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Abstract: This paper presents a couple of methods to evaluate the heat removal factor FR of flat plate
solar collectors, as well as a parametric study of the FR against the tilt angle β, and (Ti − Ta)/G, and
its effects on the a0-factor (FRτα) and the a1-factor (FRULmin). The proposed methods were based
on indoor flow calorimetry. The first method considers the ratio of the actual useful heat to the
maximum useful heat. The second takes into account the slopes of the family of efficiency curves
(FRULmin) according to ANSI/ASHRAE 93-2010, and the minimum overall heat loss coefficient, ULmin.
In both methods, a feedback temperature control at collector inclinations from horizontal to vertical
allows the inlet temperature and the emulating of the solar radiation to be established by electrical
heating. The performance of the methods was determined in terms of the uncertainty of the FR.
Method 1 allowed a three-fold improved precision compared to Method 2; however, this implied a
more detailed experimental setup. According to the first method, the effects of the tilt angle β, and
the (Ti − Ta)/G, on the a0-factor were considerable, since FR is directly proportional to the a0-factor.
The changes in (Ti − Ta)/G caused an average change in FR of 32% The FR shows almost linear
behavior for inclinations from horizontal to vertical with a 14.5% change. The effects of β on the
a1-factor were not considerable, due to the compensation between the increase in FR and the decrease
in ULmin as β increased.

Keywords: heat removal factor; covered solar collectors; tilt solar collector; inclined solar collector

Highlights

• The effects of tilt angle and (Ti − Ta)/G on the FR, a0-factor and a1-factor, were investigated using
indoor flow calorimetry.

• The method based on the ratio of the actual useful heat to the maximum useful heat shows
considerably improved behavior in terms of uncertainty.

• The FR shows linear behavior for inclinations from horizontal to vertical with a change of 14.5%.
• The changes in (Ti − Ta)/G caused an average change in FR of 32%.
• The effect of the variation of the tilt angle and the (Ti− Ta)/G-value on the a0-factor is considerable

since the FR is directly proportional to the a0-factor.
• The changes in inclination do not considerably affect the a1-factor due to the compensation

between the increase in FR and the decrease in ULmin when β increases.

1. Introduction

In 2014, flat plate collector heating represented 22.4% (83.9 GWth) of the total worldwide solar
heating, and this percentage continues to grow [1]. The characterization and simulation have improved
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commercialization in many types of process, first for low temperature (<80 ◦C) and more recently in
the medium temperature range (80–250◦). The characterization reduces estimating uncertainty and
allows better economic scenarios, which are welcome for the solar heating industry.

Flat plate solar collector characterizations are now used to determine the ao, a1, and the IAM as
indicated by [2–6], among other standards and publications. The FR refers to the thermal effectiveness
of solar collectors viewed as heat exchangers, while the a0 (FRτα) is the fraction of the solar radiation
GAa that gains the collector, and the a1 (FRULmin) is the factor of heat losses of the solar collector due to
the ambient effect. Most of the solar collector’s studies consider the ULmin as a constant; it is the case
in which the efficiency against (Ti − Ta)/G has almost linear behavior. The ULmin has linear behavior
when the efficiency curve is fitted as the second order polynomial approach; however, in this case,
the ULmin is considered a function of (Ti − Ta)/G only. In the same way, the IAM mainly concerns the
optical effects of the incidence angle, but does not concern the effect of the confined fluid flow and
these optical effects simultaneously, as is the case when ULmin is considered constant.

The convective flow pattern of the confined fluid between the absorber and the collector glazing
is a function of the hot and cold wall temperature changes [7]. In a tilted differentially heated cavity,
it has been found that different classes of natural convection flows appear due to changes in tilt angle
and the differences in temperature [8–10]. The overall heat transfer coefficient considerably reduces a
tall cavity turns from horizontal to vertical [11]. The above-mentioned implies disregarding the fact
that the figures of merit FR, a0, and a1 are a strong function of the ULmin, which is in turn dependent
on the collector inclination due to changes in the difference in outlet–inlet temperature and collector
tilt angle. Meanwhile, the influence of collector inclinations mainly takes into account the incidence
angle (optical effects: τα) according to ANSI/ASHRAE 93-2010, 2014 [2]. Awasarmol and Pise [12]
studied the natural convection heat transfer from a fin array and angles of inclination. They found a
decrease in heat transfer coefficient with the increase in angle of inclination and an optimal angle at
45◦. Montoya-Marquez and Flores-Prieto [13] experimentally shows that the changes in collector tilt
considerably affects the UL and the calculations of the efficiency, due to variations in the flow pattern
into the air cavity between the absorber plate and glazing.

The FR is also understood as the ratio of the actual useful heat to the maximum useful heat [4],
which is the thermal effectiveness of the solar collector. Thus, one way to show a more detailed
picture of the performance or effectiveness of the solar collector, like most heat exchangers, is through
the heat removal factor. Currently, the heat removal factor FR is calculated as the ratio of actual
useful energy gains to the useful energy gains, when the whole collector surface is at the fluid inlet
temperature. However, this last experimental condition is difficult to achieve because inlet fluid
increases its temperature as it flows through the absorber. Additionally, most studies determining FR
have been theoretical, using a combination of thermal parameters, such as the collector fin efficiency
factor F′ [4]. In addition, the efficiency curve slope at outdoor conditions (a1-factor), which is FRULmin,
can be determined by a standard test [2]. To achieve FR, the ULmin must be determined separately.

In line with this, the a0-factor and a1-factor strongly depend on FR, but it is usually calculated
by a method where ULmin is considered as a constant or with linear behavior [14–16]. For its part,
Malvi et al. [17] reported the performance of a solar flat plate collector for various flow configurations;
experiments at indoor conditions were conducted to determine the FR. The results indicate that,
for the same conditions, parallel flow receives a double FR value compared with the serpentine flow.
Experimental methods to evaluate FR, the a0-factor and the a1-factor separately, and its uncertainty
have an incipient development. On the other hand, the relationships between FR and β and between FR
and (Ti − Ta)/G, which affect the a0 and a1, have become briefly studied, and characterized collectors
at a specific latitude have different performance predictions at other latitudes, although these run
at the same solar incidence angle. Therefore, the effects of tilt angle β, in a range of (Ti − Ta)/G,
due to changes in the convective flow patterns, on FR, which affects the a0-factor and a1-factor, were
experimentally studied by two proposed methods. The tilt collector was studied under inclinations
from horizontal to vertical, and a Ti from 60 to 90 ◦C. The proposed methods were based on indoor
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heat flow calorimetry and ANSI/ASHRAE 93-2010 [2]. The indoor condition consideration fixes the
solar radiation, ambient temperature, wind velocity, and background radiation, in order to improve
the experimental uncertainty.

2. Materials and Method

2.1. Sampling

The study involves the manufacture and instrumentation of the solar collector to work in indoor
conditions. The sample is shown in Figure 1; this is a glazing collector with 2.00 m2 of gross area Aa
and an aspect ratio AR of 40. The 10–90% water–glycol is the working fluid, in which heat capacity is
considered variable [18]. The absorber is comprised of a couple of header tubes d1, and five raised
finned tubes d2, all of which of copper and joined by tin–lead solder. The absorber solar absorbance α,
is 0.94 and the glazing solar transmittance τ is 0.86 [19]. The absorbance and transmittance were
obtained by normalizing the measured spectral [20]. A Shimadzu UV-3100 (Shimadzu Corporation,
Kyoto, Japan) is used from 300 to 2500 nm, every 2.0 nm with ±0.1% of photometric uncertainty and
1.0% of wavelength uncertainty. Table 1 shows the manufacture characteristics of the sample.
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2.2. Experimental Desing

Figure 2 shows that the glazing collector heats up the absorber plate, which in turns heats the
working fluid that flows through the raising tubes. At this time, part of the supplied energy GAτα

heats the working fluid and the rest is transferred to the ambient as heat losses QL, which is dependent
from the β and (Ti − Ta)/G. The incoming heat flux GAτα is considered independently of β, and it is
the sum of the useful energy Qu(β, (Ti − Ta)/G) plus the heat loss flux QL(β, (Ti − Ta)/G).
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Figure 2. Physical model.

In this study, the incoming heat flux GAτα is fixed at a specified value, so the outlet heat is the sum
of the actual useful heat Qu_a(β, (Ti − Ta)/G), plus the heat loss flux QL(β, (Ti − Ta)/G). The following
considerations are also taken in to account in the experiments: (a) steady state, (b) constant surrounding
temperature and emissivity, (c) constant radiative exchange, (d) linear variation of Cp with the
temperature, and (e) the mean plate temperature, Tp(β, (Ti − Ta)/G), which is considered as the
average temperature between outlet and inlet temperature [To(β, (Ti − Ta)/G) + Ti]/2.

The experimental design allows for the determination of the FR and FRULmin as a function of β

and (Ti − Ta)/G at indoor conditions by a couple of methods, under inclinations from horizontal to
vertical. The a0 is equal to FRτα, and the a1 is equal to FRULmin. The indoor condition consideration
fixes the solar radiation, ambient temperature, wind velocity, and background radiation, in order to
improve the experimental uncertainty. In the first proposed method, the FR was determined by the
ratio of Qu_a to the maximum useful heat Qu_max, by indoor flow calorimetry. In the second proposed
method, the FRUL_min was determined according to ANSI/ASHRAE 93-2010 [2] by achieving the
slopes of the families of the efficiency curves, and the UL_min by flow calorimetry at indoor conditions
too. The indoor condition is the main difference of the second method with the standard technique
to obtain the factor FRUL_min. In both proposed methods, a feedback temperature control works at a
set of collector inclinations from horizontal to vertical. At indoor conditions, the solar heating was
emulated by the Joule effect and the PID control, using an electrical heater, making it possible to
replace (Ti − Ta)/G by (Ti − Ta)/(VI/Aτα), to achieve better experimental uncertainty. Thus, the solar
heating is given by Equation (1):

GA =
VI
τα

(1)

where τ and α are the glazing solar transmittance and the solar absorbance of the absorber respectively,
and V and I are the electrical voltage and current, respectively. The performance of both methods was
evaluated in terms of uncertainty, which was determined by the propagation error method and by the
RMSE and R2, respectively.
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Method 1: FR as a Function of the Ratio Qu_a/Qu_max

Equation (2) shows that the FR is the ratio of the actual useful heat to the maximum useful heat,
according to Duffie and Beckman [4]. The Qu_max occurs when Tp is equal to Ti, or To is equal to Ti,
because QL tends to be minimal. In the case, that Tp or To is greater than Ti, the QL is greater than zero,
and the Qu_a is then greater than zero too.

FR =
Qu_a(β, (Ti − Ta)/G)

Qu_max (β, (Ti − Ta)/G)
. (2)

The Qu_a(β, (Ti− Ta)/G) can be correlated by the change in enthalpy of the working fluid between
outlet and inlet, at constant pressure. The Qu_max occurs when the whole collector is at the inlet fluid
temperature, minimizing heat losses, QLmin. For this, Tp = Ti, or To = Ti, as is shown in Equation (3).

FR =
Qu_a(β, (Ti − Ta)/G)

A
[
Gτα−ULmin(Ti − Ta)

] . (3)

The FR value is determined by two parallel tests. The first determines the Qu_a at a fixed value of
GAτα. In the second, the QLmin, and the Qu_max, are determined considering Tp = Ti and adjusting the
GAτα. In this case, the FR is a function of β and (Ti − Ta)/G, as well as Qu_a, QLmin or (VI)2, Qu_max,
and Tp, as is shown in Figure 3.
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Method 2: FRULmin According to ANSI/ASHRAE 93-2010

The FRULmin was determined based on ANSI/ASHRAE 93-2010 [2], the ULmin factor was obtained
separately, using heat flow calorimetry as per Beikircher et al. [3] and Montoya-Marquez and
Flores-Prieto [13]. A set of tests is used to determine the family of efficiency curves against (Ti − Ta)/G,
at inclinations from horizontal to vertical, which in turn allows for a set of FRULmin, each of which
represents the slope of linear regression of each efficiency curve. The ULmin is determined to achieve the
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value of the FR once the FRULmin is achieved by Method 1 (Test 2), setting the GAτα as the compensation
heat flux (VI)2 and setting the difference in temperature (Ti − Ta) according to Equation (4):

ULmin =
(VI)2

Aa(Ti − Ta)
. (4)

Equation (5) gives the collector efficiency (ANSI/ASHRAE 93-2010, 2014) [2]:

η

(
β,

Ti − Ta

G

)
=

Qu

(
β, Ti−Ta

G

)
(

VI
Aτα

) . (5)

2.3. Experimental Setup

The experimental setup entails that the sample is mounted with a variable angle β at 0–90◦, with
an uncertainty of ±0.1◦. The absorber heating (VI) is homogeneously distributed by means of the
electrical heater and remains almost constant over each test. The electrical heater is supplied with a
maximum of 2000 W, with an uncertainty of ±5 W. The temperature differences (To − Ti) and (Ti − Ta)
were measured using a thermopile type T thermocouple and 32 gauge wires, with an uncertainty of
±0.1 ◦C. A thermal bath supplied with a 10–90% water–glycol mixture was used as working fluid,
with an uncertainty of ±0.01 ◦C. The mass flow rate was 0.016 kg/s [21,22]; it was monitored with
a turbine flowmeter, with an uncertainty of 3%. It was also verified by weighing the water–glycol
mixture, at specified time steps during the experiments. The experimental setup is shown in Figure 4.
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Figure 4. Experimental setup.

The experimental indoor conditions allow uniform surrounding temperature and surrounding
emissivity, and the experiments can be run with non-considerable changes in solar heating, ambient
temperature, and wind velocity. The working fluid was a 10–90% water–glycol mixture to minimize
adverse boiling effects. A programmable FPGA (NI-cRIO9022, 32 bit data acquisition, Lab-VIEW
software) (National Instruments, Austin, TX, USA) was used to monitor, record, and calculate the
experimental variables at time steps of 1 s. The steady state was verified by monitoring experimental
data without considerable changes in the experimental variables over 30 min. Each reported data
point corresponds to an average of over 1800 measurements, taken over a 30 min period. The tests
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were run at a specified range and steps of the tilt angle, and the remaining variables involved in the
experiment were considered without significant variations. Each test was carried out by in triplicate
for comparison.

The experimental conditions Tp = Ti and Tp = f (Ti, VI, UL) was verified by infrared imaging on
the absorber plate. As seen in Figure 5, the field temperature of the absorber plate was as expected,
thanks to the PID control losses compensation. Figure 5a shows the Tp = Ti condition, where the
standard deviation was only 0.14 ◦C. Figure 5b shows the case in which Tp = f (Ti, VI, UL), where
we can find a conventional temperature profile of the solar collector absorber.
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3. Results

The experiments were conducted highlighting the behavior of the FR and FRULmin as a function
of the β and (Ti − Ta)/G. As noted above, the a0-factor is direct proportional to FR and the a1-factor
is equal to FRULmin. The experimental campaign comprises five sets of four experiments, each one
performed in triplicate. The parametric study was conducted for β as follows: 0◦, 30◦, 45◦, 60◦, and 90◦.
The (Ti − Ta)/G was 0.044, 0.056, 0.069, and 0.083.

3.1. Comparative Performance of both Methods

The uncertainty, in terms of RMSE and R2, of each method disclose its performance. Figure 6
shows a similar shape of FR against β for both methods. The FR grew were 0.14 and 0.27 for
Methods 1 and 2, respectively. The experimental uncertainties of Methods 2 and 1 were ±0.049
and ±0.016 respectively; this is 306% times greater with Method 2 compared with Method 1. As seen
in Figure 6, both shadow gaps of the experimental uncertainty are cross practical. The linearity values
are (0.053, 0.9630) and (0.104, 0.9708) for Methods 1 and 2, respectively. The RMSE was considerably
higher in Method 2. Method 1 allows for achieving an FR value for every studied value of (Ti − Ta)/G,
unlike Method 2, where the FR is just an average value determined from the slope of each efficiency
curve. Therefore, the remainder of this paper focuses on Method 1.
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3.2. Method 1: FR, a1:FRULmin and ULmin against β

Figure 7 shows the FR, ULmin and (FRULmin) against β based on Method 1, taking the average
values over the set of (Ti − Ta)/G. The FR increases from 0.34 to 0.61 (14.5%) as the angle of inclination
increases from 0 to 90◦. The FR increases as it goes from horizontal to vertical; this is because ULmin
decreases its value at the same time, from 5.9 to 5.4 W/m2·K. The increase in FR and the decline
of ULmin cause FRULmin to remain almost constant along the inclination set of tests, changing only
0.1 W/m2·K (3.0%). Thus, the coefficient a1, of the solar collector efficiency curve, does not change
considerably with the inclination angle. In addition, the coefficient a0 can change considerably if the
τα remains almost constant.
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3.3. Method 1: FR, a1:FRULmin against β and (Ti − Ta)/G

Figure 8 shows FR against β for the studied range of (Ti − Ta)/G. The change in FR was 14.5%
on average over the set of β, as mentioned above. On the other hand, the variation of (Ti − Ta)/G
means average changes in FR of 32% over the set of (Ti − Ta)/G, and the a0 is affected considerably
due to changes in (Ti − Ta)/G, only if τα remains almost constant, because the flow pattern between
the absorber plate and glassing cover is modified considerably. The latter is in the same line of the
experimental work of Montoya-Marquez and Flores-Prieto [13].
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Figure 8. FR vs. β and (Ti − Ta)/G by Method 1.

Figure 9 shows a1:FRULmin as a function of β and (Ti − Ta)/G for Method 1. The a1-factor shows
variations over the set of β that are not considerable. However, the a1-factor can change by 2.3% over
the studied range of (Ti − Ta)/G. Over the range of (Ti − Ta)/G, the changes in a1-factor as a function
of β is not considerable due to the compensation between the increase in FR and the decrease in ULmin
when β increases.
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4. Conclusions

A couple of experimental indoor test methods for determining FR and FRULmin (a1-factor) were
conducted. Method 1 determined the ratio of Qu_a to Qu_max; Method 2, by achieving the slopes,
determined the FRULmin of the family of the efficiency curves, (ANSI/ASHRAE 93-2010, 2014) [2]
and the ULmin by indoor flow calorimetry. The effects of tilt angle and (Ti − Ta)/G on the FR and
FRULmin factors were investigated, considering that the a0 is directly proportional to FR and a1 is
equal to FRULmin. Both methods determine the behavior of FR against tilt angle and (Ti − Ta)/G.
However, Method 1 shows considerably improved behavior in terms of uncertainty of FR—a three-fold
lower uncertainty. Thus, a method was conducted to obtain the FR with the use of a PID temperature
control at fixed indoors conditions, with which it is possible to obtain the FR with lower uncertainty.
In addition, Method 1 shows some advantages over Method 2—more data points, less uncertainty, and
a complete view of the collector’s efficiency—but a more detailed experimental setup is needed.

The changes in inclination from horizontal to vertical caused an almost linear increase in FR,
(14.5%), which represents a change of 45% due to (Ti − Ta)/G, which caused an average change in FR
of 32%. Thus, the effects of changes in tilt angle and (Ti − Ta)/G-value on the a0-factor is considerable,
since a0 is directly proportional to FR. The inclination changes do not considerably affect the a1-factor
due to the compensation between the increase in FR and the decrease in ULmin when β increases.
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Nomenclature

Variables Description Units
Aa Collector area m2

AR Aspect ratio -
Cp Specific heat kJ/kg·K
d1 Diameter of heaters m
d2 Diameter of raising tubes m
FR Heat removal factor Adimentional
G Solar radiation W/m2

IAM Incidence angle modifier -
L_ins Insulation width m
.

m Mass flow kg/s
Qi Input heat W
Ql Loss heat W
Qu Useful heat W
Qu_a Actual useful heat W
RMSE Root mean square error -
R2 Coefficient of determination Adimentional
Ta Ambient Temperature ◦C
Ti Input temperature ◦C
To Output temperature ◦C
Tp Mean absorber plate temperature ◦C
UL Overall heat transfer coefficient W/m2·◦C
VI Electric power W
W fin width m
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Symbols
α Absorbance Adimentional
β Tilt angle ◦

δ Glass cover thickness m
δa Fin thickness m
τ Transmittance Adimentional
η Efficiency Adimentional
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