Hydrothermal carbonization of Peat Moss and Herbacious Biomass (Miscanthus): A potential route for bioenergy

Poritosh Roy1*, Animesh Dutta1* and Jim Gallant²

¹ School of Engineering, University of Guelph, Ontario, N1G 2W1, Canada

² REMASCO, 3811 Middle Side Road, Amherstburg, Ontario, N9V 2Y9, Canada

* Corresponding authors: poritosh@uoguelph.ca (P.Roy); adutta@uoguelph.ca (A. Dutta);

Tel.: +1-519-824-4120 Ext. 52441

Feedstock	HTC Temp	Solid yield	Liquid yield	Gas yield	Reference
	(⁰ C)	(%)	(%)	(%)	
Sugarcane Bagasse	215	64.0	8.0	4.0	(1)
Rice hulls	235	64.33	25.37	5.23	(1)
Corn stove	235	56.41	32.41	7.79	(1)
Jeffery pine and White fir	180-250	50-69	12-14	5-12	(2)
Loblolly Pine	-	63-83	8-17	9-20	(3)
Tahoe mix	235	63.68	17.66	7.86	(1)
Pinyon/juniper	235	62.73	30.37	6.13	(1)

SI-1 Feedstock, processing temperature, products of HTC process.

Note: The main components in gas and volatile acids were are reported to be CO2 and acetic acid (4). Therefore, authors assumed that the gas and volatile acids are all CO_2 and acetic acids, respectively due to their high abundance in the gas and liquid streams.

Reference

- 1. Hoekman SK, Broch A, Robbins C, Zielinska B, Felix L. Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers Biorefinery. 2013;3(2):113–26.
- Coronella CJ, Lynam JG, Reza MT, Uddin MH. Hydrothermal carbonization of lignocellulosic biomass. In: Application of hydrothermal reactions to biomass conversion. Springer; 2014. p. 275–311.
- 3. Zhang Z, Wang K, Atkinson JD, Yan X, Li X, Rood MJ, et al. Sustainable and hierarchical porous Enteromorpha prolifera based carbon for CO2 capture. J Hazard Mater. 2012;229:183–91.
- 4. Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vásquez VR. Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy & Fuels. 2010;24(9):4738–42.