg, iDC0 represents the DC side
current without any control, Pc represents the ideal decoupling power transferred into the decoupling
capacitor Cs, Ec represents the ideal storage energy of Cs, us represents the voltage of Cs, and is
represents the ideal power steering current.

As us can be controlled by the duty cycle of the leg A, the ripple power is supposed to be
completely eliminated by adjusting the duty cycle properly. The relation between the power decoupling
capacitor Cs and the duty cycle deviation d is given in [18] as

Cs =
Vg Ig

2ωgV2
DC|dmax|

(19)

where dmax is the maximum deviation magnitude of the modulated duty cycle D.

Energies 2018, 11, x FOR PEER REVIEW  7 of 16 

 

 g g g g g g g g

1 1
cos 2

2 2
P v i V I V I t      (18) 

It is clear that Pg consists of two components, i.e., the average part 
1

2
VgIg and the oscillating part 

1

2
VgIgcos(2ωgt). As the battery serves at the DC side, the DC side power is required to be constant, 

which equals to the average part of Pg. Therefore, the oscillating power should somehow be mitigated 

through energy storage buffers. 

The ideal power decoupling performance of the integrated buck/boost stage is shown in Figure 

8. Pg represents the AC side power, Pavg represents the average power of Pg, iDC0 represents the DC 

side current without any control, Pc represents the ideal decoupling power transferred into the 

decoupling capacitor Cs, Ec represents the ideal storage energy of Cs, us represents the voltage of Cs, 

and is represents the ideal power steering current. 

As us can be controlled by the duty cycle of the leg A, the ripple power is supposed to be 

completely eliminated by adjusting the duty cycle properly. The relation between the power 

decoupling capacitor Cs and the duty cycle deviation d is given in [18] as 

g g

s 2

g DC max2

V I
C

V d
   (19) 

where dmax is the maximum deviation magnitude of the modulated duty cycle D. 

t

t

t

t

Pg

iDC0

PC

EC

is

Pavg

t

us t

 

Figure 8. The ideal power decoupling performance of the integrated buck/boost stage. 

The overall control diagram is shown in Figure 9. Iavg and iripple represent the average component 

and the ripple component of iDC respectively. Iavg* and i* represent reference values for Iavg and iripple 

Figure 8. The ideal power decoupling performance of the integrated buck/boost stage.

The overall control diagram is shown in Figure 9. Iavg and iripple represent the average component
and the ripple component of iDC respectively. Iavg* and i* represent reference values for Iavg and iripple
respectively. The phase shift angle ϕ2 is as follows: ϕ2 = 2ωgt (shown in Figure 4) and the phase shift
angle θ is fixed as π/2. To obtain a specific value for the charging or discharging current of the battery,
ϕ1 is used to control Iavg through a proportional-integral (PI) controller (error value IE as input, ϕ1 as
output), thus the battery charging or discharging current can be regulated based on the value of Iavg*.
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Additionally, iripple is controlled by the proportional resonant (PR) controller [23] (−iripple as input,
D as output). The non-ideal PR controller transfer function is given by

GPR(s) = KP +
2Kiωcs

s2 + 2ωcs + ω2
0

(20)

where the KP, Ki, ωc and ω0 represent the proportional term, the resonant term gain, the cut-off
frequency and the resonant frequency respectively. According to the internal model principle, if
a sinusoidal mathematical model included, the controller can realize zero steady-state error following
a sinusoidal reference input signal at the specific frequency [24]. The bode diagrams of the non-ideal PR
controller are shown in Figure 10, with KP = 1, Ki = 10, ωc = 5, 10, 20 rad/s and ω0 = 200π rad/s.
As shown in Figure 10, a high gain at the resonant frequency is obtained. And the bandwidth can be
widened with a higher value of ωc and vice versa. A wider bandwidth is helpful when the frequency
variation effect occurs.
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The control loop designed to control Iavg is shown in Figure 11. GLPF represents the transfer
function of the low-pass filter (LPF). GPI represents the PI controller. Gc represents the transfer function
from ϕ1 to iDC. Iavg* is set as 0.5 A in the following analysis.
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According to (14), assuming that the PR controller is working appropriately and the DC side
power ripple is almost eliminated, then iDC can be given by

iDC =
4Vg sin

( ϕ1
2
)

sin θ

π2X1N
(21)

Gc is given by

Gc(s) =
îDC

ϕ̂1
=

2Vg sin θ

π2X1N
cos
( ϕ1

2

)
(22)

GLPF is given by

GLPF =
ω2

n
s2 + 2ζωns + ω2

n
(23)

where the damping coefficient ζ = 0.7, natural angular frequency ωn = 20π rad/s. GPI is given as

GPI = 5 +
50
s

(24)

The loop gain of the system is given by

Go = GPIGcGLPF (25)

In the steady state, ϕ1 is calculated as 1.03 rad/s according to (21) assuming that iDC is ideally
controlled as Iavg*. Then the bode diagram of the corrected open-loop transfer function is shown in
Figure 12. As shown in this figure, the phase margin is enough to meet the stability requirement of
the system.
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4. Simulation and Experimental Results

The simulation and experimental results of the proposed DC-AC DAB converter with DC side
power decoupling under low power condition are shown in this section.

4.1. Simulation Results

The main parameters of the MATLAB Simulink model are given in Table 1.

Table 1. Parameters of the MATLAB Simulink model.

Parameter Value

vg 18 V (Vg)
f g 50 Hz

VDC 30 V
f s 20 kHz
Cs 1900 µF
Cr 1.4 µF
Lr 102.5 µH
N 1:1

With ϕ1 = π/2, θ = π/2, the simulation results of the AC side voltage vg and current ig, DC side
current iDC without the DC side power decoupling are shown in Figure 13. From Figure 13c, there is
a 100 Hz ripple current, or a 100 Hz ripple power at the DC side because of the double-line-frequency
power transmission nature at the AC side. It is noted that the unity power factor is achieved at the AC
side due to the applied modulation scheme for the phase shift angle ϕ2.
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Figure 13. With ϕ1 = π/2, θ = π/2, (a) the AC side voltage vg; (b) AC side current ig; and (c) DC side
current iDC without the DC side power decoupling.

With ϕ1 = π/2, θ = π/2, the simulation results of ig, iDC, the power decoupling capacitor Cs

voltage us and current is with the DC side power decoupling are shown in Figure 14. According to
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(20), the parameters of the PR controller are as follows: KP = 0.3, Ki = 3, ωc = 5 rad/s and
ω0 = 200π rad/s.

From Figure 14b, the 100 Hz ripple power at the DC side is almost eliminated, thus a relatively
stable DC side current is obtained, which is important when the DC source is a battery. From
Figure 14c,d, as the duty cycle of leg A is modulated, the power decoupling capacitor Cs voltage us

fluctuates at 100 Hz frequency and balances the 100 Hz ripple power at the DC side. Also, the fluctuation
range of us is relatively small, thus the modulation range of the duty cycle is small, which will not cause
a distortion in the transmission power and the AC side current ig as shown in Figure 14a.
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(d) the power decoupling capacitor Cs current is.

The simulation results of the voltages vAB, vCD, and the transformer primary side current ir
are shown in Figure 15. As ϕ1 is set as π/2, the width of the positive part and the negative part of
vAB is π/2, and vAB leads vCD by θ = π/2. The envelope of the transformer secondary voltage vCD

under this condition is shown in Figure 16. According to vCD1 given in (1), the magnitude of vCD has
a 100 Hz envelope.
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Figure 16. The envelope of the transformer secondary voltage vCD (ϕ1 = π/2, θ = π/2).

Assuming the battery charging or discharging current is required as Iavg* = 1 A, by adding the
Iavg control loop shown in Figure 9, iDC and ϕ1 are shown in Figure 17. It is clear that iDC is controlled
at the desired constant value 1 A.
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Figure 17. (a) iDC and (b) ϕ1 with the Iavg control loop (Iavg* = 1 A).

4.2. Experimental Results

The experimental settings are shown in Figure 18. The parameters of the experimental settings
are the same as the simulation parameters shown in Table 1. With ϕ1 = π/2, θ = π/2, the experimental
results of the AC side voltage vg and current ig, DC side current iDC without the DC side power
decoupling are shown in Figure 19. Similar with the simulation results shown in Figure 13,
there appears a 100 Hz ripple current, or a 100 Hz ripple power at the DC side because of the
double-line-frequency power transmission nature at the AC side.
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capacitor Cs voltage us and current is are shown in Figure 21.
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Comparing Figure 20a with Figure 14a, and Figure 20b with Figure 14b, it is obvious that the
experimental results verify the simulation results. The experimental result of iDC is about 0.91 A,
which is near the simulation result of iDC. The 100 Hz ripple power at the DC side is almost eliminated
compared with Figure 19b, thus a more stable DC side current is obtained. Compared with Figure 14c,
the average value of us in Figure 21 is a bit lower than the expected value due to the voltage drop at the
DC side in the experimental test. With the duty cycle modulation, the power decoupling capacitor Cs

voltage us fluctuates at 100 Hz frequency and thus the 100 Hz ripple power at the DC side is eliminated.
The experimental result of the transformer secondary voltage vCD in this condition is shown in

Figure 22. According to vDC1 given in (1), vCD shows a 100 Hz envelope with a magnitude of 18 V (Vg).
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5. Conclusions

The basic characteristics of the single stage DC-AC DAB converter with an integrated uni-phase
buck/boost stage for DC side power decoupling purpose under low power condition is analyzed in
detail based on the mathematical analysis, simulations and experiments. Not only the power density
and reliability of the converter is enhanced as no additional power switch is added, but also the cost of
the converter is decreased. By controlling the duty cycle of the specific leg, the integrated uni-phase
buck/boost stage is able to completely eliminate the double-line-frequency ripple power with PR
control, which is verified in the simulation and experimental results. In addition, a current loop is
added to obtain a specific constant value for the charging or discharging current of the DC source.
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