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Abstract: Silicon carbide (SiC)-based switching devices provide significant performance improvements
in many aspects, including lower power dissipation, higher operating temperatures, and faster
switching; compared with conventional Si devices, all these features contribute to these devices
generating interest in applications for electric traction systems. The topology that is frequently
used in these systems is the voltage source inverter (VSI), but the use of SiC devices in the current
source inverter topology (CSI), which is considered as an emerging topology, generates interest. This
paper presents a method for improving total harmonic distortion (THD) in the currents of output
and efficiency in SiC current source inverter for future application in an electric traction system.
The method that is proposed consists of improving the coupling of a bidirectional converter topology,
voltage current (V-I) and CSI. The V-I converter serves as a current regulator for the CSI, and allows
for the recovery of energy. The method involves an effective selection of the switching frequencies
and phase angles for the carrier signals that are present in each converter topology. With this method,
it is expected to have a reduction of the total harmonic distortion, THD in the output currents.
In addition, a comparative analysis between converters with all-SiC technology and converters with
hybrid technology is realized, to verify the impact of the SiC devices in the power converters efficiency.

Keywords: current source inverter (CSI); silicon carbide (SiC); power converter, DC–AC converter,
total harmonic distortion (THD)

1. Introduction

The constant growth of hybrid and electric vehicles (EHV/EV) promotes new challenges to
achieve the total integration of these vehicles in the transportation field. High power density and high
efficiency powertrains are among other important drawbacks in the EHV/EV designs. The electric
traction systems play an important role for addressing these issues. Therefore, the new technologies
study, and the search for alternatives to traditional power converters and switching devices, and
control are important within the design requirements of electric traction systems for EHV/EV.

Silicon carbide devices (SiC) are a mature technology, and examples are widely found in the
market [1–4]. Recent research has shown the advantages and disadvantages of the SiC devices. These
elements possess better characteristics than silicon devices, such as low switching losses, higher
switching frequencies, and higher temperature operation ranges [4–8]. Accordingly, the SiC devices
allow for the design of power converters with high-power densities and high efficiencies.

In [9–12], several studies of power converter topologies with SiC devices for electric traction
systems are presented. The switching frequency ranges that are used in the different studies are
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between 50 kHz and 100 kHz. Accordingly, in the design of electric traction systems with SiC devices,
the frequency must be greater than 50 kHz and less than 100 kHz. On the other hand, if the switching
frequency is increased, the efficiency can be affected. This is shown clearly in [13], where at 200 kHz of
operation frequency, the efficiency of the converter drops to 85%.

On the other hand, state of the art studies have widely shown the effects caused in electrical
machines by high total harmonic distortion (THD) in the currents and voltages at different frequency
ranges. The research [14] presents an analysis on the impact of the switching frequency impact in
the power converters, and the harmonic power losses effect on surface permanent magnet motors.
The reduction of harmonics in the current allows for improvement the torque and reducing of the
THD in the current. This reduced the magnetic saturation in the stator, improving the losses and the
torque. The harmonics effects of the carrier in the motor operation are important, when considering
the additional losses in the windings and the iron laminations caused by eddy currents.

Accordingly, power converters and control techniques are required to achieve currents and
voltages with low THD, but adjusting the switching frequency to not significantly increase the
switching losses. The voltage source inverter (VSI) topology is more commonly used in electric traction
systems for driving the electric motor. Nevertheless, this topology requires a very high performance
capacitor in the direct current (DC) link that is expensive and bulky in the most cases [15]. As an
alternative, the current source inverter (CSI) is a considered and emerging topology within electric
traction systems, due to several advantages such as high voltage capability, auto short-circuit protection,
and a better sinusoidal output voltage, because of alternating current AC capacitor effects [16–18].
In addition, the inductors used in CSI converters offer a longer lifetime than the capacitors used in
VSI converters. However, even with the previously mentioned characteristics, the CSI converter has
several drawbacks, which limit the design of high-performance power converters.

In [19], the authors present the topology of CSI with a DC/DC V-I power converter that controls
the stabilization of the current of input, and the return of energy. For the implementation of this
topology, insulated gate bipolar transistors (IGBTs) with reverse-blocking (RB) capability are used
for a low frequency of switching, 15 kHz for a V-I power converter, and 7.5 kHz for CSI. The result
shows that the THD is improved, but the results could be enhanced if SiC devices are used, because
the switching frequency can be increased. Others works can be found in the literature, which are
focused on the control techniques and the analysis of the switching frequency effect. In addition,
in [20,21], optimization techniques are presented to achieve output currents with high quality. However,
the works are also based on traditional switching devices and low switching frequency.

In accordance with the above, the switching frequency is important for the CSI converter design.
Meanwhile, the control technique applied in CSI converters and the V-I converter to achieve a DC
current can affect significantly the THD of this current. Thus, the modulation design for both converters’
conditions and the synchronization between modulations is of high interest.

This paper has two important contributions. First, the work presents a new method that consists
of synchronizing the modulation control of the V-I and CSI converters based on SiC devices. Due to the
controls being based on pulse-width modulation (PWM) techniques, two carriers are used to generate
the pulses of the transistors. The method includes the search of the optimal operating frequency and
a better shift angle between carries as well. The main purpose of this method is for improving the
THD in the CSI outputs current at high frequencies. Second, the paper demonstrates a coordinated
modulation improvement and the consequent reduction of harmonics, allowing for a better efficiency
in the motor and inverter system to be obtained. Finally, a comparison between converters with all-SiC
technology and converters with hybrid technology is realized to verify the impact of the SiC devices in
the power converter’s efficiency.

The paper is organized as follows: first, the topology studied and the proposed method is
presented in Section 2. Section 3 focuses on the operation of CSI, and validation through simulations.
After that, a study of losses and efficiency, the sizing estimation of the heatsink and analysis of the
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efficiency between converters with all-SiC devices and converters with hybrid technology devices are
developed in Section 4. Finally, Section 5 concludes this paper.

2. Power Converters Analysis and Description of the Proposed Method

2.1. V-I Converter and CSI Inverter Analysis

The proposed converter topology shown in Figure 1 uses a V-I converter to regulate the current
input. Also, a CSI inverter that generates three-phase currents of output with SiC devices is proposed.
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Figure 1. Topology proposed for the study. 

Based on the previous analyses presented in [20,21], this topology can be analyzed in two modes, 
as shown in Figure 2. It is assumed that the output current Iout maintains a constant for a one state of 
the converter control. In the first mode, the SiC MOSFETs T1 and T2 are turned ON, and a DC voltage 
delivered by a battery is applied to the converter. The inductor L1 converts to storage energy. Current 
returns through the activation of SiC MOSFETs T2, during Toff modulation state and the diodes D1, 
and D2 are in reverse bias; therefore, they are not activated. A current Iout and a voltage Vout are 
obtained in the V-I converter output where VBat depends on the converter control. In the second mode 
(Figure 2b) the MOSFETs are turned off, and the current flows through the diodes D1 and D2, this 
mode can be implemented in the case when the CSI current converter returns the energy to recharge 
the high voltage battery Vout = −VBat. 
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Figure 2. Current trajectory in V-I and CSI converter V-I. (a) First state of operation; (b) second state 
of operation. 

The model dynamic of V-I converter is governed by (1): 

dIDCL = V - Vs indt
 (1) 

where the output voltage Vout of the V-I converter can take three values: the battery voltage (Vout = 
VBat) when the V-I converter operates in the first state, also, Vout = 0 when T1 and T2 are OFF, or Vout = 
−VBat. To maintain a desired level of the dc choke current, the V-I converter alternates between the 
first state and ON-OFF of T1 or T2. 

The CSI inverter has six transistors and six Schottky diodes connected in series; all devices are 
made of silicon carbide. Depending on the modulation technique implemented, the CSI inverter is 
responsible for directing the current through the load by the ON and OFF control of each transistor. 

 For the operation of the CSI topology, it is necessary to generate typical patterns, and to add 
short-circuit pulses to obtain the activation signals; for this reason it is necessary for the use of the 

Figure 1. Topology proposed for the study.

Based on the previous analyses presented in [20,21], this topology can be analyzed in two modes,
as shown in Figure 2. It is assumed that the output current Iout maintains a constant for a one state of
the converter control. In the first mode, the SiC MOSFETs T1 and T2 are turned ON, and a DC voltage
delivered by a battery is applied to the converter. The inductor L1 converts to storage energy. Current
returns through the activation of SiC MOSFETs T2, during Toff modulation state and the diodes D1,
and D2 are in reverse bias; therefore, they are not activated. A current Iout and a voltage Vout are
obtained in the V-I converter output where VBat depends on the converter control. In the second mode
(Figure 2b) the MOSFETs are turned off, and the current flows through the diodes D1 and D2, this
mode can be implemented in the case when the CSI current converter returns the energy to recharge
the high voltage battery Vout = −VBat.
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of operation.

The model dynamic of V-I converter is governed by (1):

L
dIDC

dt
= Vs − Vin (1)

where the output voltage Vout of the V-I converter can take three values: the battery voltage (Vout =
VBat) when the V-I converter operates in the first state, also, Vout = 0 when T1 and T2 are OFF, or Vout =
−VBat. To maintain a desired level of the dc choke current, the V-I converter alternates between the
first state and ON-OFF of T1 or T2.
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The CSI inverter has six transistors and six Schottky diodes connected in series; all devices are
made of silicon carbide. Depending on the modulation technique implemented, the CSI inverter is
responsible for directing the current through the load by the ON and OFF control of each transistor.

For the operation of the CSI topology, it is necessary to generate typical patterns, and to add
short-circuit pulses to obtain the activation signals; for this reason it is necessary for the use of the
(SPWM) sine-wave modulation technique, which generate pulses for the activation of power transistors.
These pulses create a short circuit through one leg of the inverter, whenever either top or all bottom
switches are open.

2.2. Proposed Method Description

An important challenge of the topology shown in Figure 1 is the synchronization between the two
modulations of the converters for achieving high performance and low THD. As previously mentioned,
the CSI required a controlled output current with as low ripple as possible. Besides, the CSI required
a control to deliver an AC output current.

Therefore the method proposed has two stages, the first stage consists of implementing a control
to regulate the output current of the V-I converter, taking into account the requirements of the CSI.
In addition, a PWM control was designed for the CSI, and adapted with the V-I converter conditions.

The CSI used a PWM technique, which required two carriers A and B for generating the pulse
of the transistors, as depicted in Figure 3. Accordingly, the second stage of the method consisted of
searching for the best operating frequency in both V-I and CSI converters, and also to determinate the
angle between, to achieve synchronization between the two controls.
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For the first part, the control technique used was a proportional-integrator control (PI). The design
of the control PI for the current in the V-I converter is summarized as follows: the circuit shown in
Figure 4 describes the behavior of the currents and voltages generated when it is placed with an RLC
load. Also, for the analysis, the internal resistances of the SiC MOSFETs (Rds = Ron), inductance (RL),
and capacitance (RC) (first state) were considered.
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The equations obtained in the function of the circuit shown in Figure 4 are described in (2) and (3):

L
diL(t)

dt
= Vin(t)− 2RdsIL(t)− RLIL(t)− Vo (2)

dVC(t)
dt

=

RLoad
RLoad+RC

C
iL(t)−

1
RLoad+RC

C
VC(t) (3)

From Equations (2)–(5) can represented a state space system:

X(t) = AX(t) + B (4)

Y(t) = CX(t) + D (5)

Theses equations can be expressed in the matrix form:

[
diL(t)

dt
dVC(t)

dt

]
=

 2Rds+RL+
RLoadRC

RLoad+RC
L −

RLoad
RLoad+RC

L
RLoad

RLoad+RC
C

− 1
RLoad+RC

C

[ iL(t)
VC(t)

]
+

[
1
L
0

]
Vin(t) (6)

[
Vo(t)

dt
Iin(t)

]
=

[
RLoadRC

RLoad+RC

RLoad
RLoad+RC

1 0

][
iL(t)

VC(t)

]
+

[
0
0

]
Vin(t) (7)

Then, with the previous analysis, the transfer function could be calculated. After that, a PI
controller was designed and tuned for achieving the expected outputs. The simulation results of the PI
controller tuning of the system are shown in Figure 5.

Energies 2018, 9, x FOR PEER REVIEW 5 of 24 

 

L
in ds L L L o

di (t)L = V (t) - 2R I (t) - R I (t) - V
dt

 (2) 

R 1Load
R + R R + RdV (t) C CC Load Load= i (t) - V (t)L Cdt C C

 
(3) 

From Equations (2)–(5) can represented a state space system: 

X(t) = AX(t) + B (4) 

Y(t) = CX(t) + D  (5) 

Theses equations can be expressed in the matrix form: 
 
                           
  

R R RCLoad Load2R + R +Ldsdi (t) R + R R + RL C CLoad Load 1- i (t)dt LL L= + V (t)L indV (t) V (t)R 1C CLoad 0-
R + R R + Rdt C CLoad Load

C C

 

(6) 

                         

R R RV (t) CLoad Loado i (t) 0LR + R R + Rdt = + V (t)C C inLoad Load V (t) 0I (t) Cin 1 0

 (7) 

Then, with the previous analysis, the transfer function could be calculated. After that, a PI 
controller was designed and tuned for achieving the expected outputs. The simulation results of the 
PI controller tuning of the system are shown in Figure 5. 

  
(a) (b) 

Figure 5. Simulation results of the PI controller. (a) Output current response, (b) detail of the current 
reference at 10 A. 

For the tuning of the PI controller, the auto-tuning tool of the proportional-integrator-derivate 
block (PID) of Simulink was used. The results are shown in Figure 6 and Table 1. 

Figure 5. Simulation results of the PI controller. (a) Output current response, (b) detail of the current
reference at 10 A.

For the tuning of the PI controller, the auto-tuning tool of the proportional-integrator-derivate
block (PID) of Simulink was used. The results are shown in Figure 6 and Table 1.
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Table 1. Parameters of simulations of the PI control.

Parameter Values

Kp 4.75769580834167
Ki 460.186624758197

Rise time 0.00488 s
Settling time 0.00838 s
Overshoot 0.0198%

Peak 1
Phase margin 889 deg @ 439 rad/s

The second stage for the control development began with the search of the switching frequency
for each converter. For doing the search, a random frequency (fs) was assigned, and with this frequency,
three conditions for the analysis were established by (8):

fs =


fs(vi) = fs(csi)
fs(vi) = 2fs(csi)
2fs(vi) = fs(csi)

(8)

The first condition assigned the same value of the switching frequency for the V-I power converter
and the CSI. The second condition indicated that the value of the switching frequency of the CSI was
the double that of the V-I converter. Finally, the third condition indicated that the switching frequency
of V-I converter was double of the CSI. Considering these three conditions, the analysis followed the
flowchart shown in Figure 7.

Regarding state-of-the-art methods, the switching frequencies in applications with SiC devices
are around 50 kHz to 200 kHz. However, even with the low losses achieved using silicon carbide
devices, it is important that a compensation is made between the switching frequency and switching
losses. Thus, after a study, the switching frequency of the V-I converter was fixed at 35 kHz in all
simulation cases, A, B, and C. Meanwhile, the switching frequency for the CSI converter was set at
70 kHz. Later a THD analysis of the output currents was performed and the THD value for each option
was obtained. This analysis consisted of defining the two carrier signals of each converter. The carrier
signal of the V-I was considered as the reference signal (Figure 8). Subsequently, it displaced the angle
of the signals carrier between a range of 0◦ to 180◦, in steps of 30 degrees. With the results obtained,
a new THD analysis was carried out. Besides, if the value of THD was further reduced for some phase
angle, the condition was validated and the tuning was done.



Energies 2018, 11, 2798 7 of 23

Energies 2018, 9, x FOR PEER REVIEW 7 of 24 

 

Fs=35kHz

In A
If THDout << 

B,C

Start

A=fs(Vi)=fs(CSI)
B=fs(Vi)=2fs(CSI)

C=2fs(Vi)=fs(CSI)

End
No No No

Yes Yes Yes

In A1
If THDout << 

B1, C1

No

Yes

No

Yes

No

Yes

Present Result of 

THD and Efficiency

End End End

In B
If THDout << 

A,B
End End

In C
If THDout << 

A,B

End
In B1

If THDout << 
A1,C1

End

In C1
If THDout << 

A1,B1
End

Present Result of 

THD and Efficiency

Present Result of 

THD and Efficiency

A1= Analisys of
Phase Angle between 

Carriers Signals
0° to 180°

Condition A 

is the best

B1= Analisys of
Phase Angle between 

Carriers Signals
0° to 180°

C1= Analisys of
Phase Angle between 

Carriers Signals
0° to 180°

Condition B 

is the best
Condition C 

is the best

 
Figure 7. Flowchart of method proposed. 

Regarding state-of-the-art methods, the switching frequencies in applications with SiC devices 
are around 50 kHz to 200 kHz. However, even with the low losses achieved using silicon carbide 
devices, it is important that a compensation is made between the switching frequency and switching 
losses. Thus, after a study, the switching frequency of the V-I converter was fixed at 35 kHz in all 
simulation cases, A, B, and C. Meanwhile, the switching frequency for the CSI converter was set at 
70 kHz. Later a THD analysis of the output currents was performed and the THD value for each 
option was obtained. This analysis consisted of defining the two carrier signals of each converter. The 
carrier signal of the V-I was considered as the reference signal (Figure 8). Subsequently, it displaced 
the angle of the signals carrier between a range of 0° to 180°, in steps of 30 degrees. With the results 
obtained, a new THD analysis was carried out. Besides, if the value of THD was further reduced for 
some phase angle, the condition was validated and the tuning was done. 

  
(a) (b) 

Figure 8. Signals carriers to different frequencies and angles. (a) Fs(V-I) = 15 kHz, Fs(CSI) = 30 kHz, angle 
= 0°; (b) Fs(V-I) = 15 kHz, Fs(CSI) = 30 kHz angle = 90°. 

3. Operation of CSI and Validation 

This section presents the implementation of the proposed method. The operation of combined 
modulations and synchronization of the topologies were analyzed and validated by simulations. The 

Figure 7. Flowchart of method proposed.

Energies 2018, 9, x FOR PEER REVIEW 7 of 24 

 

Fs=35kHz

In A
If THDout << 

B,C

Start

A=fs(Vi)=fs(CSI)
B=fs(Vi)=2fs(CSI)

C=2fs(Vi)=fs(CSI)

End
No No No

Yes Yes Yes

In A1
If THDout << 

B1, C1

No

Yes

No

Yes

No

Yes

Present Result of 

THD and Efficiency

End End End

In B
If THDout << 

A,B
End End

In C
If THDout << 

A,B

End
In B1

If THDout << 
A1,C1

End

In C1
If THDout << 

A1,B1
End

Present Result of 

THD and Efficiency

Present Result of 

THD and Efficiency

A1= Analisys of
Phase Angle between 

Carriers Signals
0° to 180°

Condition A 

is the best

B1= Analisys of
Phase Angle between 

Carriers Signals
0° to 180°

C1= Analisys of
Phase Angle between 

Carriers Signals
0° to 180°

Condition B 

is the best
Condition C 

is the best

 
Figure 7. Flowchart of method proposed. 

Regarding state-of-the-art methods, the switching frequencies in applications with SiC devices 
are around 50 kHz to 200 kHz. However, even with the low losses achieved using silicon carbide 
devices, it is important that a compensation is made between the switching frequency and switching 
losses. Thus, after a study, the switching frequency of the V-I converter was fixed at 35 kHz in all 
simulation cases, A, B, and C. Meanwhile, the switching frequency for the CSI converter was set at 
70 kHz. Later a THD analysis of the output currents was performed and the THD value for each 
option was obtained. This analysis consisted of defining the two carrier signals of each converter. The 
carrier signal of the V-I was considered as the reference signal (Figure 8). Subsequently, it displaced 
the angle of the signals carrier between a range of 0° to 180°, in steps of 30 degrees. With the results 
obtained, a new THD analysis was carried out. Besides, if the value of THD was further reduced for 
some phase angle, the condition was validated and the tuning was done. 

  
(a) (b) 

Figure 8. Signals carriers to different frequencies and angles. (a) Fs(V-I) = 15 kHz, Fs(CSI) = 30 kHz, angle 
= 0°; (b) Fs(V-I) = 15 kHz, Fs(CSI) = 30 kHz angle = 90°. 

3. Operation of CSI and Validation 

This section presents the implementation of the proposed method. The operation of combined 
modulations and synchronization of the topologies were analyzed and validated by simulations. The 

Figure 8. Signals carriers to different frequencies and angles. (a) Fs(V-I) = 15 kHz, Fs(CSI) = 30 kHz,
angle = 0◦; (b) Fs(V-I) = 15 kHz, Fs(CSI) = 30 kHz angle = 90◦.

3. Operation of CSI and Validation

This section presents the implementation of the proposed method. The operation of combined
modulations and synchronization of the topologies were analyzed and validated by simulations.
The transistors of CSI were activated using a PWM modulation technique under conditions that will
be explained later.

3.1. Technique of Modulation

In the designed PWM, some conditions were defined. First, a constant current source must be
guaranteed at all times. Second, the transistors must work in such a way that an open circuit in the DC
link or a short circuit in the output capacitors is avoided. Any sudden loss of the current results in
a large dv/dt value, due to the DC-link inductor; this would cause damage to the components. Third,
only two switches will be activated at any time. If more than two are activated, the waveforms of the
PWM current cannot be defined.
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To comply with these conditions, the modulation technique presented in [22,23] was used.
It consisted of four main blocks (Figure 9) that satisfied the required constraints, and extended
the duality between VSI and CSI beyond the power circuit topology [23]. Using this technique allows
us to guarantee a continuous current input to the CSI inverter.
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conventional pulse-width modulation (PWM); (c) commutation basic; (d) pulses of short circuit;
(e) pulses of distribution; (f) signal of distribution; (g) signals of gating.

3.2. Implementation of the Proposed Method

The converter topology driven by the method proposed was simulated using the MATLAB-
SIMULINK toolbox. The parameters for the simulation are shown in Table 2. The Fs value was selected
as 35 kHz, and the THD was analyzed under the three conditions A, B, and C, as previously defined.
The results are shown in Figure 11, which indicate that condition B has less THD harmonic distortion
than the other two conditions. Thus, it can be concluded that a better response was obtained when the
CSI works at a higher frequency than the V-I converter.

Once the modulations condition C was selected (fsvi = 35 kHz and fscsi = 70 kHz), an analysis
was performed to validate this selection. This pretended to demonstrate the switching pattern that
followed, to obtain a current output in V-I with less harmonic content. The analysis is shown in
Figure 12.
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Table 2. Parameters of simulations.

Parameter Values

Vdc 100 V
Current 10 A

Inductor L1 10 mH
Frequency Fs 35 kHz

Capacitor C1, C2, C3 1 5 µF
Index of Modulation m 0.8

L Load 1.5 mH
R Load 1.3 Ω
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The two states ON/OFF of the V-I have a time duration Ton and Toff, in which several
commutations occur in the CSI converter. The current of the CSI was short-circuited when two
transistors of one leg were switched at the same time (T3 and T4 in Ts1). In Ts2, two transistors were
closed in the upper and lower aspects of different branches (T3 and T8), and the current flowed through
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the load connected to the CSI. This occurred as long as transistors of V-I and T1–T2 were turned on
(Ton). In time, Ts3, the conduction of the current, continued, but now it passed through T3, which was
in the upper part of the branch, and through T6, which belonged to the lower part of the leg 2, and
also through the load that of CSI. These sequences were repeated, whereas the V-I converter was in
the ON state. If the transistors were open, the current descended and presented a slope of fall for the
duration of Toff, as shown in Figure 12.

Under modulation conditions of B, the frequency of V-I was double that of CSI, and the current
of CSI was again short-circuited, when two transistors of one leg were switched at the same time
(Ts1), the current having a slope positive. In the next period Ts2, the current flowed by transistors of
two different legs (T3–T8), and closed for the load that was connected to CSI, then having a positive
ramp but a lower slope. This happened as long as the transistors of V-I TA–TB were turned on (Ton)
(Figure 13).
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These two cases were compared, and the THD of the V-I output current was analyzed with a DC
component. The results obtained were shown in Figure 14. As shown, somewhat less distortion with
a higher harmonic order appeared in case B, i.e., the CSI switching frequency was double the V-I one.

The next step was to develop an analysis that consisted of moving the angle-shift for the carrier
signals of the converters. The displacement was a range of 0◦ to 180◦ in steps of 30 grades. After
that, performing a calculation of THD for each set point of phase-shift with the previously selected
frequency values regarding the result shown in Figure 15, the THD was reduced to 1.98% when the
shifting between the carrier signals was 90◦.

To understand the THD related to the phase change between carrier signals, the CSI and V-I
activation signal map was analyzed. Also, the conduction and short-circuit sequence were established
for each instant of turning ON and OFF the V-I converter. For the situation of 0◦ degrees of phase shift,
the signal activation map of CSI and V-I is shown in Figure 16.

Where C is the situation of conduction, and * is the situation of the short circuit. The sequence for
this situation is C*CC*CC|C*CC*CC, and it is repeated for all cycles. The signals map for the phase
angles of 90◦ and 120◦ are shown in Figure 17; in these situations, the highest and lowest value of THD
is produced.

In the first situation, (a) it was observed that there were two short-circuit states with short
durations when the V-I converter was in the OFF state, and two short-circuits with a short times of
duration in the ON state. In (b) situation, it was observed that there were three short-circuit states for
each ON and OFF state of the V-I. From this analysis, it can be concluded that the more short-circuit
states a with minor time of duration in the CSI, the higher a THD is generated, and when there are less
short-circuit states with minor times, a reduction in the THD is obtained. Finally, the duration time of
the short-circuit also increments the THD for the same number of short-circuit states. Table 3 shows
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the result of THD for each situation of angle shift and sequence of the conduction–short circuit that
is obtained.

The output currents and the THD analysis for the condition of fsvi = 35 kHz and fscsi = 70 kHz
with an offset angle between the signals carriers of 90◦ are shown in Figure 18.

In addition, the same analysis was realized but now with the V-I frequency ratio of 70 kHz, the CSI
at 35 kHz and shift-angles of 0◦, 90◦ and 120◦. The results are shown in Figure 19.

The results of these switching patterns indicate that if the frequency of the V-I is double that of
the CSI, the short-circuit the time increase. This produces a greater harmonic distortion in the output
currents. The THD obtained in these three phase situations are shown in Table 4.

In this way it was determined that situation B is the most optimal, and when the shift angle
between the carriers is 90◦ in this condition, the smallest THD value of the whole analysis is obtained.Energies 2018, 9, x FOR PEER REVIEW 11 of 24 

 

 
(a) 

 
(b) 

Figure 14. THD comparison. (a) THD in the DC output current in V-I–CSI to fsvi = 35 kHz and fscsi =70 
kHz. (b) THD in the DC output current in V-I–CSI to fsvi = 70 kHz and fscsi =35 kHz. 

The next step was to develop an analysis that consisted of moving the angle-shift for the carrier 
signals of the converters. The displacement was a range of 0° to 180° in steps of 30 grades. After that, 
performing a calculation of THD for each set point of phase-shift with the previously selected 
frequency values regarding the result shown in Figure 15, the THD was reduced to 1.98% when the 
shifting between the carrier signals was 90°. 

 
Figure 15. THD results for fsvi = 35 kHz and fscsi =70 kHz when the carrier phase is sifting. 

To understand the THD related to the phase change between carrier signals, the CSI and V-I 
activation signal map was analyzed. Also, the conduction and short-circuit sequence were established 
for each instant of turning ON and OFF the V-I converter. For the situation of 0° degrees of phase 
shift, the signal activation map of CSI and V-I is shown in Figure 16. 

Figure 14. THD comparison. (a) THD in the DC output current in V-I–CSI to fsvi = 35 kHz and
fscsi = 70 kHz. (b) THD in the DC output current in V-I–CSI to fsvi = 70 kHz and fscsi = 35 kHz.

Energies 2018, 9, x FOR PEER REVIEW 11 of 24 

 

 
(a) 

 
(b) 

Figure 14. THD comparison. (a) THD in the DC output current in V-I–CSI to fsvi = 35 kHz and fscsi =70 
kHz. (b) THD in the DC output current in V-I–CSI to fsvi = 70 kHz and fscsi =35 kHz. 

The next step was to develop an analysis that consisted of moving the angle-shift for the carrier 
signals of the converters. The displacement was a range of 0° to 180° in steps of 30 grades. After that, 
performing a calculation of THD for each set point of phase-shift with the previously selected 
frequency values regarding the result shown in Figure 15, the THD was reduced to 1.98% when the 
shifting between the carrier signals was 90°. 

 
Figure 15. THD results for fsvi = 35 kHz and fscsi =70 kHz when the carrier phase is sifting. 

To understand the THD related to the phase change between carrier signals, the CSI and V-I 
activation signal map was analyzed. Also, the conduction and short-circuit sequence were established 
for each instant of turning ON and OFF the V-I converter. For the situation of 0° degrees of phase 
shift, the signal activation map of CSI and V-I is shown in Figure 16. 

Figure 15. THD results for fsvi = 35 kHz and fscsi = 70 kHz when the carrier phase is sifting.



Energies 2018, 11, 2798 12 of 23

Table 3. THD result with angle-shift and sequence.

Angle of Shift Values of THD Sequence
ON OFF

0◦ 2.10% C*CC*CC|C*CC*CC
30◦ 2.22% CC*CC*C|CC*CC*C
60◦ 2.39% *CC*C*C|*CC*C*C
90◦ 1.98% C*CC*CC|C*CC*CC

120◦ 2.25% *CC*CC*|*CC*CC*
150◦ 2.13% C*CCC*C|C*CCC*C
180◦ 2.15% CC*C*CC|CC*C*CCEnergies 2018, 9, x FOR PEER REVIEW 12 of 24 
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Table 4. Result of THD with an angle shift.

Shift-Angle Values of THD
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90◦ 2.74%

120◦ 2.45%
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4. Analysis of Power Losses, Temperature and Efficiency

4.1. Power Losses and Efficiency in the V-I Power Converter

The power losses analyzed were the conduction and switching losses. The parameters of device
SiC are shown in Table 5.

Table 5. Parameters of simulations.

Parameter Mosfet SiC Parameter Diode SiC

Model SCT2450KE Model C3D10065I
Voltage DS 1200 V VRRM (V) 650 V

Current 10 A QC (nC) 110 nC
Rds 450 mΩ IF (A) 10 A

Power Dissipation 85 W
Operating Junction 175 ◦C

The conduction losses in the MOSFET SiC and diode SiC could be expressed for (9) and (10);
the switching losses in the Mosfet SiC and SiC diode were expressed in (11) and (12) [4–24]:

Pcond_MOSFET = Rds(ON)Irms
2 (9)

Pcond_Diode = I2
rmsRD + IDCVD (10)

where Rds is the drain-source resistor of SiC MOSFET, Irms were the effective current flowing in the
device. IDc is the value of the current flowing through the diode, respectively:

PswM = fsw(Eon+Eoff) (11)

PswD = fsw(EswD) (12)

where EON is the turn-on switching energy, EOFF is the turn-off switching energy in the MOSFET
SiC and EswD is the energy of switching in the SiC Schottky diode [18]. The Eon, Eoff, and EswD are
calculated by (13)–(15):

Eon =
∫ tri + tfv

0
Vds(t)ID(t)dt = VdcIon_rms

(
tri + tfv

2

)
+ QrrVdc (13)

Eoff =
∫ tri + tfv

0
Vds(t)ID(t)dt = VdcIoff_rms

(
tri + tfv

2

)
(14)

EswD =
∫ tri + tfv

0
Vd(t)If(t)dt =

1
4

QrrVdc (15)

where VDS is the voltage drain source, ID the continuous drain current, Vdc is the voltage Dc link; the tri,
tfv, and Qrr are the current rise time, voltage fall time, and the reverse recovery charge, respectively [24].
All these parameters are in the datasheet of the devices.

4.2. Inductor Core Losses

The losses in the inductors are from the following sources, hysteresis loss, copper or winding loss
and eddy current loss. The hysteresis loss is due to the materials intrinsic properties, due to the energy
used to align and re-align the magnetic domains. The general form of the losses for hysteresis Pm is
calculated by the Expression (16):

Pm = k.faBd
max (16)

where a, d, and k are constants, depending of the type of material, for this case is ferrite. Eddy current
loss from the circulating currents within the magnetic materials, due to the differential in flux voltage
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inside the cores itself [25]. These losses were highly dependent upon the thickness of the walls of the
cores. The eddy current loss per unit of volume could be calculated by Expression (17):

Pec =
η2f2B2

max
6ρ

(17)

where η is the Steinmetz hysteresis constant, and ρ is the density of the material. The copper losses in
the inductor are calculated by Expression (18):

Pcopper= idc
2Rcoil (18)

The total power losses in the inductor are obtained by the Expression (19) and are shown in
Table 6:

Pinductor= Pm+Psc+Pcopper (19)

Table 6. Inductor core losses.

Parameter Value

Hysteresis losses 0.0517 W/cm3

Eddy current losses 0.2738 W/cm3

Copper losses 29.93 W/cm3

Total of losses in the inductor 30.255 W/cm3

The rated power of the V-I converter is 1 kW. Figure 20 shows the analysis of power losses and
efficiency in the V-I power converter switching at 35 kHz, with a phase-shift of 90◦ in PWM carriers.
Efficiency is calculated with Expression (20):

η =
Pout

Pout + ∑ PLosses
(20)
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4.3. Power Losses and Efficiency in the Current Source Inverter

In the case of the CSI converter, the important rule for the calculation of losses is that there is at
least one device turned on in the converter [24]. The expressions that were implemented to calculate the
losses for switching and conduction were as in the previous section. However, this time the topology
of a Schottky SiC diode connected in series with each SiC MOSFET was considered. The results of
power losses in the CSI converter by switching and conduction to 70 kHz, and 90◦ of phase shift in the
PWM carriers are presented in Figure 21. The rated power of the CSI converter was 1.5 kW.
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4.4. Power Losses in the Electric Motor

This section presents the analysis of the power losses in the electric motor, considering four
situations of operation previously analyzed, 0 degrees, 60 degrees, 90 degrees (angle with lower THD),
120 degrees of phase shift in PWM carriers for V-I and CSI converters. This analysis aims to perform
a comparative study and to show that the reduction of harmonics allows for the improvement of the
efficiency of the electric motor.

In the permanent magnet synchronous motor (PMSM), there are two main electrical losses,
the core losses in the iron core, and the copper losses in the winding. The fundamental iron loss
consisted of hysteresis loss and eddy current loss, and copper losses, which were caused by the stator
coil resistance Rs [26,27]. The copper losses were the losses due to the heat (Joule effect) that produced
the current when it was circulated by a conductor, and it could be expressed by (21). In the analysis,
the data of a PMSM engine implemented in another previous study was considered [27,28].

PCU = mRsI2 +
U

∑
h=3

I2
nRn,ac (21)

where m is the number of phases, Rs is the resistance, and I is the DC current, In is the root mean
square (RMS) of the nth current harmonic. Rn,ac is the value of the ohmic for the nth harmonic that is
determined by Expression (22).

Rn,ac= Rdc
(
Kn.se+Kn,pe

)
(22)

where Knse is the resistance gain cause for the effect skin, and Kn,pe is the resistance gain caused by the
proximity effect. The iron losses are calculated on the basis of Expression (23):

Piron= kPFEo

(
f
fo

) 2
3

Md

(
Bd
Bo

)2

+Mce

(
Bce

Bo

)2
 (23)

where k is the coefficient of additional losses in iron, PFEo, for magnetic sheet M250-50A, fo is the
frequency, Bo is the maximum induction value, Bd is the maximum induction in the teeth, Bce is the
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maximum induction in the stator crown, Md is mass of the teeth, and Mce is the mass of the stator
crown. The result of power losses in the PMSM for the four situations are showed in Figure 22.Energies 2018, 9, x FOR PEER REVIEW 19 of 24 
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Figure 22. Power losses in permanent magnet synchronous motor (PMSM)with shift angle in 0◦, 60◦,
90◦, and 120◦ in the power converters.

The representation of the efficiency of the motor for the situations of shift phase angles (0◦, 60◦,
90◦, and 120◦) are shown in Figure 23 are compared for different power outputs.
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Figure 23. Efficiency in an electric motor for shift angles of 0◦, 60◦, 90◦, and 120◦ in the power converters.

The weighted average efficiency of the whole system (power converters + motor) in the situations
of 0◦ and 90◦ is shown in Table 7 and Figure 24. The study allows for the demonstration that by using
the proposed method, an improvement in the efficiency of the systems analyzed is obtained.

Table 7. Parameters of simulations.

System Efficiency at 0◦ Efficiency at 90◦ Power Out

V-I 88.25% 90.1% 1 kW
CSI 93.8% 94.22% 1.5 kW

Motor 91.2% 91.38% 1.5 kW
Average 91.08% 92% 1.5 kW
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Figure 24. Efficiency in all systems.

Application of the proposed modulation patterns produced a gain in efficiency that was not highly
significant (0.91%), but it was good enough to reduce the thermal stress of the power converters, the
thermal behavior of the whole system, as well as the improvement of the wave shape of motor currents.

Finally, a comparative study was carried out with a hybrid DC–DC converter and VSI topology
with silicon IGBTs and SiC diodes. This was done for the purpose of comparing and validating the
efficiency between these topologies with frequency of operation of 5 kHz for DC–DC, and 10 kHz for
VSI. The features of devices used for the hybrid DC–DC and VSI topologies are presented in Table 8.

Table 8. Parameters of simulations.

Parameter Mosfet SiC Parameter Diode SiC

Model HGTG30N60BD3 Model C3D10065I
Voltage CE 600 V VRRM (V) 650 V

Current 15 A QC (nC) 110 nC
Power Dissipation 208 W IF (A) 10 A
Operating Junction 150 ◦C

The comparison between the two topologies in terms of power losses are shown in Table 9 and
Figure 25.

When obtaining the THD of the currents of the VSI topology (Figure 26) and comparing it with
the previous analysis, it can be seen that the harmonic distortion increases to 2.52%. This causes losses
throughout the system to increase.

These results justify us that the V-I topology with the CSI inverter of SiC devices presents
better responses in losses and in harmonic distortion, with respect to the proposed VSI topology for
the comparison.

Table 9. Power losses between SiC topology and Hybrid Topology.

Parameter All-SiC Topology
V-I–CSI

Hybrid Topology
DC/DC–VSI

Pconduction Mosfet SiC/IGBTs 44.98 W 134.94 W 64.9 W 194.24 W
Pconduction diodes 43.16 W 129.48 W 44.57 W 129.42 W

Pswitching SiC/IGBTs 22.87 W 26.88 W 27.88 W 45.08 W
Pswitching diodes 0.0296 W 0.178 W 0.0006 W 0.036 W

Total 402.51 W 506.29 W
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4.5. Heatsink Estimation

The use of a cooling system or heat sink is important for the operation of converter topologies.
Using a simple thermal model for SiC devices, containing a junction and a case before the heatsink,
and assuming that all devices are placed on the same plate, a maximum thermal resistance for the
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heatsink can be estimated following the method described in [29]. The maximum allowable thermal
resistance for the heatsink is calculated for Expression (24):

Rthhs =
Th−Ta

n
∑

i=1
Pd,i

(24)

where the Rthhs is the heatsink temperature, Ta is the ambient temperature, and Pd is the power
dissipated by the component. Applying this method gives a heatsink estimate of the heatsink of
0.68 ◦C/W for the V-I converter, and 0.22 ◦C/W for the CSI inverter, with an operating temperature of
142 ◦C and 25 ◦C of the ambient temperature.

5. Conclusions

This paper presents a method for reducing the total harmonic distortion in the output currents
of a CSI topology, with a V-I power converter based on SiC. The method consists of adjusting the
switching frequency and the phase-shift angle between two carrier signals. The method proposed
shows positive results that allow accurate synchronization between converter topologies. Among the
results obtained, it is observed that the frequency of operation of the CSI has to be higher (double),
that of the V-I, to obtain a reduction of the THD.

In addition, an improvement in the efficiency is observed by varying the phase angle between
PWM carriers of both power converters switching modulators, V-I and CSI. According to the
comparative analysis, the results show that the efficiency increases from 91.08% to 92% by changing
the phase angle from 0◦ to 90◦ of shift angle.

Finally, as a general conclusion, the use of SiC devices in the topologies of inverters with current
sources (CSI) allows for an increase in the frequency of switching, and improvements in their efficiency.
This efficiency could even be increased by a proper adjustment of switching frequencies. These
advantages could translate into a substantial reduction of inverter cost and volume, higher reliability,
greater power, and improved engine efficiency, allowing for the consolidation of these topologies in
electric traction systems.
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