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Abstract: To efficiently manage unstable wind power generation, precise short-term wind speed
forecasting is critical. To overcome the challenges in wind speed forecasting, this paper proposes a
new convolutional neural network algorithm for short-term forecasting. In this paper, the forecasting
performance of the proposed algorithm was compared to that of four other artificial intelligence
algorithms commonly used in wind speed forecasting. Numerical testing results based on data
from a designated wind site in Taiwan were used to demonstrate the efficiency of above-mentioned
proposed learning method. Mean absolute error (MAE) and root-mean-square error (RMSE) were
adopted as accuracy evaluation indexes in this paper. Experimental results indicate that the MAE
and RMSE values of the proposed algorithm are 0.800227 and 0.999978, respectively, demonstrating
very high forecasting accuracy.

Keywords: artificial neural network; wind speed forecasting; wind energy; power system;
energy management

1. Introduction

The depletion of fossil fuels, increased environmental pollution and the development and
maximum utilization of renewable energy sources have attracted the attention of experts and
scholars globally [1–3]. Sustainability transitions are long-term, multi-dimensional, and fundamental
transformation processes [4], and it is also one of the greatest challenges in the 21st century [5]. As a
non-polluting renewable energy source, wind energy is highly valued by many countries. Wind power
generation has emerged as one of the most mature renewable energy power generation technologies
including high commercialization potential [6].

In aspect of the prices time series problem [7–9], Cincotti et al., used the three different methods
to the model this issue: a discrete-time univariate econometric model and two artificial intelligence
techniques. Support vector machine (SVM) methodology gives better forecasting accuracy for price
time series [8]. However, this paper proposes that the performance of WindNet compared to that
of SVM, random forest (RF), decision tree (DT), multilayer perceptron (MLP), convolutional neural
network CNN, and long short-term memory (LSTM) architectures is the best in that its average MAE
and RMSE values are the lowest.

Short-term wind speed prediction of wind farms is one of the most effective ways to solve the
above-mentioned energy problems. This corresponds to the effective prediction of the wind speed
and the wind farm power output, according to the power curve of the wind turbine. This enables the
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power dispatch system to adjust the dispatch schedule in time, according to changes in wind power
output. This ensures power quality, reduces power system reserve capacity and lowers power system
operation cost. Effective prediction will also improve wind power penetration rate and reduce the
impact of wind power on the power grid. Therefore, accurate short-term wind power forecasting can
reduce the risk of power grid transmission and integration [10].

According to theory, since wind speed pattern is determined by natural meteorological rules, the
pattern has inherent regularity, which proves the feasibility for wind speed forecasting. However, in
practice, wind speed fluctuates randomly and is unstable [11]. Different wind speeds correspond to
different locations, sometimes wind speeds at the same location may differ with time, while wind
speeds may also vary at the same altitude. Factors such as seasonality, temperature, humidity, air
pressure and other parameters have to be considered [12]. Therefore, there are still significant obstacles
in wind speed forecasting.

Renewable energy issues has recently attracted much attention, thus there have been many studies
on wind speed forecasting [13]. According to [14] a Bayesian structural break model was proposed to
conduct exact short-term wind speed forecasting. The experiment testing data is actual data collected
from utility scale wind turbines. The experiment also applied mean absolute error (MAE), mean
square error (MSE) and root mean square error (RMSE) for performance evaluation. Furthermore, the
experiment could also be applied in applications such as wind turbine predictive control and wind
power scheduling. The precision of this method is very high, but it is only suitable for ultra-short wind
speed predictions of a few seconds to a few hours. Authors [15] proposed a wind speed and solar
radiation co-testing system based on extreme learning machines (ELM) and principal components
analysis (PCA). According to literature [15], PCA can be used to reduce data dimension, since this
approach can greatly reduce the complexity of model training. The experiment also proved that while
maintaining forecasting accuracy, ELM model training is significantly faster compared to (a) multi-layer
perceptron network, (b) radial basis function networks and (c) least squares support vector machines.
However, this method is applicable exclusively for short-term wind speed forecasting (few hours)
and not for long-term predictions. Wang et al. [16], integrated various multi-step-ahead wind speed
forecasting models and furthermore compared and analyzed each model. They further mentioned that
multi-step-ahead prediction of wind speed is very challenging and that this goal can be achieved by
adopting the weather research and forecasting (WRF) model. In addition, they also mentioned that
multiple strategies are more effective than single strategies in the research of wind speed prediction.
The integration of various models to construct a combination of direct and multi-input multi-output
strategies (COMB-DIRMOs) corresponds to a practical, effective and robust model.

Currently there are many studies related to wind speed-forecasting methods and each method
has its own advantages and disadvantages. Therefore, many experts and scholars use ensemble
methods to predict wind speed [17]. Ensemble methods can be divided into two major types:
competitive ensemble forecasting and cooperative ensemble forecasting. Ren et al. [17], compared
and proposed improvements on the most current state-of-the-art wind speed prediction ensemble
methods. Jiang et al. [18], combined v-support vector machine (v-SVM) and cuckoo search (CS) to
conduct short-term wind speed forecasting. In this method, CS is used to adjust the parameters of
v-SVM and the experimental results proved that the performance of CS is improved compared to that
of particle swarm optimization (PSO). Zhang et al. [19], integrated three different methods to predict
wind speed: the ensemble empirical mode decomposition (EEMD), adaptive neural network-based
fuzzy inference system (ANFIS) and seasonal auto-regression integrated moving average (SARIMA).
Jiang et al. [18] and Zhang et al. [19] both proposed hybrid wind speed prediction models that present
an adequate prediction performance. Nevertheless, both studies present predictive wind speed results
within a few hours period and are not applicable for long term wind speed analysis.

As it concerns neural network wind speed prediction, More and Deo [20] proposed a basic
neural network architecture to conduct wind speed prediction and its feasibility was experimentally
confirmed. However, there are various kinds of neural network architectures and there are several
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variants concerning even the most basic neural networks. The most basic neural network architecture
was presented by Li and Shi [21]. Prediction comparisons were conducted between three different
models (adaptive linear element, back propagation and radial basis function). The result of the research
indicated that these three methods include advantages and disadvantages. Thus, the selection of a
neural network model is a significant issue. Guo et al. [22], proposed a multi-step forecasting model
to achieve wind speed prediction. This method applied the empirical mode decomposition (EMD)
neural network, which corresponds to the use of a number of traditional neural networks to predict
wind speed. Although this method has been proven effective during experiments, the parameters of
neural networks that need to be trained further increased. Hence, the complexity of the training may
increase significantly. However, with the development of deep learning technology, the convolutional
neural network (CNN) architecture adopted in this paper not only differentiates among various
machine-learning algorithms, but also additionally predicts wind speed for a 3 day-period including
the highest accuracy. Hence, this provides to the energy management systems the most precise and
efficient power dispatching.

The major contributions of this paper include: (a) The development of a powerful wind
speed-forecasting algorithm for renewable energy systems; (b) Comparison of the performances
of the several popular machine learning methods on the challenge of wind speed forecasting and
(c) Demonstration of the feasibility and practicality of the proposed model as a significant wind speed
forecasting application.

This paper is organized as follows: Section 2 reviews the variety of renewable resource forecasting
techniques. Section 3 introduces the proposed CNN model. Section 4 illustrates the wind speed
forecasting results of the proposed model and the comparison results between the proposed model and
current methods. Discussions are mentioned in Section 5. Finally, Section 6 concludes the experimental
results of this paper.

2. Renewable Resource Forecasting Techniques Overview

Figure 1 illustrates the architecture of a renewable energy management system [23]. The energy
management system (EMS) addresses issues of energy control, management, maintenance, and
consumption, to assist in the electrical equipment maintenance and repair within the factory, farm,
or even a whole city. It can monitor the operation status of the equipment and improve overall
management immediately. Good management practices can extend the life of electrical equipment
and reduce costs. In the event of equipment failures or various other conditions, the system can
immediately send out an alarm to facilitate management personnel monitoring and maintenance and
thus losses are decreased to minimum. In the case of aging intensive energy-demanding devices,
the EMS can also notify management personnel to proceed to a replacement. In the renewable
energy management system, the EMS can use programmed control system technology, network
communication technology and database technology, to connect renewable energy data collection,
monitoring stations and management and control centers distributed on the site to achieve data
collection, storage, processing, statistics, query and analysis, and even data monitoring, and diagnosis.
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Figure 1. Renewable energy management system architecture [23]. Figure 1. Renewable energy management system architecture [23].

Based on Figure 1, it is demonstrated that the EMS dispatches renewable energy generated power
following a power prediction through the forecasting model, to achieve the goals of energy monitoring
and effective management. Through centralized monitoring and effective management of energy
data, energy consumption per unit is reduced and additionally economic and energy efficiency is
significantly improved. Therefore, the forecasting model represents a crucial parameter in the EMS.

Many applications related to energy forecasting are available. Figure 2 illustrates the distribution
of various applications in special resolution and forecast time coordinates. The horizontal axis of
Figure 2 corresponds to the forecast horizon (time) and its resolution is divided into four different
predictions of time periods: seconds, minutes, hours, and days. The vertical axis corresponds to spatial
resolution, which is ordinarily divided into 3 categories: interconnection level, transmission level
and distribution level. Figure 2 also lists several of the most common applications such as voltage
regulation, grid stability, power reserve management (primary, secondary and tertiary), dispatching
and load following, unit commitment and transmission scheduling. It is worth noting that the main
focus of this paper is that dispatching and load following is positioned at the transmission level, its
prediction time length, as far as current studies are concerned, mostly falls only within a few minutes
to a few hours.

In addition, Figure 3 demonstrates the classification of different prediction methods [24]. In this
figure, the vertical axis corresponds to the spatial resolution (distance) and the horizontal axis
represents forecast horizon (time). Figure 3 includes a sufficient classification and description of
a variety of prediction methods and models. At present, common prediction, methods include
persistence, autoregressive (AR), moving average (MA), ARMA, artificial neural network (ANN),
support vector regression (SVR), fuzzy theory, statistical models, sky imagers, satellite imagery,
mesoscale numerical weather prediction (NWP) and global NWP. Among these methods, sky imagers
fall in the interval of 1 s to 30 min and 1 m to 2 km. Satellite imagery fall between 15 min to 6 h and
1 km to 10 km. Mesoscale NWP falls between 4 h to 120 h and 5 km to 20 km. Global NWP falls
between 12 h to days and 10 km to 90 km. The ANN algorithm applied in this paper, based on current
research, has a prediction time length that corresponds to the period of a few seconds to several hours.
Based on Figures 2 and 3, it is derived that current studies on power dispatch and ANN prediction
cannot achieve up to day-length forecasting results. The CNN prediction model proposed in this paper
could analyze data from the past 7 days and predict wind speed conditions for the next 3 days. Hence,
the EMS can accurately forecast future electricity output.
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3. The Proposed CNN Model

Neural networks present powerful modeling capabilities and are widely used in many
applications. In this section, authors introduce the basic multilayer perceptron (MLP) [25] and the
convolutional neural network (CNN) [26–31] architecture. The WindNet algorithm proposed in this
paper is also described in this chapter.

3.1. Multilayer Perceptron

The basic computation unit in a neural network is a neuron, commonly referred to as a “node”
or “unit”. The node receives input from other nodes or receives input from an external source and
calculates the output. Each input is supplemented with “weight” (w), which depends on the relative
importance of other inputs. Feedfoward neural network is the first invented and simplest artificial
neural network. It contains multiple neurons (nodes) arranged in multiple layers. Nodes in adjacent
layers have connections or edges. All connections are equipped with weights. In the definition of MLP,
there is at least one hidden layer (excluding one input layer and one output layer). The architecture of
the fully connected neural network is as illustrated in Figure 4. The leftmost green circle represents the
hidden layer, the middle yellow circle corresponds to the hidden layer, the rightmost red circle serves
as output and the blue line represents weight. In the MLP architecture, each layer is fully connected.
The MLP uses backpropagation to adjust the weight value during each training session. Following the
MLP training, the calculation result can be output through layer-by-layer transfer.
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3.2. Convolution Neural Network

Although the performance of MLP seems efficient in all aspects, CNN could present an
improved performance for feature extraction capabilities. CNN, which can perform feature extraction
automatically, can be applied to image recognition and natural language processing. It can also
effectively reduce the load of neural network training due to the introduction of the convolution layer
concept. CNN is also a cognitive method that mimics the human brain. As an example, if a human
brain identifies an image, it may initially notice the distinctly colored points, lines and planes and then
identify them into different shapes such as eyes, nose and mouth. This abstraction process is identical
to the way that the CNN algorithm builds the model. The convolution layer shifts the comparison of
points to comparison of sections, through analyzing characteristics block by block. Then, the integrated
comparison results are gradually stacked and a better identification result can be obtained.

The 1D convolution process is as illustrated in Figure 5. The filter stands at the top of
Figure 5. There are three weight values in the filter, hence in this example, its kernel size equals
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3. The convolution process consists of the multiply of the corresponding sequence in the input by the
weight value of the filter and adding the results. The filter will stride one by one in the input sequence
to calculate the result. It is worth noting that the weight value on the filter is determined through
backpropagation and is not determined manually. Unlike the MLP architecture, CNN uses a lower
number of weights, which is one of the results that CNN can obtain faster convergence results.Energies 2018, 11, x FOR PEER REVIEW  7 of 21 

 

 
Figure 5. The 1D convolution process. 

3.3. The Proposed Model 

The WindNet model proposed in this paper is presented in Figure 6. WindNet incorporates 
CNN with fully connected architectures. The input of WindNet is the wind speed record for the past 
7 days and the output is the wind speed estimation for the following 3 days. Since wind speed data 
is collected hourly, the data volume of the previous 7 days corresponds to 24 × 7 = 168 data sets, while 
the data volume of the following 3 days equals 24 × 3 = 72 sets. After collecting data from the previous 
7 days, WindNet will perform 1D convolution. Here, authors used 16 filters to perform convolution, 
hence the feature map shape of 1D convolution equals 168 × 16. To facilitate the connection of the 
subsequent estimation framework, after the 1D convolution layer, the feature map was flattened, to 
turn the shape of its feature map back to one dimension. This is the feature extraction process. 
Subsequently, WindNet will import the extracted features into a 2-layer fully connected architecture. 
The number of fully connected neurons in both layers equals 72, which is identical to the output 
length. Finally, FC2 output corresponds to the wind speed forecast of the next 3 days. 

ForecastingFeature Extraction

Past 7 days
wind speed record

Next 3 days
wind speed forecasting

1D Conv
(ReLU)

Flatten FC1
(Sigmoid)

FC2
(Sigmoid)

168 168×16 2688 72 72 72

Input: Output: Shape:Layer: Feature map: Connection:
 

Figure 6. The architecture of the proposed WindNet model. 

In WindNet, 2 activation functions were used: sigmoid and Rectified Linear Unit (ReLU). 
Related formulas are presented in Equations (1) and (2). In 1D convolution, the activation function 
used by WindNet is ReLU to minimize the problem of gradient vanishing. In the fully connected 
architecture in the latter layer, the sigmoid function was selected to limit the output value range to 
[0,1]. The sigmoid and ReLU diagrams are illustrated in Figure 7. 

1sigmoid( )
1 xx
e −=

+
 (1) 

ReLU( ) max(0, )x x=  (2) 

 

Figure 5. The 1D convolution process.

3.3. The Proposed Model

The WindNet model proposed in this paper is presented in Figure 6. WindNet incorporates CNN
with fully connected architectures. The input of WindNet is the wind speed record for the past 7
days and the output is the wind speed estimation for the following 3 days. Since wind speed data is
collected hourly, the data volume of the previous 7 days corresponds to 24 × 7 = 168 data sets, while
the data volume of the following 3 days equals 24 × 3 = 72 sets. After collecting data from the previous
7 days, WindNet will perform 1D convolution. Here, authors used 16 filters to perform convolution,
hence the feature map shape of 1D convolution equals 168 × 16. To facilitate the connection of the
subsequent estimation framework, after the 1D convolution layer, the feature map was flattened,
to turn the shape of its feature map back to one dimension. This is the feature extraction process.
Subsequently, WindNet will import the extracted features into a 2-layer fully connected architecture.
The number of fully connected neurons in both layers equals 72, which is identical to the output length.
Finally, FC2 output corresponds to the wind speed forecast of the next 3 days.
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In WindNet, 2 activation functions were used: sigmoid and Rectified Linear Unit (ReLU). Related
formulas are presented in Equations (1) and (2). In 1D convolution, the activation function used by
WindNet is ReLU to minimize the problem of gradient vanishing. In the fully connected architecture in
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the latter layer, the sigmoid function was selected to limit the output value range to [0,1]. The sigmoid
and ReLU diagrams are illustrated in Figure 7.

sigmoid(x) =
1

1 + e−x (1)

ReLU(x) = max(0, x) (2)Energies 2018, 11, x FOR PEER REVIEW  8 of 21 

 

 
(a) 

 
(b) 

Figure 7. The activation functions (a) Sigmoid, (b) ReLU. 

As it concerns the programming, the wind speed database will be read first to achieve data 
normalization. I In this process, the value range was limited to [0, 1]. Subsequently, these data will 
be categorized into training and testing data. The training data are used to train the model data, while 
the testing data are not used during the training process. Next, the Wind Net model is constructed 
and initialized. In each training period, to reduce data interdependency, all training data sequences 
are shuffled and training data are disassembled into several batches for training. In the WindNet 
architecture, the batch size equals 32, which means that there are 32 data in a batch. After training is 
completed, WindNet will use the testing data for performance evaluation. The program of the 
proposed WindNet is presented in Algorithm 1. 

Algorithm 1. The algorithm of the proposed WindNet. 
1: Loading the data 
2: Data normalization 
3: Partition the data into training data and testing data 
4: Model initialization 
5: For all epochs 
6:    Shuffle the order of the training data 
7:    Partition the training data into batches 
8:    For all batches 
9:       Train the model on batch 
10:    End 
11: End 
12: Performance evaluation 
13: Terminate 

3.4. Stochastic Optimization 

Deep learning often requires quantity of time and computing resources to train. Hence, this also 
corresponds to a major challenge for the development of deep learning algorithms. Although, multi-
GPU parallel training can be used to accelerate the learning process of the model, the required 
computing resources are not reduced. An optimized algorithm, which requires fewer resources and 
allows the model to converge faster, can fundamentally accelerate the speed of the learning process 
and increase the effectiveness of the machine. To improve the training performance of the deep 
learning model, in current paper the adaptive moment estimation (Adam) optimizer was applied 
[32], which corresponds to a stochastic optimization algorithm, to adjust parameters. The Adam 
optimization algorithm is an extension of stochastic gradient descent (SGD), which is recently widely 
used in deep learning applications, especially for tasks such as computer visual and natural language 
processing. Adam is an optimization algorithm that can replace traditional SGD processes. It can 

Figure 7. The activation functions (a) Sigmoid, (b) ReLU.

As it concerns the programming, the wind speed database will be read first to achieve data
normalization. I In this process, the value range was limited to [0, 1]. Subsequently, these data will be
categorized into training and testing data. The training data are used to train the model data, while
the testing data are not used during the training process. Next, the Wind Net model is constructed
and initialized. In each training period, to reduce data interdependency, all training data sequences
are shuffled and training data are disassembled into several batches for training. In the WindNet
architecture, the batch size equals 32, which means that there are 32 data in a batch. After training
is completed, WindNet will use the testing data for performance evaluation. The program of the
proposed WindNet is presented in Algorithm 1.

Algorithm 1. The algorithm of the proposed WindNet.

1: Loading the data
2: Data normalization
3: Partition the data into training data and testing data
4: Model initialization
5: For all epochs
6: Shuffle the order of the training data
7: Partition the training data into batches
8: For all batches
9: Train the model on batch
10: End
11: End
12: Performance evaluation
13: Terminate

3.4. Stochastic Optimization

Deep learning often requires quantity of time and computing resources to train. Hence, this
also corresponds to a major challenge for the development of deep learning algorithms. Although,
multi-GPU parallel training can be used to accelerate the learning process of the model, the required
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computing resources are not reduced. An optimized algorithm, which requires fewer resources and
allows the model to converge faster, can fundamentally accelerate the speed of the learning process and
increase the effectiveness of the machine. To improve the training performance of the deep learning
model, in current paper the adaptive moment estimation (Adam) optimizer was applied [32], which
corresponds to a stochastic optimization algorithm, to adjust parameters. The Adam optimization
algorithm is an extension of stochastic gradient descent (SGD), which is recently widely used in deep
learning applications, especially for tasks such as computer visual and natural language processing.
Adam is an optimization algorithm that can replace traditional SGD processes. It can iteratively
update the weights of neural networks based on training data. The main formulas are presented in
Equations (3)–(8).

gt = ∇θ ft(θt−1) (3)

mt = β1 ·mt−1 + (1− β1) · gt (4)

vt = β2 · vt−1 + (1− β2) · g2
t (5)

m̂t =
mt

1− βt
1

(6)

v̂t =
vt

1− βt
2

(7)

θt = θt−1 −
α · m̂t√
v̂t + ε

(8)

α represents the step size, while β1 and β2 stand for the exponential decay rates. f (θ) is the stochastic
objective function, θ0 equals the initial parameter vector, mt is 1st moment vector, vt corresponds to the
2nd moment vector, m̂t and v̂t are bias-corrected moment estimates, g2

t represents element wise square
gt�gt. Kingma et al. [32], mentioned that effective initial settings are α = 0.001, β1 = 0.9, β2 = 0.999,
ε = 10−8.

Adam is a very popular algorithm in deep learning since it can quickly achieve excellent
results. Experimental results prove that the Adam algorithm has excellent performance during
actual practice [32] and has great advantages compared to other kinds of random optimization
algorithms. The detailed operation process of Adam is presented in Algorithm 2. Initially, after
confirming parameters α, β1, β2 and stochastic objective function f (θ), the following parameters should
be initialized: parameter vector θ, 1st moment vector mt, 2nd moment vector vt and timestep t. Then,
as long as parameter θt does not converge, each part of the loop is iteratively updated. We also add 1
to timestep t, renew the stochastic objective function to the gradient requested by parameter θt at the
timestep, update the biased first moment estimate mt, update biased second raw moment estimate vt,
then calculate bias-corrected first moment estimate m̂t and bias-corrected second raw moment estimate
v̂t, then update the model parameter θt with the above calculated value.
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Algorithm 2. The algorithm of Adam [32].

1: Require: α: Step size
2: Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
3: Require: f (θ): Stochastic objective function with parameters θ

4: Require: θ0: Initial parameter vector
5: m0 ← 0 (Initialize 1st moment vector)
6: v0 ← 0 (Initialize 2nd moment vector)
7: t← 0 (Initialize timestep)
8: while θt not converged do
9: t← t + 1

10: Get gradients with respect to stochastic objective at timestep t
11: Update biased first moment estimate
12: Update biased second raw moment estimate
13: Compute bias-corrected first moment estimate
14: Compute bias-corrected second raw moment estimate
15: Update θt parameters
16: end while
17: Return θt (Resulting parameters)
18: Terminate

4. Experimental Results

This chapter is divided into 2 parts: data description and experimental results. To demonstrate
completely the performance of WindNet proposed in this paper, this chapter will also include
comparisons of very popular and commonly used machine learning algorithms, such as support
vector machine (SVM) [33–38], random forest (RF) [39–44], decision tree (DT) [45–50] and MLP.

4.1. Data Descriptions

This experiment used the wind speed record reported by Zuoying, Taiwan in 2016 for performance
analysis. The wind speed profile is illustrated in Figure 8b. The length of the collected data is one
year, and it includes 8784 records. We have already tried other collected data in our previous research.
However, according to that, the wind speed of Zuoying mostly falls at a range of 1.5 m/s to 4 m/s.
There are still many cases where the wind speed is higher than 5 m/s or even exceeds 10 m/s. Based
on Figure 8a, it can be derived that Zuoying is located in the offshore area. Thus the wind speed of
Zuoying is not very stable and there are often sudden peaks. Therefore, it was difficult to predict
wind speed. This is also the reason we choose this dataset for the experiments in this paper. In this
experiment, the wind speed information of the past 7 days were used to predict the wind speed of the
following 3 days. Authors estimated that through this information, the machine learning model will
undergo supervised learning and analysis to achieve accurate predictions.
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4.2. Experiment Results

In this experiment, the mean absolute error (MAE) and root-mean-square error (RMSE) were
applied as evaluation indicators (the formulas are shown in Equations (9) and (10) respectively).
The test results of various algorithms are illustrated in Figures 9–13. Figure 14 presents a comprehensive
comparison of the entire algorithms. In actual situations, the forecasting model can only use past
experience to predict future wind speed. When the model training is completed, the data used for real
forecasting will be information that the trained model has never encountered before. Therefore, to meet
real situations, in this experiment, testing data did not participated in the model training process and
the experimental results obtained in this experiment were also based on testing data for performance
evaluation. We can derive from Figure 14 that each algorithm can slightly capture the trends of future
wind speeds, but the prediction results of SVM and DT are relatively unstable. Compared to that of
SVM and DT, the performance of RF, MLP and WindNet present increased stability. In particular, the
wind speed information forecasted y WindNet is similar to the real conditions (as presented by the
blue line). This confirms that WindNet is very effective and accurate in wind speed forecasting:

MAE =
1
N

N

∑
n=1
|yn − ŷn| (9)

RMSE =

√√√√√ N
∑

n=1
(yn − ŷn)

2

N
(10)
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To perform an increased reliability test, authors extracted 11 segments from the dataset, each
containing 2 months of training data and one month of testing data, and conducted model training
and testing on the data of these 11 segments. The test results are presented in Table 1 (MAE) and
Table 2 (RMSE). In MAE ranking from the lowest to the highest corresponds to: WindNet (0.800227),
RF (0.831981), MLP (0.833486), DT (0.955564), SVM (0.967744). In RMSE ranking from the lowest
to the highest corresponds to: WindNet (0.999978), MLP (1.022898), RF (1.030018), SVM (1.198929),
DT (1.203666). According to the experimental results, authors concluded that compared with other
algorithms, SVM and DT performed poorly, while the MAE and RMSE values of SVM and DT are
identical. If MAE is used as a benchmark, DT outperforms SVM, but in RMSE, SVM outperforms DT.
An identical situation also occurs for both the MLP and RF algorithms. If the comparison is based on
MAE, RF performs better than MLP, but in RMSE, MLP outperforms RF. Although the performance of
RF and MLP is efficient, in terms of MAE or RMSE measurements, the leading performance overall is
still the WindNet model proposed in this article.
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Table 1. The experimental results in terms of mean absolute error (MAE).

Test SVM RF DT MLP WindNet

#1 1.009532 1.010812 1.067496 0.951965 0.906002
#2 0.804696 0.788575 0.91271 0.749479 0.726946
#3 0.995466 0.876718 1.059931 0.883512 0.919904
#4 0.824131 0.755548 0.839346 0.725489 0.735706
#5 0.991768 0.987 1.10225 1.00744 0.956887
#6 0.837221 0.769972 0.841412 0.845219 0.743931
#7 1.004376 0.869387 1.009339 0.877877 0.867812
#8 1.009328 0.825857 0.947832 0.832765 0.769551
#9 1.154096 0.762744 0.89834 0.800525 0.744625

#10 0.891498 0.694962 0.833799 0.742297 0.644439
#11 1.123073 0.81022 0.998746 0.751773 0.786698

Average 0.967744 0.831981 0.955564 0.833486 0.800227
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Table 2. The experimental results in terms of root mean square error (RMSE).

Test SVM RF DT MLP WindNet

#1 1.212762 1.193097 1.280351 1.120047 1.084771
#2 0.983817 0.965371 1.128812 0.915917 0.910913
#3 1.227721 1.066804 1.310973 1.07933 1.136954
#4 1.016498 0.933692 1.048922 0.90495 0.923487
#5 1.296918 1.28096 1.41884 1.307386 1.252339
#6 1.051861 0.973836 1.068395 1.037206 0.944069
#7 1.226936 1.064154 1.267554 1.045251 1.059601
#8 1.276431 1.046167 1.2283 1.044998 0.985753
#9 1.373366 0.938822 1.143816 0.971037 0.922233

#10 1.104978 0.859121 1.065049 0.903742 0.811998
#11 1.416933 1.008177 1.279316 0.922009 0.967638

Average 1.198929 1.030018 1.203666 1.022898 0.999978

5. Discussion

The choosing of the parameters is also a very important issue during the training process. By the
correct parameter setting of WindNet, as shown in Table 3, the performance of the proposed WindNet
can be significantly demonstrated. Figure 15 presents the detailed comparison result of each model.
The thick blue line corresponds to the actual data and the lines of other colors are the prediction results
of various algorithms. The blue box in Figure 15 indicates that the prediction result of DT almost
does not coincide with the actual data, while the trend forecasted by SVM also does not coincide with
that of the actual data. Among all algorithms, RF, MLP and WindNet still perform better. The green
box in Figure 15 demonstrates that when the wind speed is about to decrease, many algorithms
struggle to grasp the trend, DT and SVM in particular, miscalculated the trend. Even RM cannot
accurately forecast data and presents a relatively disordered situation. This points out that there is
still a certain degree of difficulty to the forecasting of wind speed. However, even if many algorithms
cannot accurately predict data, MLP and WindNet can still supply stable forecast results. Overall,
the performances of RF and MLP are stable and accurate. Nevertheless, WindNet produced the most
efficient results. Therefore, the ability of WindNet for wind speed forecasting has been proven in
this experiment.

Table 3. The parameter setting of WindNet.

Parameter Setting

1D convolution filter number 16
1D convolution kernel size 9

1D convolution activation function Rectified Linear Unit (ReLU)
Dense layer activation function Sigmoid

Optimizer Adaptive Moment Estimation (Adam)
Learning rate 0.0005

Learning rate decay 0
Loss function Mean Squared Error (MSE)
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6. Conclusions

In the field of renewable energy research, the quality of the energy management system
corresponds to a crucial aspect in the power dispatching process. Additionally, wind speed forecasting
is a significant parameter. To solve the problem of wind speed forecasting and improve its prediction
capacity, this paper proposes a CNN architecture wind speed forecasting system called WindNet.
WindNet can predict the wind speed for the following 3 days based on wind speed data from the
previous 7 days. To verify absolutely the effectiveness of the WindNet architecture proposed in this
paper, we use RMSE and MAE indicators to estimate the performance in the experiment and compare
it to that of multiple other machine learning algorithms. In this paper, the forecasting performance of
the proposed algorithm was compared to that of four other artificial intelligence algorithms commonly
used in wind speed forecasting, such as SVM, RF, DT, and MLP. In the experiment, authors used wind
speed data from Zuoying, Taiwan for model training and performance estimation. The experimental
data in this paper were categorized into training and testing data. Training data were used for the
training of the model, while testing data that has never been used in the training process performed
the MAE and RMSE calculations to estimate the performance. The MAE and RMSE values of the
proposed algorithm are 0.800227 and 0.999978, respectively. Experimental results indicate that WindNet
achieves the most efficient results in both RMSE and MAE. During this experiment, the feasibility and
effectiveness of proposed WindNet model have been entirely verified.
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