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Abstract: This work is located in a growing sector within the field of renewable energies, wave energy
converters (WECs). Specifically, it focuses on one of the point absorber waves (PAWs) of the hybrid
platform W2POWER. With the aim of maximizing the mechanical power extracted from the waves
by these WECs and reducing their mechanical fatigue, the design of five different model predictive
controllers (MPCs) with hard and soft constraints has been carried out. As a contribution of this
paper, two of the MPCs have been designed with the addition of an embedded integrator. In order
to analyze and compare the MPCs with conventional PI type control, an exhaustive study about
performance and robustness is realized through the computer simulations carried out, in which
uncertainties in the WEC dynamics and JONSWAP spectrum are considered. The results obtained
show how the MPCs with embedded integrator improve power production of the WEC system
studied in this work.

Keywords: wave energy converter; model predictive control; robustness analysis; embedded
integrator; mathematical model; system identification; JONSWAP spectrum

1. Introduction

Nowadays, the main motivation for the research and development of wave energy converters
(WECs) is the advantages offered by waves: a clean and abundant source of energy. As evidence,
the authors in [1] compared a global study of net wave power (estimated at about 3 TW) with the
electrical power consumed globally in 2008 (equivalent to an average power of 2.3 TW). However,
it should be noted that currently, there is not a clear line of development, but a great diversity of
systems based on different approaches to extract energy from the waves. In particular, the ocean energy
systems collaboration program [2] classifies three kinds of WEC systems: oscillating water columns,
overtopping and wave-activated bodies (WABs). This work focuses on a type of WAB system, a point
absorber wave (PAW) energy converter from the W2POWER (Wind and Wave Power) platform [3].
These systems are characterized because their extension is significantly smaller than the predominant
wavelengths. In addition, PAWs extract the maximum mechanical power from the sea when they are
in resonance with the excitation force caused by the waves [4]. In order to favor this situation, it is
necessary to enlarge the bandwidth of these devices. For this reason, several control systems are used,
and the most common are: passive loading control, reactive loading control and latching control [5,6].
Although, since the last decade, more complex controllers like MPC (model predictive control) are
being employed. The interest in implementing MPCs in WEC systems is motivated by the need to
increase the productive/economic viability of these systems; due to the fact that these controllers allow
them to minimize mechanical fatigue in their structures (limiting the operating ranges) and to focus
the control strategy on the maximization of the extracted power directly.
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Actually, several authors have developed predictive controllers for WECs [7–17]. These MPCs can
be grouped according to the characteristics of the cost function optimized. On the one hand, the authors
in [8,10–16] used a cost function in which the extraction of mechanical power was directly maximized.
Whereas, on the other hand, in [9,17], the authors proposed a cost function to maximize power
extraction by minimizing the error between the speed of oscillation of the system and a setpoint for it.
In addition to the above classification, MPCs can be distinguished according to the mathematical model
used for their design. On one side, in [9–11,13,14], a reduced model was used for the design, which did
not consider the dynamics of the radiation force. Meanwhile, in [7,8,12,13,15–17], such dynamics were
considered in the design model. Moreover, the previous works did not consider the dynamics of the
power take-off system (PTO), neither in the evaluation, nor in the design of the MPCs. In this aspect,
the authors in [11,14], although they did not consider the PTO dynamics, optimized the cost function
for the increment of the control signal, thus limiting the slew rate of the actuator. Finally, the treatment
carried out in the case of non-feasibility when solving the cost functions with restrictions should be
highlighted. In this aspect, the works in [9,10,13] considered a more complete approach by adding soft
constrains in the case of non-feasibility.

This paper analyses the main approaches of MPCs applied to PAW systems [8–17]. In addition,
a new design is proposed: MPC based on a model with an embedded integrator for controllers that
follow a setpoint for the speed of oscillation of the PAW. This approach is recommended in the theory
of predictive control in the space of states [18,19], and it is proposed as an alternative method to the
one carried out in [9,17] for PAW systems. Moreover, all predictive controllers of this work consider
soft and hard constraints. On the other hand, the PTO dynamics is taken into account to validate the
MPC controllers, as well as in the design of some of these controllers. After an exhaustive fine-tuning
for all MPCs, the main contribution of this work is obtained, and an in-depth study about performance
and robustness of all MPCs through simulations is carried out. The results obtained for a sea state
defined by the JONSWAP spectrum [15,16] are compared with conventional controllers: I-P control
and resistive damping (RD). Furthermore, the mathematical model of the WEC system is obtained
using a software simulation based on the boundary element method, such as openWEC [20].

The rest of the article is organized as follows: Section 2 presents the generic mathematical model
of a PAW, the standard identification methodology applied in this paper and the treatment applied
to the model identified for its later use in the design of the MPCs. Section 3 details the five MPC
controllers designed with hard and soft restrictions. Section 4 presents a performance and robustness
comparison analysis for the MPCs and conventional (P, PI) controllers. Finally, in Section 5, the main
conclusions are indicated.

2. Mathematical Model

Given the importance of mathematical modeling in the design of MPC controllers, this section
begins by describing the generic model of a PAW. This is followed by the standard identification process
realized in this paper for the study system, one of the WEC systems of the platform W2POWER [3].
Later, the treatment of the model is detailed for its later use in the design of MPC controllers.

2.1. Generic Mathematical Model for Point Absorber Wave

The modeling of the forces affecting a PAW that extracts power from the waves using a single
degree of freedom (heave) is widely used in the literature [4,7–9,21–27]; see Figure 1. The main dynamic
interactions between the buoy and the waves are collected by:

mz̈ = Fe + Fr + Fs + Fu (1)

where m is the mass of the system, z the vertical displacement of the buoy, Fe the excitation force
caused by the wave, Fr the radiation force, Fs the hydrostatic restoring force and Fu the control force
realized by the PTO system.
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Figure 1. Illustrative scheme: point absorber wave (PAW) system of the W2POWER platform.

The force of radiation is due to the effect produced on the system by the waves it radiates when
oscillating. It is modeled by the Cummins equation [28] as (2), where the radiation force Fr is composed
of two terms: Frm∞ and FrKr . The first is a function of the acceleration of the system and the mass of
water added m∞; while the second defines a radiation force as a function of the speed of oscillation as
an integral of convolution.

Fr = −m∞ẇ(t)︸ ︷︷ ︸
Frm∞

−
∫ t

∞
hr(t− τ)w(τ)dτ︸ ︷︷ ︸

FrKr

(2)

The convolution term represents the impulse response that relates the speed of the oscillation
system with the force of radiation, where hr(t) represents the radiation impulse response function
(RIRF). To avoid convolution calculations [21,24,26], an approximation is made based on ordinary
differential equations (ODE) or as a transfer function in the Laplace domain (3).

FrKr (s)
W(s)

= Kr(s) =
ansn + an−1sn−1 + . . . + a0

bnsn + bn−1sn−1 + . . . + b0
(3)

The hydrostatic restoring force represents the effect of Archimedes and gravity on the buoy (4).
By linearizing Equation (4), the hydrostatic force is approximated as (5).

Fres = −(Vdesp(z)ρg−mg) (4)

Fres = −kresz(t)

kres = ρgAW
(5)

where Vdesp is the volume of water displaced, ρ is the density of seawater, g is the gravity constant,
kres is the hydrostatic restoring coefficient and AW is the area of the buoy on its waterline.

For the excitation force caused by the waves, the components with the highest frequency are
negligible. For this reason, authors such as [7,8,11,12,15,16,24–27] have defined the excitation force
as a low pass filter of first/second order at wave height (6). This modeling is used later in the
performance study.

GFe(s) =
Fe(s)
η(s)

=
Kτ

s2 + 2ζτωnτs + ω2
nτ

. (6)

On the other hand, in order to model the force on a buoy, the Morison equation [29] can be
used, which is habitually employed to estimate the wave loads in the design of offshore structures.
By linearizing the Morison equation for a point absorber wave in heave, the excitation force is defined
according to Equation (7). This modeling is used later in the robustness study.

Fe(t) = m∞η̈(t) + Baprox η̇(t) + kresη(t) (7)
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where η is the height of the incoming wave and Baprox represents the damping of the system, which can
be obtained as the stationary gain of the transfer function (3).

The PTO dynamics can be approximated as a linear second order system with a force limitation.
The linear relation between the demanded force by the control system, (Fu), and the force applied to
the buoy, (Fpto), is given by (8).

Gpto(s) =
Fpto(s)
Fu(s)

=
daωn

2

s2 + 2ζωns + ωn2 , (8)

2.2. Forces Identification Using Simulation Based on BEM

A common approach to determine the hydrodynamic forces of interaction between the wave
and buoy is to use the linear wave theory, which assumes that waves are the sum of incident,
radiated and diffracted wave components [21]. These components can be modeled using linear
coefficients obtained from the frequency-domain potential flow BEM (boundary element method)
solver Nemoh [30]. The BEM solutions are obtained by solving the Laplace equation for the velocity
potential, which assumes that the flow is inviscid, incompressible and irrotational. In this work,
openWEC software is employed. It is an open-source tool to simulate the hydrodynamic behavior and
energy yield from single-body wave energy converters [20]. Two software packages are coupled in
openWEC, a frequency domain solver Nemoh and a time domain solver. In particular, this numerical
tool is applied to solve the fluid equation for a submerged body. The equations are solved for
the following effects in the heave direction on a buoy: excitation force Fe, radiation force Fr and
restoring force Fres. Thus, the frequency domain modeling is performed with the Nemoh BEM solver.
For each panel of a mesh (see Figure 2a), the hydrodynamic parameters are calculated for a frequency
range. The pressures caused by the incoming wave are integrated into resulting forces on the buoy;
see Figure 2b. From these data in the frequency domain, a filter is established to convert a wave
into an exciting force (9). A magnitude diagram of the resulting filter is also shown in Figure 2b.
The magnitude response resembles a second order filter with a cut-off frequency of 0.9 rad/s.
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Figure 2. (a) Mesh defined by openWEC for a cylindrical buoy (11 m long and 7.5 m in diameter).
Comparison of the identified transfer functions: (b) Bode diagram for excitation force Fe(s); (c) impulse
response for radiation force Kr(s).

An advanced function of Nemoh can be enabled to calculate the impulse response function (IRF).
A comparison between the IRF identified and that provided by openWEC is shown in Figure 2c.
To avoid convolution calculations in (2), it is replaced as ordinary differential equations (ODE) or as a
transfer function in the Laplace domain (3). This can be performed using Prony’s method [21,31,32],
which is implemented in MATLAB 2016b [33]. Different orders of ODEs have been tested to fit
the impulse response. By comparing these responses, it was observed that for orders above eighth,
the improvement in the system response was not significant.
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Fe(s)
η(s)

=
6.5× 105

(s + 0.9)2

[
N
m

]
(9)

Kr(s) =
Fr(s)
W(s)

=
aK8 s8 + aK7 s7 + aK6 s6 + aK5 s5 + aK4 s4 + aK3 s3 + aK2 s2 + aK1 s + aK0

s8 + bK7 s7 + bK6 s6 + bK5 s5 + bK4 s4 + bK3 s3 + bK2 s2 + bK1 s + bK0

[
N

m/s

]
(10)

where the coefficients aK and bK are listed in Table 1.
Then, regrouping terms according to Equation (1), the transfer function (11) that relates external

forces with the position of the buoy (z) is obtained.

GWEC(s) =
Z(s)

Fext(s)
=

a8s8 + a7s7 + a6s6 + a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0

s10 + b9s9 + b8s8 + b7s7 + b6s6 + b5s5 + b4s4 + b3s3 + b2s2 + b1s + b0

[m
N

]
(11)

where the coefficients an and bn are listed in Table 1.

Table 1. Model coefficients identified for the WEC system.

Coefficient Value Coefficient Value Coefficient Value Coefficient Value

— — b9 8.8× 101 — — — —
a8 2.4× 10−6 b8 1.5× 105 aK8 1.2× 103 — —
a7 2.2× 10−4 b7 6.7× 106 aK7 2.3× 105 bK7 8.9× 101

a6 3.6× 10−1 b6 4.5× 109 aK6 1.9× 108 bK6 1.5× 105

a5 1.6× 101 b5 1.3× 1010 aK5 2.6× 1010 bK5 6.7× 106

a4 1.1× 104 b4 6.4× 1010 aK4 6.3× 1012 bK4 4.5× 109

a3 3.3× 104 b3 8.6× 1010 aK3 5.6× 1014 bK3 1.3× 1010

a2 1.3× 105 b2 1.8× 1011 aK2 1.7× 1015 bK2 5.3× 1010

a1 1.4× 105 b1 1.1× 1011 aK1 4.7× 1015 bK1 5.5× 1010

a0 1.6× 105 b0 1.3× 1011 aK0 1.4× 1015 bK0 6.5× 1010

2.3. Treatment of the Mathematical Model for the Design of MPCs

In order to ensure safe behavior and reduce mechanical fatigue in PAW systems, a model that
allows them to constrain the oscillation speed and the position of the buoy is necessary. For this reason,
a brief study of the identified model (11) is realized. By representing it in the state space, it can be
verified that the system obtained is not completely controllable, and therefore, it is not a minimal
realization [34]. Furthermore, it is not enough to reduce the model (11) to its minimum order. This is
because, except for the system output (z), the other state variables lack physical sense, and this does
not allow it to impose speed constraints (w) directly. As a solution, we study the transfer function (10)
that defines the dynamics of the radiation force. Representing (10) in the state space, it can be seen how
the model obtained is not of minimum order, so the system is minimized to get (12). Note that the state
variables of this model (xr) will not be controlled, so it is not necessary that they have physical sense.

ẋr(t) = Arxr(t) + Brw(t)

FrKr (t) = Crxr(t) + Drw(t)
(12)

where the matrices Ar, Br, Cr and Dr are given by (13).

Ar =


−3.0044 −1.4736 −0.3820 −0.2258
8.1656 0.0180 0.0041 0.0025
0.0015 4.0015 0.0004 0.0002
−0.0000 −0.0000 2.0000 −0.0000

 , Br =


121.3816
−1.3375
−0.1201
0.0005


Cr =103

(
1.0083 0.3683 0.2624 0.0377

)
, Dr = 1218.70

(13)

A complete model must consider the dynamics of the power take-off system. Given the similarity
between the Wavestar system and the WEC studied in this work, the PTO model proposed in [24] is
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used, where the PTO dynamics are modeled according to (8). By representing this model in the state
space, with the parameters indicated in [24], the matrices (14) have been obtained. For this purpose,
the observable canonical form has been chosen. Thus, one of the state variables corresponds to the
output of the PTO system, so MPCs may impose restrictions on the output of the actuator.

Apto =

(
−8.7965 1.0000
−157.9137 0

)
, Bpto =

(
0

157.9137

)
, Cpto =

(
1 0

)
, Dpto = 0 (14)

After that, in this paper, we propose (15) as one of the design models, and the MPCs can impose
restrictions on the following state variables: force applied by the PTO (xpto1), oscillation speed (w)
and buoy position (z). This model is similar to the one proposed in [8,12], but also considers the
PTO dynamics.



ż

ẇ

ẋr

ẋpto


︸ ︷︷ ︸

ẋ

=



0 1 0 0

− kres

mT
− 1

mT
Dr − 1

mT
Cr

1
mT

Cpto

0 Br Ar 0

0 0 0 Apto


︸ ︷︷ ︸

AWEC



z

w

xr

xpto


︸ ︷︷ ︸

x

+



0

0

0

Bpto


︸ ︷︷ ︸

BWECu

Fu +



0

1
mT

0

0


︸ ︷︷ ︸

BWECFe

Fe

 z

w


︸ ︷︷ ︸

y

=

1 0 0 0

0 1 0 0


︸ ︷︷ ︸

CWEC



z

w

xr

xpto


︸ ︷︷ ︸

x

(15)

where mT = m + m∞ and the matrices I (unit matrix) and zero have the required size according to
their location, and the parameters not yet presented are listed in Table 2.

Table 2. Parameters of the models (15) and (16) for the WEC system.

Symbol Description Value

kres Hydrostatic restoring coefficient 809,325 N/m
Baprox Stationary approximation to system damping 21,497 N s/m
m Mass of water displaced by the buoy at rest 241,601.9 kg
m∞ Mass of water added 167,700 kg

Simplified Model for the Design

In this paper, as in others works [9–11,13,14], a simplified model (16) is used for the design of
some MPCs. It differs from the previous model (15) in that it does not take into account the dynamic of
the radiation force or the PTO dynamics. Figure 3 shows a comparison of the outputs of the simplified
model and the complete model.
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ż

ẇ


︸ ︷︷ ︸

ẋ

=


0 1

− kres

mT
−

Baprox

mT


︸ ︷︷ ︸

AWECr


z

w


︸ ︷︷ ︸

x

+


0

1
mT


︸ ︷︷ ︸

BWECr

(Fu + Fe)

 z

w


︸ ︷︷ ︸

y

=

1 0

0 1


︸ ︷︷ ︸

CWECr


z

w


︸ ︷︷ ︸

x

(16)

where mT = m + m∞, and the parameter values are listed in Table 2.
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Figure 3. Comparison of models: complete (z1, w1) vs. simplified (z2, w2). The height of the wave is n.

3. Model Predictive Control for the Point Absorber WEC

This section details the design of the commonly-used MPCs for PAWs. Moreover, in this work,
two MPCs are proposed based on the addition of an embedded integrator. In order to make a complete
design, all the MPCs take into account constraints and the possibility of relaxing them, in the case
of non-feasibility, in their cost functions. In particular, these constraints are applied to the control
force of the PTO system, the position of the buoy and its oscillation speed. However, in the case of
non-feasibility, only soft-constraints are applied to the position and oscillation speed of the system;
due to the PTO being an actuator whose physical limit cannot be exceeded. Finally, for each controller,
a sampling period of Tm is set, which is used to discretize the mathematical model using the zero order
hold (ZOH) approximation.

3.1. MPC1

The cost function that minimizes this controller considers the maximization of extracted power
directly; as the design model is used (16), for which the state vector estimated for a prediction horizon
M and a control horizon N is defined according to Equation (17) [18,19].

X =


A
A2

A3

...
AM


︸ ︷︷ ︸
Jx(Mn×n)

xk +


B 0 0 . . . 0

AB B 0 . . . 0
A2B AB B . . . 0

...
...

...
. . .

...
AM−1B AM−2B AM−3B . . . AM−N B


︸ ︷︷ ︸

Ju(Mn×N)

(Fpto + Fe) (17)

where X represents the estimated state vector for a prediction horizon M, xk represents the state vector
at the current instant, the matrices A and B are obtained from the model (16) discretized (ZOH), n is
the order of the model and Fpto and Fe are vectors that contain the force applied by the PTO and the
excitation force for whole control horizon N, respectively.
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In a more compact form, the above equation can be expressed as:

X = Jxxk + Ju(Fpto + Fe) (18)

On the other side, as defined in [10,12,26], the mechanical power generated is given by (19).
The expression of the power generated for the whole prediction horizon is obtained (20).

Pgen(t) = −w(t)Fpto(t) (19)

Pgen = −WT Fpto (20)

where W and Fpto are vectors with length M, which represent the oscillation speed and control force
for the whole prediction horizon, respectively.

By replacing (18) in (20),

Pgen = −(SwX)T Fpto

Pgen = −(Sw(Jxxk + JuFpto + JuFe))
T Fpto

(21)

where Sw is a selector matrix for speed w (size M×Mn).
Developing (21) and grouping in terms of least squares, the cost function is obtained:

J(Fpto) =
1
2

Fpto
T (Ju

TSw
T + R)︸ ︷︷ ︸

H

Fpto +
1
2
(Fe

T Ju
TSw

T + xk
T Jx

TSw
T)︸ ︷︷ ︸

b

Fpto (22)

where the matrix R weights the control effort.
In addition, constraints are imposed to: force demanded for the PTO position and oscillation

speed of the buoy (24). Therefore, the cost function (22) with constraints is defined as:

J(Fpto) =
1
2

Fpto
T HFpto +

1
2

bFpto

AgFpto ≤Bg

(23)

where Ag = [A1 A2 A3]
T and Bg = [B1 B2 B3]

T ; see Equation (24).[
I
−I

]
︸ ︷︷ ︸

A1

Fpto ≤
[

FPTOmax

−FPTOmin

]
︸ ︷︷ ︸

B1

,

[
Sz Ju

−Sz Ju

]
︸ ︷︷ ︸

A2

Fpto ≤
[

Znmax − Sz(Jxxk + JuFe)

−Znmin + Sz(Jxxk + JuFe)

]
︸ ︷︷ ︸

B2[
Sw Ju

−Sw Ju

]
︸ ︷︷ ︸

A3

Fpto ≤
[

Wnmax − Sw(Jxxk + JuFe)

−Wnmin + Sw(Jxxk + JuFe)

]
︸ ︷︷ ︸

B3

(24)

where Sz is a selector matrix for position (size M×Mn), the vectors FPTOmax and FPTOmin (size N × 1)
define the nominal limits of the force applied by the PTO and the vectors Wnmax , Wnmin , Znmax and
Znmin (size M× 1) define the nominal limits of the buoy position and oscillation speed, respectively.
In addition, the matrices I (unit matrix) and 0 have the required size according to their location.

In the case of non-feasibility, soft constraints to the position and oscillation speed of the system
are applied. Thus, the cost function (22) would be defined as:

J(Fpto, εz, εw) =
1
2

Fpto
T HFpto + bFpto + εz

TWεz εz + εw
TWεw εw (25)

where εz and εw represent the relaxation applied to position and speed along the prediction horizon M
and the matrices Wεz and Wεw (size M×M) weight these slacks.
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By regrouping terms and adding soft restrictions, the cost function (25) can be expressed as:

J(β) =
1
2

βT

H 0 0
0 Wεz 0
0 0 Wεw

 β +
[
b 0 0

]
β

Agβ ≤Bg

(26)

where β = [Fpto εz εw]T , with size (N + 2M) × 1, Ag = [A1 A2 A3 A4 A5]
T and Bg =

[B1 B2 B3 B4 B5]
T ; see Equation (27). Matrices 0 have the required size according to their location.

[
Sz Ju −I 0
−Sz Ju −I 0

]
︸ ︷︷ ︸

A2

β ≤
[

Znmax − Sz(Jxxk + JuFe)

−Znmin + Sz(Jxxk + JuFe)

]
︸ ︷︷ ︸

B2

,

[
Sw Ju 0 I
−Sw Ju 0 I

]
︸ ︷︷ ︸

A3

β ≤
[

Wnmax − Sw(Jxxk + JuFe)

−Wnmin + Sw(Jxxk + JuFe)

]
︸ ︷︷ ︸

B3[
I 0 0
−I 0 0

]
︸ ︷︷ ︸

A1

β ≤
[

FPTOmax

−FPTOmin

]
︸ ︷︷ ︸

B1

,

[
0 I 0
0 −I 0

]
︸ ︷︷ ︸

A4

β ≤
[

κz

0

]
︸︷︷ ︸

B4

,

[
0 0 I
0 0 −I

]
︸ ︷︷ ︸

A5

β ≤
[

κw

0

]
︸ ︷︷ ︸

B5

(27)

where κz and κw are vectors (size M× 1) that represent the maximum slack allowed for position and
oscillation speed, respectively. The matrices I (unit matrix) and 0 have the required size according to
their location.

3.2. MPC2

This controller uses the simplified model (16). Its cost function is based on maximizing the
extracted power by tracking a setpoint for the oscillation speed (wre f ) along a prediction horizon M,

J = (w̃− wre f )
TQ(w̃− wre f ) + Fpto

T RFpto (28)

where Q and R are diagonal matrices of size (M×M) and (N × N) that weight the tracking error and
the control effort, respectively.

Substituting (18) in (28), the cost function for this controller can be written as (29).

J(Fpto) = (Jxxk + JuFpto + JuFe︸ ︷︷ ︸
f

−wre f )
TQ(Jxxk + JuFpto + JuFe︸ ︷︷ ︸

f

−wre f ) + Fpto
T RFpto (29)

By developing the cost function (29) and grouping terms, the following expression is obtained:

J(Fpto) = Fpto
T (JT

u δJu + R)︸ ︷︷ ︸
H

Fpto + 2 ( f − wre f )
TQJu︸ ︷︷ ︸

b

Fpto + ( f − wre f )
TQ( f − wre f )︸ ︷︷ ︸

l

(30)

Note that the term l can be ignored when the cost function is minimized, because it does not
depend on the variable to be optimized (Fpto),

J(Fpto) =
1
2

Fpto
T (JT

u δJu + R)︸ ︷︷ ︸
H

Fpto + (Jxxk + JuFpto + JuFe − wre f )
TQJu︸ ︷︷ ︸

b

Fpto (31)

The constraints imposed on this cost function can be expressed in the same way as in the MPC1

controller; using (23) for hard constraints and (26) for soft constraints. On the other hand, the
reference trajectory, or setpoint for the oscillation speed, is defined by the approach proposed in [4],
wre f = Fe/2Baprox.
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3.3. MPC3

This approach is a contribution made in this work. This controller uses the simplified model (16)
to which an embedded integrator has been added according to the theory of predictive controllers in
the state space [18,19]. Its cost function is based on the maximization of the extracted power through
the tracking of a setpoint for the oscillation speed. To add the integrator, it is necessary to multiply the
model (16) discretized by the operator4 = 1− z−1. Regrouping terms, an extended state vector is
defined as: [

4x(t + 1)
y(t + 1)

]
︸ ︷︷ ︸

xe(t+1)

=

[
A 0

CA I

]
︸ ︷︷ ︸

Ae

[
4x(t)
y(t)

]
︸ ︷︷ ︸

xe(t)

+

[
B

CB

]
︸ ︷︷ ︸

Be

(
4Fpto(t) +4Fe(t)

)

y(t) =
[
0 I

]
︸ ︷︷ ︸

Ce

[
4x(t)
y(t)

]
︸ ︷︷ ︸

xe(t)

(32)

where the output vector y(t) is formed by the position and oscillation speed of the WEC system,4x(t)
represents the state vector increment, the matrices A, B and C are from the model (16) discretized
(ZOH) and the matrices 0 have the required size according to their location.

Using the extended model (32), the prediction of the outputs (z, w) is defined for a prediction
horizon M and a control horizon N according to:

Y =


CA
CA2

CA3

...
CAM


︸ ︷︷ ︸
F(2M×ne )

Xe +


CB 0 0 . . . 0

CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
...

...
. . .

...
CAM−1B CAM−2B CAM−3B . . . CAM−N B


︸ ︷︷ ︸

G(2M×N)

(4Fpto +4Fe) (33)

where ne = n + j represents the order of the extended model and j its number of outputs. In the
matrices A, B and C, the sub-index e has been omitted to get a clearer notation.

By adding the embedded integrator, this controller minimizes a cost function that gets the optimal
increase in control force (Fpto) for the full control horizon N,

J = (w̃− wre f )
TQ(w̃− wre f ) +4Fpto

T R4Fpto (34)

where Q and R are diagonal matrices of size (M×M) and (N × N) that weigh the tracking error and
the control effort, respectively.

Replacing the output prediction (33) in (34) and obviating the independent term of4Fpto:

J(4Fpto) =
1
2
4Fpto

T (GTδG + R)︸ ︷︷ ︸
H

4Fpto + (Fxek + G4Fe − wre f )
TQG︸ ︷︷ ︸

b

4Fpto (35)

In addition, constraints are added to the demanded force on the PTO, position and oscillation
speed of the system. Therefore, the cost function (35) subject to the restrictions is defined as:

J(4Fpto) =
1
2
4Fpto

T H4Fpto + b4Fpto

Ag4Fpto ≤Bg

(36)
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where Ag = [A1 A2 A3]
T and Bg = [B1 B2 B3]

T ; see Equation (37).[
T
−T

]
︸ ︷︷ ︸

A1

4Fpto ≤
[

FPTOmax

−FPTOmin

]
︸ ︷︷ ︸

B1

,

[
SzG
−SzG

]
︸ ︷︷ ︸

A2

4Fpto ≤
[

Znmax − Sz(Fxek + G4Fe)

−Znmin + Sz(Fxek + G4Fe)

]
︸ ︷︷ ︸

B2[
SwG
−SwG

]
︸ ︷︷ ︸

A3

4Fpto ≤
[

Wnmax − Sw(Fxek + G4Fe)

−Wnmin + Sw(Fxek + G4Fe)

]
︸ ︷︷ ︸

B3

(37)

where Sz and Sw are selector matrices for z and w (size M × Mn), T is a lower triangular matrix
(size M×N), the vectors FPTOmax and FPTOmin (size N× 1) define the nominal limits of the force applied
by the PTO and the vectors Wnmax , Wnmin , Znmax and Znmin (size M× 1) define the nominal limits of the
buoy position and oscillation speed, respectively. The matrices I (unit matrix) and 0 have the required
size according to their location.

In the case of non-feasibility in the cost function (36), soft constraints are applied,

J(β) =
1
2

βT

H 0 0
0 Wεz 0
0 0 Wεw

 β +
[
b 0 0

]
β

Agβ ≤Bg

(38)

where Ag = [A1 A2 A3 A4 A5]
T and Bg = [B1 B2 B3 B4 B5]

T ; see Equation (38).[
T 0 0
−T 0 0

]
︸ ︷︷ ︸

A1

β ≤
[

FPTOmax

−FPTOmin

]
︸ ︷︷ ︸

B1[
SzG −I 0
−SzG −I 0

]
︸ ︷︷ ︸

A2

β ≤
[

Znmax − Sz(Fxek + G4Fe)

−Znmin + Sz(Fxek + G4Fe)

]
︸ ︷︷ ︸

B2

,

[
0 I 0
0 −I 0

]
︸ ︷︷ ︸

A4

β ≤
[

κz

0

]
︸︷︷ ︸

B4[
SwG 0 I
−SwG 0 I

]
︸ ︷︷ ︸

A3

β ≤
[

Wnmax − Sw(Fxek + G4Fe)

−Wnmin + Sw(Fxek + G4Fe)

]
︸ ︷︷ ︸

B3

,

[
0 0 I
0 0 −I

]
︸ ︷︷ ︸

A5

β ≤
[

κw

0

]
︸ ︷︷ ︸

B5

(39)

where κz and κw are vectors (size M × 1) that represent the maximum slack allowed for z and w,
respectively. The matrices I (unit matrix) and 0 have the required size according to their location.

3.4. MPC4

This controller is made using the model (15). The cost function that minimizes this controller is
focused on the maximization of extracted power directly. The matrix development needed to express
this controller as a least squares problem is analogous to that presented for controller MPC1. Although,
when the PTO dynamics are taken into account, Equation (18) should be redefined as:

X = Jxxk + JuFpto + J f Fe (40)

where Jx is a matrix already defined in Equation (17), while the matrices Ju and J f are given by:



Energies 2018, 11, 2857 12 of 23

Ju =


Bu 0 0 . . . 0

ABu Bu 0 . . . 0
A2Bu ABu Bu . . . 0

...
...

...
. . .

...
AM−1Bu AM−2Bu AM−3Bu . . . AM−N Bu



J f =


BFe 0 0 . . . 0

ABFe BFe 0 . . . 0
A2BFe ABFe BFe . . . 0

...
...

...
. . .

...
AM−1BFe AM−2BFe AM−3BFe . . . AM−N BFe



(41)

where A, Bu and BFe are obtained by discretizing (ZOH) AWEC, BWECu and BWECFe
of the model (15).

The cost function to be minimized by this controller can be expressed according to (42).
Its development is analogous to that carried out for the controller MPC1.

J(Fpto) =
1
2

Fpto
T (Ju

TSw
T + R)︸ ︷︷ ︸

H

Fpto +
1
2
(Fe

T J f
TSw

T + xk
T Jx

TSw
T)︸ ︷︷ ︸

b

Fpto (42)

In addition, the nominal constraints imposed on the system must be added, which are defined in
the same way as in the controller MPC1, Equation (24). However, in this case, it must be considered
that the state vector prediction is given by Equation (40). Therefore, the cost function (42) subject to the
constraints is defined as:

J(Fpto) =
1
2

Fpto
T HFpto +

1
2

bFpto

AgFpto ≤Bg

(43)

where Ag = [A1 A2 A3]
T and Bg = [B1 B2 B3]

T ; see Equation (24).
Finally, in the case of non-feasibility in the function (48), soft constraints will be applied to the

system. These can be expressed in a similar way to the development shown for MPC1, Equation (27).
However, in this case, it must be considered that the prediction of the state vector is given by
Equation (40). Therefore, the cost function of this controller subject to soft constraints is given by:

J(β) =
1
2

βT

H 0 0
0 Wεz 0
0 0 Wεw

 β +
[
b 0 0

]
β

Agβ ≤Bg

(44)

where Ag = [A1 A2 A3 A4 A5]
T and Bg = [B1 B2 B3 B4 B5]

T ; see Equation (27).

3.5. MPC5

This controller is another contribution of this work. It uses the model (15), to which an embedded
integrator has been added according to the theory of predictive controllers in the state space [18,19].
Its cost function to minimize is based on the maximization of the extracted power through the tracking
of a setpoint for the oscillation speed of the system wre f . As in the MPC3, the state vector is extended
by adding an embedded integrator (32). Despite taking into account the PTO dynamics, the prediction
of the output vector for the full prediction horizon M is defined by:
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Y = Gu4Fpto + Fxek + G f4Fe︸ ︷︷ ︸
f

(45)

where F is a matrix already defined in Equation (33), and the matrices Gu and G f are given by:

Gu =


CeBeu 0 0 . . . 0

Ce AeBeu CeBeu 0 . . . 0
Ce Ae

2Beu Ce AeBeu CeBeu . . . 0
...

...
...

. . .
...

Ce Ae
M−1Beu Ce Ae

M−2Beu Ce Ae
M−3Beu . . . Ce Ae

M−N Beu



G f =


CeBeFe

0 0 . . . 0
Ce AeBeFe

CeBeFe
0 . . . 0

Ce Ae
2BeFe

Ce AeBeFe
CeBeFe

. . . 0
...

...
...

. . .
...

Ce Ae
M−1BeFe

Ce Ae
M−2BeFe

Ce Ae
M−3BeFe

. . . Ce Ae
M−N BeFe



(46)

where Beu and BeFe
are obtained by discretizing the matrices that define the inputs of (15) extended.

Analogous to controller MPC3, the cost function to be minimized can be expressed according to:

J(4Fpto) =
1
2
4Fpto

T (Gu
TδGu + R)︸ ︷︷ ︸

H

4Fpto + (Fxek + G f4Fe − wre f )
TQGu︸ ︷︷ ︸

b

4Fpto (47)

In addition, it is necessary to add nominal constraints to the system, which are defined as in the
controller MPC3. However, in this case, it must be considered that the prediction of the system outputs
is given by (45). Thus, the cost function (47) subject to the constraint is defined as:

J(4Fpto) =
1
2
4Fpto

T H4Fpto +
1
2

b4Fpto

Ag4Fpto ≤Bg

(48)

where Ag = [A1 A2 A3]
T and Bg = [B1 B2 B3]

T ; see Equation (37).
Furthermore, in the case of the non-feasibility in the function (47), soft constraints are used.

The soft constraints are expressed analogously to the development made for controller MPC3,
Equation (39). However, in this case, the prediction of the system output is given by (45). Therefore,
the cost function of this controller subject to soft constraints is defined as:

J(β) =
1
2

βT

H 0 0
0 Wεz 0
0 0 Wεw

 β +
[
b 0 0

]
β

Agβ ≤Bg

(49)

where Ag = [A1 A2 A3 A4 A5]
T and Bg = [B1 B2 B3 B4 B5]

T ; see Equation (39).

3.6. Conventional Controllers

In order to make a comparative analysis of the proposed predictive controllers, this section
presents the design of two of the controllers most commonly used in WEC systems [5,6]. Firstly,
a resistive damping (RD) controller (or proportional control) has been tuned for the PTO system,
whose control law is given by:

Fpto(k) = −KRDw(k) (50)
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where k is the current sampling time and KRD is a proportional gain (KP), which must be tuned to
maximize the power generated.

On the other hand, an I-P control has been designed whose control law is defined by Equation (51).
A compromise between generated power and keeping the system within its nominal limits of operation
is maintained by tuning the gains KP and KI .

Fpto(k) = uP(k) + uI(k)

uP(k) = −KPw(k)

uI(k) = KI Tm(wre f (k)− w(k)) + uI(k− 1)

(51)

where k is the current moment. The backward Euler method has been used to discretize the controller
for a sampling period Tm.

4. Study about Performances and Robustness

This section presents the results obtained from an in-depth study of the performance and
robustness of the five MPCs designs. This study assumes that the system state vector and the excitation
force (Fe) for the whole prediction horizon (M) are known. The computer simulations have been
carried out using Simulink, employing a fourth order Runge–Kutta integration method with a fixed
step of one millisecond. In order to solve the optimization problems with constraints, associated
with MPCs’ design, the MATLAB quadprog function has been employed [35]. Note that although the
quadprog function provides Fpto for the whole control horizon N, only the setpoint obtained for the
current instant k is applied [18,19].

Due to the fact that the WEC system of the W2POWER platform has not yet been built, its operating
limits and physical limits are not available. Therefore, these limits have been chosen on the basis
of [12,15,16,24], whose WEC systems are similar to the system studied in this paper; see Table 3.

Table 3. Hard and soft constraints for the WEC system.

Symbol Description Value

FPTOmax Maximum stationary force for the power take-off system 450 KN
FPTOmin Minimum stationary force for the power take-off system −450 KN
znmax Maximum nominal limit for the buoy position 1.25 m
znmin Minimum nominal limit for the buoy position −1.25 m
wnmax Maximum nominal limit for oscillation speed 1 m/s
wnmin Minimum nominal limit for oscillation speed −1 m/s
z fmax Maximum physical limit for the buoy position 1.7 m
z fmin

Minimum physical limit for the buoy position −1.7 m
w fmax Maximum physical limit for oscillation speed 1.3 m/s
w fmin

Minimum physical limit for oscillation speed −1.3 m/s
κz Maximum slack applied to the position nominal limit 0.45 m
κw Maximum slack applied to the speed nominal limit 0.3 m/s

4.1. Performance Comparison

This section shows a comparison between the seven controllers designed. The controllers’
performances are compared in terms of: average power generated, reduction of instantaneous
power peaks, overshoot of nominal limits and control effort. A sea state defined by the JONSWAP
spectrum [15,16], with a significant wave height of three meters and a peak period of 11 s, has been
chosen as a realistic scenario for evaluating these characteristics. In order to obtain a truthful
performance comparison, all predictive controllers must have the same information about the incoming
wave, which is recorded in the prediction time t f . To set the prediction horizon, two factors have been
taken into account. Firstly, in [7,8,10], the authors used realistic sea states, and they set the prediction
times between two and four seconds. Furthermore, in [8], the authors checked that t f could also be
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reduced to three or four seconds without significant reduction of the harvested energy. Secondly,
in [36], the authors showed how short-term wave forecasting models maintain good performance
up to five seconds of prediction for wide wave spectra. Therefore, in this work, the prediction time
chosen was three seconds, the same as the one set in [10]. With this t f , a prediction horizon M = 75,
a control horizon N = 75 and a sampling period Tm = 0.04 s has been set for all MPCs. The RD and
I-P controllers have the same sampling period. On the other hand, as a result of a fine-tuning for this
realistic sea state, the parameters of the controllers are listed in Table 4.

Figure 4 shows a comparison of the instantaneous mechanical powers generated by applying the
seven controllers to the mathematical model (15). In this comparison, it can be seen how MPCs with
an embedded integrator (MPC3 and MPC5) achieve more regular power than the MPCs most used for
WEC systems, those whose optimization criteria maximize the extracted power directly (MPC1 and
MPC4). In addition, Figure 5 shows how MPCs with embedded integrators achieve less overshoot in
the control force applied by the PTO system than all other MPCs (reducing actuator overstress).
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Figure 4. Simulation of the instantaneous mechanical powers generated by the WEC system when
applying the seven controllers to the mathematical model (15).

Table 4. Control parameter set for the sea state defined by the JONSWAP spectrum (3 m of significant
wave height and 11 s of peak period).

Controller R Q Wεz Wεw KP KI

MPC1 4.500× 10−7 — 1.000× 1010 1.000× 107 — —
MPC2 1.000× 10−7 9.150× 104 1.000× 107 2.000× 109 — —
MPC3 5.000× 10−5 4.575× 104 5.000× 1010 1.000× 105 — —
MPC4 4.500× 10−7 — 1.000× 108 1.000× 104 — —
MPC5 5.000× 10−5 4.000× 104 1.000× 107 1.000× 109 — —

RD — — — — 7.902× 105 —
I-P — — — — 7.050× 105 2.228× 104
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Figure 5. Simulation of: wave force, force setpoint demanded for the PTO and real force produced by
the PTO, when applying the seven controllers to the mathematical model (15).

By applying the MPC2 to the system, it gives the most irregular power; while the power generated
with the MPC3, designed from the same model and following the same optimization criteria, is much
cleaner, with fewer occasional peaks. This is due to the fact that the MPC1 is continuously applying
soft constraints to the oscillation speed, because it does not carry out a good control of the force that the
PTO system exerts on the WEC during the time (see Figure 5). On the other hand, Table 5 shows how
the addition of the embedded integrator (MPC3) considerably improves the behavior of the system
with respect to that obtained by applying the MPC2. Since, the MPC3 does not exceed nominal limits
of the position and oscillation speed on any occasion. Furthermore, the MPC3 controller generates a
clearer control signal than the MPC2 (see Figure 5), and as a consequence, the underdamped response
of the PTO system decreases greatly.

Table 5. Results obtained in the application of the seven controllers to the WEC system. The powers
are expressed in kW. Note that ONLP indicates overshoot of nominal limits for position and ONLS
indicates overshoot of nominal limits for speed.

Controller P̄gen ONLP ONLS PgenMax PgenMin

MPC1 127.60 0.0000 0.0023 437.48 −356.33
MPC2 110.72 0.0000 0.0281 744.06 −364.97
MPC3 125.53 0.0000 0.0000 444.24 −183.62
MPC4 127.50 0.0000 0.0107 452.75 −369.27
MPC5 129.01 0.0000 0.0413 481.53 −182.85

RD 67.02 0.0000 0.0000 258.88 −1.05
I-P 109.90 0.0073 0.0511 583.73 −107.34

Table 5 records the most significant quality indicators of the control performed by each controller.
First, this table shows the average mechanical powers generated by the WEC system when applying
each controller. In this aspect, the MPC5 controller is the one that generates more power, followed very
closely by the MPC1, MPC4 and, with a bit more distance, the MPC3. On the other side, the indicators
ONLP and ONLS quantify the area of overshoot from the nominal limits of the position and oscillation
speed, respectively. In this sense, the MPC3 (together with the RD control) provides the best behavior,
since it does not apply slack to the nominal limits on any occasion, then it is followed by MPC1.
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This can be verified in Figures 6 and 7, which show a comparison between the positions and oscillation
speeds obtained by applying the designed controllers to the mathematical model (15). As can be seen,
all controllers keep the WEC system within its physical operating limits. Finally, the last two columns
of Table 5 show the maximum and minimum power peaks obtained when applying each controller. In
this aspect, ignoring the resistive damping control, MPCs with embedded integrators are once again
the best performers. Note that these power peaks will cause an oversizing of: electrical machines,
power electronics, accumulators, etc.
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Figure 6. Simulation of the positions obtained in the WEC system when applying the seven controllers
to the mathematical model (15).

0 10 20 30 40 50
time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

v 
(m

/s
)

wref wRD wI-P Hard Soft

0 10 20 30 40 50 60
time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

v 
(m

/s
)

wMPC 1 Hard Soft

0 10 20 30 40 50 60
time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

v 
(m

/s
)

wref wMPC2 Hard Soft

0 10 20 30 40 50
time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

v 
(m

/s
)

wref wMPC3 Hard Soft

0 10 20 30 40 50 60
time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

v 
(m

/s
)

wMPC 4 Hard Soft

0 10 20 30 40 50 60
time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

v
(m

/s
)

wref wMPC 5 Hard Soft

MPC1 MPC2 MPC3

MPC4 MPC5 RD and I-P

60

60

Figure 7. Simulation of the oscillation speeds obtained in the WEC system when applying the seven
controllers to the mathematical model (15).



Energies 2018, 11, 2857 18 of 23

With respect to the two optimization criteria compared in this paper, it can be concluded that
the MPCs that employ an optimization criterion based on the minimization of the error between w
and wre f should only be used if they are designed from a model with an embedded integrator. Thus,
this approach achieves better performance (in terms of diminution of instantaneous power peaks
and reduction of mechanical fatigue due to exceeding nominal limits) than the standard optimization
criteria based on maximizing the extracted power directly. On the other hand, with respect to the use
of a complete model or a simplified model, it can be concluded that (in terms of instantaneous power
generated and reduction of mechanical fatigue) the use of a complete model does not improve the
performance of MPCs for this WEC significantly. This is because, the increase in the average power
generated is minimal, and only in the case of the MPC1 and MPC4, the use of a complete model reduces
the overshoot of the PTO system a bit. Finally, the variation of the extracted mechanical power as a
function of the prediction time t f is studied. In particular, Figure 8 shows a comparison between MPC3

and MPC1. As can be seen, in both cases, after a prediction time of 3 s, the power generation does not
improve significantly, while the computation effort increases. In addition, it should be pointed that
MPC3 does not have a monotonously increasing behavior that relates t f to the power generated, as
would be expected. Nevertheless, in this aspect, the MPC3 is better than the MPC1, because it can
generate more power with less information of the future excitation force (up to 2.5 s).

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
tf (s)
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90
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P
 (k

W
)
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Figure 8. Variation of the extracted mechanical power as a function of the prediction time for MPC1

and MPC3 (control parameters listed in Table 4).

To conclude the performance study, by comparing the previous figures and the values recorded in
Table 5, it can be seen how the MPCs almost double the average power generated by the WEC system
with respect to that obtained by tuning an adequate resistive damping for the PTO system (RD control).
In addition, like the RD control, the MPC3 keeps the system within its nominal operating limits. On the
other hand, it is also verified that the MPCs are superior in performances than the conventional I-P
controller, in terms of: average mechanical powers generated, diminution of instantaneous power
peaks and reduction of mechanical fatigue (due to exceeding nominal limits).

4.2. Robustness Comparison

Another contribution of this work, searching for the greatest realism in the comparative of
the designed controllers, is that uncertainty is added to the complete system model (15) to the
most significant identified parameters (52): added mass and dynamics of the radiation force, which
have been obtained through the openWEC software, and the hydrostatic restoring coefficient Kres

(a nonlinear parameter that has been linearized during the modeling of the WEC system).

Fres(t) = −kres(1 +4kres)z(t), Frm∞(t) = m∞(1 +4m∞)ẇ(t),
FrKr (s)
W(s)

= (1 +4B)Kr(s) (52)

where4 represents the added uncertainty in each parameter.
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Note that when modifying the physical parameters of the WEC system, the frequency response
of the filter (9) is affected. Therefore, looking for a truthful comparison, it would be necessary to
identify a new filter (6) for each added uncertainty. Given the high number of simulations required,
applying different levels of uncertainty to each of the parameters, this is not feasible. For this reason,
in this work, the Morison model (7) is used to define Fe, allowing one to modify the excitation force
caused by the wave as a function of the added uncertainty more easily. Thus, when modifying the
physical parameters of the system, the external force that the wave causes on the system also varies.
Therefore, Equation (7) is redefined for this analysis as:

Fe(t) = m∞(1 +4m∞)η̈(t) + B(1 +4B)η̇(t) + kres(1 +4kres)η(t) (53)

It should be noted that Equation (53) uses a first and a second derivative of wave height. As a
consequence, if the Morison model is used for the excitation force in a realistic sea state, it will amplify
the high-frequency harmonics that are part of the wave. This is the opposite of the bandwidth of
the WEC system provided by the openWEC software (see Figure 2b). For this reason, in this part of
the paper, the simulations are performed in an irregular sea state formed by the fifteen sinusoidal
components listed in Table 6.

Table 6. Sinusoidal components used for sea-state (values expressed in international units).

Component Amplitude Period Phase Component Amplitude Period Phase

s1 0.420 13.00 −π s9 0.200 9.00 0.00
s2 0.520 12.50 1.5π s10 0.180 8.50 π
s3 0.420 12.25 0.40 s11 0.200 7.50 0.10
s4 0.520 11.50 0.20 s12 0.150 6.50 −0.77
s5 0.450 11.25 0.11π s13 0.100 5.50 0.5π
s6 0.300 10.50 −1.50 s14 0.075 5.00 0.00
s7 0.500 10.00 −0.33 s15 0.020 3.70 0.12
s8 0.210 9.50 0.78 — — — —

In order to create an unfavorable test scenario for the MPCs, two factors have been adjusted.
In the first place, the sea state recorded in Table 6 is not favorable to the controllers, because the wave
force becomes more than twice the stationary force that the PTO system can apply (recorded in Table 3).
Moreover, the prediction time t f has been limited to a maximum of 1.5 s. After this, a fine-tuning has
been made to all the MPCs looking for a balance between the generated power and the overshoot of
the nominal limits of the WEC system. The result of this fine-tuning is listed in Table 7.

Table 7. Control parameters set for the sea state recorded in Table 7.

Controller Tm [s] Tf [s] R Q Wεz Wεw

MPC1 0.05 1.5 1.1× 10−7 — 1.0× 1010 1.0× 107

MPC2 0.04 1.2 1.0× 10−7 2.15× 104 1.0× 107 2.0× 109

MPC3 0.04 1.2 5.0× 10−5 1.475× 104 5.0× 1010 1.0× 105

MPC4 0.05 1.5 4.5× 10−7 — 1.0× 108 1.0× 104

MPC5 0.02 0.6 5.0× 10−5 1.75× 104 1.0× 107 1.0× 109

Note that for the same wave height, the excitation force can increase or decrease according to
the uncertainty added in each parameter. Therefore, there will be situations where, for the sea state
defined in Table 6, the controller cannot keep the system within its physical limits. This is because,
the actuation force of the PTO system will be much lower than the excitation force. In this paper,
this non-feasibility situation will be considered as the robustness limit that the controller can support.
This limit is defined for the uncertainty added in each of the parameters (52). This non-feasibility
situation with soft constraints does not mean that the closed-loop system becomes unstable, but that
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the controller cannot keep the WEC system within the physical limits defined in Table 3. Furthermore,
in order to obtain a more complete analysis of how this uncertainty affects the closed-loop system, the
average powers generated for each value of added uncertainty to each parameter are recorded. A large
number of simulations has been carried out for this purpose; all of them have a duration of 120 s and
use fourth order Runge–Kutta (RK4) integration method with an integration step of 1 ms.

Once the robustness study has been defined, Figure 9 shows the results obtained as a function
of the added uncertainties; feasible limits obtained for the five MPCs and the variation of their
mean power generated. With respect to the added uncertainty in m∞, the MPC2 is the least robust.
Meanwhile, the MPC1 offers the best features in a power-robustness ratio. However, it should be noted
that when considering more reasonable added uncertainty values (interval [−50, 50]%), the MPC5

extracts significantly more power than the others. It should also be noted that the controllers that
directly maximize power in their cost function (MPC1 and MPC4) have the most predictable behavior
with respect to the added uncertainty in m∞. On the other hand, the MPC5 offers the best features with
respect to the uncertainty added to the dynamics of the radiation force (up to 400%). In contrast, the
MPC2 gives very bad results in this respect. The MPC1 also gets good results, because it achieves a
practically constant power production despite variations of4B.
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Figure 9. Variations of the average mechanical power generated as a function of the added uncertainty
to: added mass, damping coefficient and hydrostatic restoring coefficient.

Finally, Figure 9 shows how the power generated by the different controllers varies according
to the uncertainty added to the hydrostatic restoring coefficient of the system. In this aspect, it can
be appreciated how the robustness of all the controllers is more limited. If the value of the coefficient
kres increases, the excitation force that the wave exerts on the system (53) increases proportionally.
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Therefore, the margin of action of the PTO system decreases noticeably. Even so, the MPC5 supports
an added uncertainty of 25%, again being the one that provides the best robustness results even with
the smallest prediction time t f . Note that, for such added uncertainty, the excitation force becomes
more than three-times the force that the PTO system can apply to the buoy; see Figure 10. After the
MPC5, the MPC4 and MPC1 get the best results, in this order.
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Figure 10. Wave force, force setpoint demanded and real force produced by the PTO, by applying the
MPC5 to the model (15), which has an added uncertainty to the hydrostatic restoring coefficient of 25%.

5. Conclusions

The interest in implementing MPCs in WEC systems is motivated by the need to increase
the productive/economic viability of these systems. For this reason, in this work, five different
predictive controllers have been designed. All these controllers allow minimizing mechanical fatigue
by limiting the operating range of the WEC system by means of hard and soft constraints. The main
contribution of this work is the study of performance and robustness carried out for the five MPCs
designed. This study demonstrates how the addition of an embedded integrator to the design model
improves the performance of the WEC device referring to: average power generated, diminution of
instantaneous power peaks, reduction of mechanical fatigue and robustness of the closed-loop system,
in comparison with the other MPCs. In addition, the MPCs have been compared with two conventional
controllers for WEC systems (resistive damping and I-P control) in a realistic sea state defined by
the JONSWAP spectrum. Predictive controllers have proven that, compared to these conventional
controllers, they minimize mechanical fatigue due to overshoot of nominal limits and increase the
mechanical power generated by this type of WEC system.
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