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Abstract: Heat produced from woody biomass accounts for a significant portion of renewable energy
in the United States. Economic and federal policy factors driving institutional adoption of woody
biomass heating systems have been identified and examined in previous studies, as have the effects
of state policies in support of biomass heating. However, plans for a number of mid- to large-scale
biomass facilities have been abandoned after being proposed in communities with many of the
factors and policies considered favorable to the adoption of such systems. In many of these cases,
opponents cited potential negative impacts on local air quality, despite being generally in favor of
renewable energy. This study employed a zero inflated negative binomial (ZINB) statistical model to
determine if state policies, air quality, and local attitudes toward renewable energy have a significant
effect on the adoption and retention of distributed-scale biomass combustion systems used for
institutional heating. State policy appears to have a negligible effect, while the influences of historic
and current air pollution and local emissions appear insignificant. However, local attitudes in favor of
renewable energy are associated with the adoption and retention of distributed-scale woody biomass
heating systems. This is an indication of the importance of local support in determining the fate of
future biomass energy projects.

Keywords: bioenergy; woody biomass; heating; ZINB; policy; nonattainment; point source;
local attitudes

1. Introduction

The United States of America (USA) has a variety of policies in place that encourage the expansion
of renewable energy production as a means to ensure affordable, stable domestic energy and reduce
greenhouse gas emissions. Currently in the USA, there are hundreds of private and public facilities
that have adopted distributed-scale heating systems that use biomass as a fuel [1]. A variety of benefits
can be associated with biomass heat, including on-site disposal of manufacturing byproducts (e.g.,
wood waste), lower fuel costs, substitution of fossil fuel with local renewable fuels, reduced emissions,
and support of local forest management and forest industry [2,3]. In 2014, there were 401 known
biomass heating systems installed in USA institutions such as schools, hospitals, government buildings,
prisons, military bases, and other public buildings [1], primarily in Northeast states, the Lakes states,
and Northwest states (Figure 1). Economic and federal (i.e., national) policy factors driving institutional
adoption were identified in a previous study by Young et al. [4,5], and state policies in support of
biomass systems were identified and examined by Becker, Mosely, and Lee [6] (Table 1). These studies
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have shown the adoption of biomass heating in the USA to be driven by heating needs, fossil fuel
prices, and proximity to woody biomass resources [5].
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Though factors and policies supporting the of adoption of these systems have been identified,
there are many municipalities and counties in the USA that are not using woody biomass space heating
in any institutions, despite what are considered favorable characteristics such as cold temperatures,
high fossil fuel costs, and close proximity to biomass sources. A recent choice experiment study carried
out in Pennsylvania, USA, by Yoo and Ready [7] provides some insight as to why. Biomass combustion
was viewed unfavorably by the population, as compared to other renewable energy options, and was
associated with potential negative net benefits if adopted. In this light, additional research into
potential factors limiting biomass adoption is required to fully understand the institutional use of
biomass heating systems and possible constraints on the expansion of this renewable energy option.

With this goal in mind, the objective of this study is to examine the potential effects that policy,
emissions, air quality and the public’s attitude towards renewable energy, have on the adoption and
retention by institutions of distributed-scale biomass heating systems. These variables have been
hypothesized to have impacts on adoption, but have not been examined in previous studies on a
nation-wide scale. The remainder of this section presents additional background, followed by a
discussion of data sources, methods and model diagnostics in Section 2. Section 3 presents the results
and Section 4 provides a discussion, with conclusions in Section 5.

1.1. Land Ownership and Policy Influence on Biomass Use

In the USA, there are a number of federal and state policies that support distributed-scale
woody biomass energy production, which is part of a $6.5 billion woody biomass energy market [8].
The forest products industry has the largest market share at 68%, followed by residential heating
with 20%, electric power generation with 9%, and commercial heating with the remaining 3% [9,10].
Distributed-scale biomass heating systems are most commonly used in commercial and institutional
settings, which is the focus of this study.
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Table 1. Policy instruments encouraging the use of woody biomass, derived from Becker et al. [6].

Policy Type Policy Examples/Description

Tax Incentives

Sales tax credits—Qualified purchases of equipment designed to harvest, transport, or process
biomass receive state sales tax exemption or reduction.
Corporate or Production tax credits—Reduction or exemption in taxes based on use of
biomass or production of biomass energy products.
Personal tax credits—Reduction in income tax or tax credits for individual who have installed
qualified renewable energy systems.
Property tax credits—Reduction in property tax or tax credits for property (including
equipment) used to transport biomass or site biomass facilities.

Cost Share and Grants

Cost-Share—Funds biomass use through fee waivers or additional resources used to purchase
or operate biomass related equipment.
Grants—Funds biomass use through competitive grants that can be used to purchase biomass
equipment as well as biomass research and development.
Rebates—Funds biomass use by paying for the purchase and/or installation of qualified
biomass technologies.

Rules and Regulations

Renewable Energy Standards—The requirement that a percent of utility companies energy
sales be derived from renewable sources.
Interconnection Standards—Grid connection governance.
Green Power Programs—Consumers have the option to purchase renewable energy.
Public Benefit Funds—Portion of monthly energy bill is used for renewable energy
development.
Equipment Certifications—Minimal efficiency standards for biomass processing equipment.
Harvest Guidelines—A set of best management practices for removing and procuring biomass.

Financing

Bonds—Government borrowing to finance construction of biomass boilers that heat industrial
and institutional facilities.
Loans (micro, low interest and zero interest)—Financial support for the purchase of
equipment.

Procurement

Procurement—The use of bio-based products is mandated or incentivized in construction,
transportation, and other sectors.
Net Metering—Local utilities are required to buy back excess renewable electric power from
producers.

Technical Assistance

Training Programs—Develops technical expertise of business owners and staff through
courses and certification.
Technical Assistance—Helps coordinate research and disperse information, as well as offering
assistance for grant writing and business planning.

Federal and state policies in the USA influence both the supply of woody biomass as fuel and
the installation of energy systems that use biomass. Proximity to biomass resources is consistently
cited as strongly correlated with adoption of biomass energy systems. In the USA this factor is closely
connected with land ownership and forest management policies, which vary widely across the country.
The USA federal government owns about 28% of the land base, or 260 million ha [11]. The largest
federal landholding agencies in the USA are the Bureau of Land Management (BLM; 100 million
ha), the United States Forest Service (USFS, 78 million ha), and the Fish and Wildlife Service (FWS;
36 million ha) [11]. There is significant regional variation in federal ownership, with most federal lands
occurring in the west of the country (93%), and relatively little in the east. Federal ownership accounts
for almost half of the land base in the western continental USA (47%) and 62% of the land base in
Alaska (Figure 2) [11]. However, national parks and wilderness areas are included in these proportions,
and neither are a significant source of woody biomass from a market perspective. Timberlands are
unreserved forestlands that meet a minimum productivity threshold, and are more closely tied to
biomass supply. About 78% of USA timberlands are in private ownership, compared to only 22% in
public ownership [12].
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Private timberlands and some state lands provide significant amounts of biomass for energy,
especially in the Northwest and South, which have widespread industrial timberlands and forest
industry at large scale. Though timber production on federal land has declined significantly over
the past 25 years, federal agencies have implemented a number of policies to encourage the removal
and use of woody biomass resources on federal, state and private lands [13]. The USFS, BLM and
other agencies prescribe silvicultural treatments for timber harvest and forest restoration, carry out
forest thinning and biomass removal near communities at risk of wildfire [14], conduct research,
provide education and consultation to the public [15], and award grants to businesses, schools,
Indian tribes and others for biomass utilization. The USA Department of Energy (DOE), which is also a
federal land holding agency (7.9 million ha), is particularly active in the education and research arenas,
and cooperates with the United States Department of Agriculture (USDA) on biomass initiatives.
The authority to conduct such activities is granted by a variety of laws and policies, including the
National Fire Plan [16], the Biomass and Research Development Initiative (BRDI) [17], and the Healthy
Forest Restoration Act [18].

Despite federal policies and agencies holding a major influence on the biomass market in the USA,
state policies better reflect local and regional preferences, and challenges within local markets [19].
For example, many states have designed and implemented policies aimed at increasing the economic
viability of biomass consumption. California aggressively pursued biomass energy production in the
1980s through the Interim Standard Offer 4 (ISO4), which provided guaranteed bioenergy rates for a
limited time [20]. In 2008, Michigan passed the Clean, Renewable, and Efficient Energy Act (Public Act
295) to support its renewable energy sector [21]. For a comprehensive discussion on state policies in
support of biomass refer to Becker, Mosely, and Lee [6].

1.2. Effects of Historic and Current Air Pollution on Biomass Use

Although there are a number of federal and state polices that support woody biomass as a
renewable energy source, biomass use faces significant and unique constraints when compared to
other renewables such as wind, solar/photovoltaic, and hydro. Unlike other renewable energy



Energies 2018, 11, 2873 5 of 24

production, biomass energy is most commonly carried out through a combustion process that is
associated with local and global air pollution. Modern combustion and gasification systems typically
have lower emissions than their older counterparts [22] as the result of a variety of technological
innovations, such as catalytic emissions controls [23]. However, the expansion of woody biomass
heating and combined heat and power (CHP) can be limited by perceptions of biomass as a dirty fuel
associated with smoke, especially in places subject to atmospheric inversions, seasonal wildfire smoke,
and historical use of wood for residential heating in conventional wood stoves. In addition, the USA
has a history of poor air quality as a result of utility and industrial combustions of fossil fuels that has
resulted in human and environmental damage from smog [24–26], acid rain [27,28] and greenhouse
gas emissions from the utility sector [29].

To reduce risk to human health and the environment from emissions, the USA Environmental
Protection Agency (EPA) has set National Ambient Air Quality Standards (NAAQS) under the Clean
Air Act (CAA) of 1970 for six criteria pollutants: particulate matter (PM) with a diameter greater than
2.5 micrometers (µm) but smaller than 10 µm (PM10) and particulate matter 2.5 µm in diameter or
smaller 2.5 (PM2.5); sulphur dioxide (SO2); nitrogen oxides (NOx); ozone (O3); carbon monoxide (CO);
and lead (Pb) [30]. Under the CAA, if NAAQS set by the EPA are exceeded for an area or county,
steps are taken to classify the area as a “nonattainment area”, which makes new industrial boilers
subject to New Source Performance Standards (NSPS) to reduce and maintain criteria pollutants to
acceptable levels [30]. Old facilities built before the passage of the CAA of 1970 are “grandfathered”
under the law and are not subject to NSPS [31]. NSPS regulations for new boilers are set at three levels
(≤2.9 megawatt (MW), >2.9 and <8.8 MW, and ≥8.8 MW). Most new institutional biomass boilers are
≤2.9 MW, and are only required to tune-up their boiler unit every two years [32].

In addition to its potential to release criteria pollutants, support for renewable biomass energy
is also affected by emissions of greenhouse gases (GHG). There are a number of communities in the
USA that have commonly cited increased emissions as a reason for opposition to the installation of
biomass fueled systems [33,34], some of which are ultimately abandoned due to fears of reduced air
quality. Abandoned biomass systems include a biomass power project in Gretna, Florida, worth $250
million [35], a 43 MW biomass power plant in Tallahassee, Florida [36], a $16 million biomass
gasification plant in Missoula, Montana [37], a $74 million plant in Torrance County, New Mexico [38],
as well as two similar projects in Scott [39] and Crawford counties, Indiana [39,40]. Additionally,
there are a number of biomass plants in Massachusetts that have faced aggressive public opposition,
leading to government action to assess the environmental credentials of biomass plants to determine
their eligibility for incentives and tax credits in support of renewable energy [35,36]. This resulted in
a new Massachusetts state law that limits access to renewable energy certificates (REC) for biomass
facilities that run at conversion efficiency rates less than 60% [35,41]. If applied nationally, a standard
of this strict nature would classify about 50% of current operating biomass systems in the USA as
non-renewable [41].

1.3. Effects of Local Attitudes and Community Acceptance on Renewable Energy

In addition to government regulation of emissions, local attitudes and community acceptance
are important aspects of the adoption of renewable energy technologies [42,43]. Although local
and global emissions are predominantly from the utility, industrial and transportation sectors,
negative attitudes about emissions may have a negative effect on the adoption of smaller local biomass
heating projects. However, local attitudes about the long-term effects of climate change and the role of
renewable energy in mitigation may outweigh local emissions concerns, especially in the context of
smaller distributed-scale systems that are under local control and in response to community energy
initiatives [44]. Policies in support of biomass and biomass plants themselves are most successful when
there is strong support by the local community [44]. In particular, polices related to climate change
mitigation and adaptation are most successful when policy makers are keenly aware of influential
social factors such as the public’s awareness of climate change, the perceived risk climate change
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imposes, local support for renewable energy policy or policy preference, and the public’s awareness of
appropriate behaviors in response to climate change [45].

1.4. Purpose, Goals and Objectives

Public policy in the USA has encouraged expanding renewable energy production as a means
to ensure affordable, domestic energy supply and to reduce greenhouse gas emissions. Hundreds of
institutions across the USA have adopted the use of woody biomass as fuel in distributed-scale heating
systems [1], and economic and federal policy factors driving adoption have been identified in previous
studies [5,6]. Key economic factors include higher fossil fuel prices and more affluent communities,
while effective policy drivers appear to be federal in scope and closely tied to the availability of woody
biomass resources, especially proximity to biomass from logging and fire mitigation activities [5].
Even so, many communities that appear to have conditions favorable to institutional wood heating
do not currently have any such facilities, indicating that there may be additional factors at work.
Media reports and anecdotal evidence suggests that local opposition to woody biomass energy can be
driven by unfavorable attitudes toward this energy source associated with air pollution.

The goal for this study is to gain a better understanding of the drivers of adoption beyond
those that have been provided by previous research, and help inform public policy focused on the
adoption of renewable energy technology. The primary objective of this study was to examine the
potential effects that state policy, historic and current air quality, and the public’s attitude towards
renewable energy have on the adoption and retention of distributed-scale biomass heating systems.
These variables were examined using a zero inflated negative binomial (ZINB) statistical model in
order to determine the effects, if any, on the number of biomass heating facilities reported at the
county level. We hypothesized that favorable state policies, comparatively good air quality, and public
support for renewable energy are positively related to the presence of these systems.

2. Methods

2.1. Data

Tables 2 and 3 include a complete list of variables used in the ZINB model and this analysis,
along with their sources, units and descriptive statistics. All 3142 counties or county equivalents
(e.g., Parishes in Louisiana) in the USA are included. The USA capital, Washington D.C., is not
included because the necessary data were not available. Counties are the smallest geographic unit
with full USA Census and Energy Information Administration (EIA) data coverage. The Forest
Inventory and Analysis Unit (FIA) of USFS reports forest residue production at the national scale
on a county basis, but not at higher resolution to preserve the confidentiality of industry survey
respondents. The response variable is the count of institutions using biomass in heating systems in
each county. The count for each county was obtained from the Wood2Energy (W2E) database [1].
Of the 3142 counties there are 225 counties with institutional biomass heating systems and a total of
401 institutions using biomass fuels for heat (Figure 1). We used the 2014 W2E database because it
was the most recent and up-to-date nation-wide census available at the time of the study; matched
temporally with datasets used as predictors, which are discussed below; and is a benchmark year for
the 2014 CAA amendment, which affects some biomass boilers [32]. The W2E is currently updated
on a rolling basis as a comprehensive database of wood to energy conversion facilities in the USA
and Canada [1].

2.1.1. Policy Variables

The literature often cites cost share, grants, public financing and other public policies as critical to
the development of new biomass facilities due to the high start-up costs and long payback periods of
these systems [46,47], but this hypothesis has not been adequately tested in the case of biomass heating
systems. Data for the variable State ‘Total Policies’ encouraging the use of woody biomass was obtained
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from a previous study by Becker, Mosely, and Lee [6]. In a model extension ‘Total Policies’ is further
divided into different policy types (Tables 1 and 3). An increase in the number of policies encouraging
the use of biomass is expected to increases the count of institutions in a county using biomass.

Table 2. Variables used in the zero inflated negative binomial (ZINB) model. Resolution of the data is
by county, with 3142 counties in the dataset, except for natural gas price and total policies, which are at
the state resolution.

Variable Description Units Source

Y—Dependent Variable

Institutions Institutions using biomass heating systems institutions
(count) Wood2Energy Database, 2014

γ—Zero Inflated (ZI-Binary)

Heating degree
days (HDD)

1981–2010—Total average heating degree
days HDD (1000) USA National Oceanic and

Atmospheric Administration, 2014

Population
density 2010—Population density people per km2 USA Census Bureau, 2013

Forest residue 2007—logging residues and other removals m3 (1 × 107)
USDA, USFS Timber Product

Output, 2007

β—Negative Binomial (NB-Count)

Heating degree
days (HDD)

1981–2010—Total average heating degree
days HDD (1000) USA National Oceanic and

Atmospheric Administration, 2014

Natural gas price 2008–2010—Commercial natural gas
three-year average price

USA dollars ($)
per 1000 ft3

USA Energy Information
Administration, 2013

House value 2008–2012—Median value of
owner-occupied housing

USA dollars ($)
(1000) USA Census Bureau, 2013

Forest residue 2007—Logging residues and other removals m3 (1 × 107)
USDA, USFS Timber Product

Output, 2007

Biomass planned
removal

2006–2010—Biomass removal planned in
National Fire Plan m2 (1 × 106)

National Fire Plan Operating and
Reporting System, 2006–2010

Federal land 2005, 2012—Proportion of land managed by
Federal Agencies proportion National Atlas of the USA and the

USA Geological Survey, 2005, 2012

Population 2010—Population people (1 × 105) USA Census Bureau, 2013

Road density 2013—Primary (interstates) and secondary
road (main state and county highways)

m of road per
1000 m2 area USA Census Bureau, 2013

Port capacity 2008–2012—Average port capacity of ports short tons
(1 × 105) USA Army Corps, 2014

County area 2010—County Area m2 (1 × 109) USA Census Bureau, 2013

Total policies
2011—Total number of state policies that

effect forest biomass use directly or
indirectly

policies (count) Becker, Moseley, and Lee, 2011

PM10 historical
emissions

1978–2004—Total number of years county
was in PM10 nonattainment years (count) USA EPA, 2015

PM10 recent
emissions

2005–2015—Total number of years county
was in PM10 nonattainment years (count) USA EPA, 2015

PM2.5 recent
emissions

2005–2015—Total number of years county
was in PM2.5 nonattainment years (count) USA EPA, 2015

SO2 historical
emissions

1978–2004—Total number of years county
was in SO2 nonattainment years (count) USA EPA, 2015

SO2 recent
emissions

2005–2015—Total number of years county
was in SO2 nonattainment years (count) USA EPA, 2015

CO2e emissions 2013—Point Source emissions of
greenhouse gases tonne CO2e USA EPA, 2013

RPS support 2015—Local support for RPS proportion Howe et al., 2015

Among the variables included in the model, ‘Total Policies’ is the most likely to exhibit
characteristics of endogeneity, violating the assumption of exogenous predictors for this model.
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Endogeneity gives a false signal of causal association [48], and in this case, could come from at least
two sources. First, biomass policies can be passed to support existing biomass plants, rather than
to support new plants. Second, it is possible that woody biomass policies are only passed in states
with woody biomass resources. These sources of endogeneity are unlikely because small biomass
heating systems are relatively rare among institutions in the USA. Because of their low consumption
of woody biomass and relatively small impact on the energy sector, they are not generally the focus
of policy. Additionally, the wide breadth of renewable policies used in the USA target renewable
energy in general or in other sectors (e.g., biofuel), rather than being focused directly on woody
biomass. Under conditions of endogeneity, one would expect moderate to high correlation between the
number of policies and the number of institutions, but this is not observed in our dataset, which has a
correlation of r = 0.03 for ‘Total Policies’ and a maximum of r = 0.11 for the ‘Cost Share/Grant’ type
policies. Two proxies for federal policies have been included with state policies as controls based on
their significance in prior work [4,5]: federal land ownership and the total acres of fuel treatments
under the National Fire Plan.

Table 3. Descriptive statistics for the variables used in the ZINB model, including the number of
observations (obs.), mean, standard deviation (std. dev.), minimum value (min) and maximum
value (max).

Variable Obs. Mean Std. Dev. Min Max

Institutions 3143 0.127585 0.675534 0 16
Heating degree days 3143 4.996686 2.191648 0.002182 19.09467
Population density 3143 1.001250 6.657018 0 268.2155
Natural gas prices 3143 10.43197 1.830150 7.38 35.18666

House value 3143 131.8983 80.61617 0 944.1
Forest residues 3143 2.466242 4.632817 0 70.0118
Biomass NFP 3143 2.415140 12.80937 0 250.9294

Proportion federal lands * 3143 0.126889 0.239603 0 1.062016
Population 3143 0.982328 3.129012 0.00082 98.18605

Road Density 3143 0.204257 0.199780 0 2.650168
Port Capacity 3143 1.013043 9.286781 0 234.2816
County Area 3143 2.910467 9.353530 0.00518 376.8557

Latitude 3142 18.40748 63.69796 −126.638 433.3846
Longitude 3142 34.46994 104.9199 −621.637 219.9037
West Coast 3143 0.020045 0.140175 0 1

South 3143 0.258988 0.438149 0 1
Lake States 3143 0.104995 0.306596 0 1
Northeast 3143 0.077633 0.267636 0 1
Northwest 3143 0.072224 0.258900 0 1
Midwest 3143 0.255170 0.436026 0 1

Southwest 3143 0.050270 0.218537 0 1
Total Policies 3142 7.247295 3.757148 2 15

Cost Share Grants 3142 0.931891 1.279653 0 6
Technical Assistance 3142 1.488542 1.570085 0 6

Financing 3142 0.543921 0.675076 0 3
Procurement 3142 1.305856 1.026406 0 4

Rules and Regulations 3142 1.048695 1.222930 0 3
Tax Incentives 3142 1.928390 1.973793 0 10

PM10 Historical Emissions ** 3143 1.69965 4.823705 0 27
PM10 Recent Emissions ** 3143 0.1384028 1.17593 0 11
PM2.5 Recent Emissions ** 3143 0.6757875 2.378869 0 11

SO2 Historical Emissions ** 3143 0.4492523 2.916603 0 27
SO2 Recent Emissions ** 3143 0.0591791 0.609962 0 11

CO2e Emissions 3143 964279.2 2933563 0 49400820
Proportion of RPS Support *** 3143 0.5809858 0.045522 0.4499687 0.7835159

* Proportion of federal land maximum exceeds 1 because the numerator contains both federal land area and inland
federal waterways, while the denominator contains only federal land area. This has resulted in a proportion of
federal land above one for 22 of 3142 counties. ** Contains both partial and whole counties in nonattainment of
the criteria pollutant. *** Proportions are calculated using estimated population in support/not in support of RPS.
Supplemental data to Howe et al. [45].
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2.1.2. Emissions Variables

In addition to policy effects, the effect of historic and current air pollution on the adoption of
distributed-scale biomass heating systems are assessed using data for a number of different variables
gathered by the EPA and published in public databases and reports. Variables were chosen to capture
the effects of smog and other visible air pollutants, as well as non-visible pollutants such as acid
rain contributors and GHG emissions. These emissions were primarily from industrial, utility and
transportation sector combustion of fossil fuels, but they can affect the public’s preference toward the
adoption of biomass heating systems because biomass combustion systems have point source stack
emissions (unlike wind, solar and water power, for example). Visible pollutants are quantified using
historic and current nonattainment data of PM. Non-visible pollutants are quantified using historic
and current nonattainment data of SO2, which is a major contributor to acid rain. Total GHG emissions
are quantified in carbon dioxide equivalent (CO2e) from point source polluters.

The general expectation is that counties with comparatively good air quality and emissions
profiles would be more likely to adopt woody biomass heating systems because residents are not
subject to smog and other pollutants at levels that would make them oppose any new stack emissions.
Furthermore, installation would not be subject to strict regulations and oversight found in areas with
poor air quality. However, we recognize two alternatives: (1) counties with comparatively good air
quality might be less likely to adopt because these systems would be seen as a threat to existing good
air quality, and (2) counties with comparatively poor air quality and emissions profiles are more likely
to adopt because these systems are not seen as making much of a marginal difference. The a priori
hypothesis was one of a positive statistical relationship between higher air quality and adoption.

Particulate Matter

Effects of PM on adoption were captured using data for criteria pollutants collected by the EPA
under the Ambient Air Quality Standards (AAQS), which is a regulatory standard linked to health
effects. Like all combustion processes, the combustion of woody biomass creates PM in the form of
inorganic material (i.e., ash particles) and organic material (i.e., carbon rich soot, tar and char) [49].
PM from biomass combustion is believed to display carcinogenic properties [50,51], and is known to
have negative health effects on cardiovascular and respiratory systems, especially in regards to the
development and progression of chronic obstructive pulmonary disease [52].

Nonattainment of PM has historically been measured in three ways. Beginning in 1978, the EPA
tracked total suspended particulate (TSP) until 1990, when a 1987 rule took effect, which only regulated
PM with a diameter less than 10 µm [53]. Then in 2005 a 1997 rule took effect that began to regulate
PM in two distinct categories [53,54]: (1) inhalable coarse particles larger than 2.5 µm and up to 10 µm
(PM10) commonly associated with roadways and dust producing industries such as farming and gravel
production, and (2) fine particles up to 2.5 µm (PM2.5) commonly associated with visible smog and
smoke in the air [54]. Due to the structural break in PM definitions in 2005, ‘PM10 Historical Emissions’
is measured as the count of years the county was in AAQS nonattainment from 1978 to 2004, which
includes both TSP and PM10 nonattainment. Current nonattainment of PM is separated into two
distinct variables as allowed by the data available: (1) ‘PM10 Recent Emissions’ as the count of years
the county was in nonattainment for PM10 from 2005 to 2015, and (2) ‘PM2.5 Recent Emissions’ as the
count of years the county was in nonattainment for PM2.5 from 2005 to 2015. Congruent with the broad
hypothesis described previously, an increase in nonattainment for any of the three measures of PM is
expected to decrease the expected count of institutions in a county using biomass for heating.

The inclusion of historic and current PM nonattainment requires some general assumptions
and temporal considerations. It is assumed that the USA population has a general knowledge of
negative health effects and living standards tied to visible PM in the air shed in the form of smog or
smoke, and that the installation of distributed-scale biomass boilers will contribute to PM pollution.
We also assume that the decision of public officials to install institutional biomass boilers takes into
consideration the costs and benefits to the local community, as well as public attitudes toward (e.g.,
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preference for) renewable energies. There is also a temporal consideration that must be considered.
This econometric analysis is a cross sectional study using the 2014 state of institutional biomass heating
and historical nonattainment to quantify PM as a possible barrier to new installations, whereas NSPS
regulations were put into place after the installation of some of the institutional biomass boilers
currently in use, and therefore not all installations were affected by new standards passed under the
CAA of 1978, 1990, or the 2014 amendment. However, this is not a concern within the context of
this study because most institutional biomass boilers are small enough that NSPS regulations would
not have affected them until new regulations were passed for boilers installed after February 2014.
These new regulations require bi-yearly maintenance and do not include a PM cap [32].

In addition to assumptions and temporal considerations, local and state regulations pertaining
to air quality, which are limited in number and occur mostly in the Northeast USA [32], are also
captured in the qualification of nonattainment areas. This is because it is the responsibility of the
localities to initiate a State Implementation Plan (SIP), which is a technical and strategic document
outlining an emissions reduction strategy [30]. SIPs can contain regulation for both point source
pollutants (i.e., stack emissions) and non-point sources (i.e., vehicle idle laws). If localities fail to
submit a SIP or fail to address all EPA mandated items, which is rarely the case, the EPA will institute
a Federal Implementation Plan (FIP) designed to bring emissions down to an acceptable level [30].
This interaction between the nonattainment designation and local emissions planning makes the
attainment variable broader than a simple federal benchmark for air quality.

Acid Rain

In addition to including PM for capturing the negative effects of visible air pollution,
nonattainment for the non-visible criteria pollutant SO2 was also included to capture the effects
that local emissions of acid rain constituents may have on adoption of distributed-scale biomass
heating. Nitrogen oxides (NOx) were also considered as a variable, but were not included directly
due to a lack of sufficient data coverage. However, the effects of NOx are included indirectly by
including the county population, which is closely associated with vehicle emissions, a major source
of NOx [55]. Major sources of SO2 and NOx emissions, respectively, are coal fired power plants, and
gasoline and diesel fueled transportation emissions [55,56]. Like PM, SO2 is included in both ‘SO2

Historic Emissions’ and ‘SO2 Recent Emissions’, which are measured as the count of years the county
was in nonattainment from 1978 to 2004 and 2005 to 2015, respectively. An increase in the number of
years a county is in either historic or current SO2 nonattainment is expected to decrease the likely count
of institutions in the county using biomass for heat. In addition, the general assumptions, temporal
considerations, and local and state regulations discussed in respects to PM, apply to SO2 as well.

Well-known regional variation in the pattern of acid rain deposition highlights the importance of
including the regional variable in the model. Due to a combination of emissions and weather patterns,
as well as the susceptibility of soils, transboundary SO2 and NOx emissions from Midwest states have
been known to effect large geographic areas in the Northeast and Canada [56], and more recently the
Southeast [27,57]. The most visible effect has been large scale tree mortality and associated ecosystem
degradation on soils that are susceptible to acid rain effects [55,58]. Historically, western states have
avoided emitting large volumes of acid rain catalysts due to lower population density and power plants
fueled with coal that contains less sulfur than coal used by Midwestern plants [27]. However, in recent
years, these trends have changed due to rapid population growth and expansion of cattle feedlots
that have contributed large quantities of NOx from vehicle emissions and manure [59]. Resulting acid
precipitation can be very damaging to western alpine soils, even at low levels [28]. Although direct
links between acid rain and ecosystem degradation are well known [50,56,58,60], similar direct links
with human health have not been strongly established [61,62].
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Greenhouse Gases

Although local and regional negative health and environmental effects of PM and SO2 are more
direct than the effect of global climate change attributable to GHG emissions, these emissions are also
cited by biomass energy opponents and therefore are included in this study. Greenhouse gas emissions
are included as 2013 ‘CO2e Emissions’ from new point source emitters under the NSPS [63]. Due to the
negative effects of climate change and the public’s potential perception of biomass combustion being a
net positive contribution to CO2e emissions, it is expected that as local CO2e emissions increase there
will be a decrease in the likely count of institutions using distributed-scale biomass heating.

It is important to note that, although each of the above emissions variables could be viewed as
having endogenous properties, distributed-scale biomass heating systems emit relatively low levels of
PM, SO2 and CO2e due to their small size and limited use, both historically and currently. Rather than
testing biomass emissions explicitly, this paper focuses on total emissions to determine what effect,
if any, they have on the adoption and retention of biomass heating systems. Again, this is related
to the overall attitudes of people toward combustion-based biomass heating as it relates to local air
quality and emissions, and not to a fined-grained, high resolution differentiation between various
sources of emissions. Also, as noted above, another important source of emissions is vehicle exhaust,
which is the most common source of NOx emissions [55]. This has been controlled for by the inclusion
of population, which is highly correlated with vehicle emissions, but also many other potential air
pollution constituents.

2.1.3. Local Attitudes

The effect that local attitudes toward renewable energy have on the adoption and retention of
distributed-scale biomass heating systems is quantified using county level estimates from previous
research [45]. In the past, local attitudes towards renewable energy have not been accessible due the
limited sample size of national polling, which cannot be easily disaggregated into states or counties [45].
Recently, Howe and his colleagues have devised a process to acquire local attitudes from national
polling data that can accurately estimate county-level opinions [45]. While increased local air pollution
may negatively affect the public’s preference for biomass combustion as previously described, and cited
by stakeholders [35–40], this effect may be outweighed by positive local attitudes towards renewable
energy and associated policy incentives, such as renewable portfolio standards (RPS). RPS require
utilities to produce a specified portion of their energy from renewable sources. Local attitudes in
favor of RPS is measured as a proportion of the county’s population [45]. Though local attitudes in
favor of RPS may have endogenous properties, this is not of concern in this case because distributed
scale biomass heating systems represent a small proportion of the renewable energy sector, and their
presence is unlikely to affect local attitudes towards renewable energies relative to the aggregate of
other local influences. An increase in the proportion of the population in support of RPS is expected to
increase the likely count of institutions in a county using biomass for heating.

2.1.4. Other Control Variables

There are a number of other variables that affect the count of biomass heating systems in a county,
and these have been identified and described in previous research [4,5]. These include significant
location dependent variables such as heating degree days and the quantity of forest residues from
logging operations, as well as significant economic indicators such as natural gas prices and median
house value, which represent the cost structures of competing heating fuels and the aggregation of
economic activities, respectively. We also controlled for federal policies implicitly through federal
land ownership and fuel treatments under the National Fire Plan, which is related to biomass fuel
supply. In addition, we included significant geographic controls to control for spatial variability.
They include regional indicator variables (Figure 2) and the latitude and longitude of each county
geographic centroid. Other significant variables included as controls for local infrastructure are port
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capacity and road density. For more information on these control variables and their data sources
refer to [4,5]. For a complete list of model variables, units and sources used in this analysis and their
descriptive statistics refer to Tables 2 and 3.

2.2. Statistical Methods

Of the 3142 counties in our dataset there are 225 counties with institutional biomass heating
systems (i.e., non-zero observations) with a total of 401 institutions using biomass for heat. This means
that 2917 counties have a count of zero, which must be considered in the statistical design. Ignoring zero
inflation can result in biased standard errors and overestimations [64,65]. In addition to considering
how excessive zero counts affect model estimates, the origin of zero counts must also be considered [64].
If zeros in count data are believed to come from a single data generating process (DGP) in the
sample, and represent true zero counts, then Zero Altered (i.e., Hurdle) models are appropriate [64,65].
However, in our case zero counts are believed to come from multiple DGP with excess zeros due to
structural barriers, in part connected to the Law of Location for Extraction Industries, which states that
extractive industries are, and must continue to be, located near their raw materials [66]. Counties with
zero or very low biomass resources are likely to have zero counts that represent structural zeros.
Similarly, counties with a very low population or a very low number of cold days are also likely to
have structural zero counts of institutions that use biomass for heat.

Under the condition that structural zeros are believed to be intermixed with true zeros
from sampling chance, theory suggests Zero Inflated (ZI) models are superior to their Zero
Altered counterparts because structural zeros are modeled independently from true sample
zeros [64,67]. Furthermore, in cases where zero inflation is evident, there is a high chance of
overdispersion, making the ZINB distribution an attractive alternative to the Zero Inflated Poisson
(ZIP) distribution [64]. The ZINB model used in this study models structural zeros and sample zeros
independently. Structural zeros result from counties with structural constraints such as a lack of
heating needs (i.e., warm temperatures) or lack of biomass resources, and are predicted using a ZI
model (logistic model) step. Sample zeros result from counties that are otherwise suitable for woody
biomass heating with regards to structural zeros (i.e., they have heating need and biomass resources),
but have not adopted biomass heating in any institution. These follow a negative binomial (NB)
distribution (i.e., a count model). Theory and count data strongly suggest that a ZINB mixed model is
the preferable model in this case because the data appear to be both zero inflated and overdispersed,
with multiple DGPs.

In the ZINB model the count of institutions using woody biomass is Yi, where i = 1, 2, . . . , n has a
probability mass function given by:

Pr(Yi = yi) =

 pi + (1 − pi)
(

φ
µi+φ

)φ
, if yi = 0;

(1 − pi)
Γ(φ+yi)

Γ(yi+1)Γ(φ)

(
µi

µi+φ

)yi
(

φ
µi+φ

)φ
, if y = 1, 2, ..., n,

(1)

where Pr(Yi = yi) is the probability of county i containing y institutions using woody biomass,
0 ≤ pi ≤ 1, µi ≥ 0, φ−1 is the dispersion parameter with φ > 0, and Γ(·) is the gamma function [68].
The mean and the variance are E(Yi) = (1 − pi)µi, and Var(Yi) = (1 − pi)µi(1 + µiφ

−1 + piµi).
When pi = 0, the dependent variable Yi has NB distributed parameters with the mean µi and dispersion
parameter φ (i.e., Yi ∼ NB (µi, φ)) [68].

In application, the parameters µi and pi depend on vectors of explanatory variables zi and xi,
respectively, resulting in the following models [68]:

log
(

pi
1 − pi

)
= zT

i γ and log(µi) = xT
i β, i = 1, 2, ..., n, (2)
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where γ = (γ1, ..., γq)
T and β = (β1, ..., βs)

T are unknown parameters for the ZI and NB models,
respectively, q is the number of explanatory parameters in the ZI model, and s is the number of
explanatory parameters in the NB model.

Three variables are included in the ZI model step with a theoretical basis to generate structural
zeros. The first, ‘Heating Degree Days’ is measured in thousands of heating degree days as determined
by the USA National Oceanic and Atmospheric Administration (NOAA) [69]. For every degree below
65 degrees Fahrenheit (◦F) on any given day, the county receives a heating degree day equal to the
difference between 65 ◦F and the average temperature, which results in an average of 5000 heating
degree days across all counties. This is a proxy for local heating requirements, with the assumption
that warm locations with little need for heat are likely to exhibit structural zeros. The second
variable, ‘Population Density’ measured as residents per 1,000,000 square meters (1 square kilometer),
was included to further control for the institutional heating needs of the county. Counties with very
low population density are less likely to support schools, hospitals, government buildings, prisons,
military bases, and other public buildings that require heat at the institutional scale, and are therefore
more likely to exhibit structural zeros. The third and final variable in the ZI model, ‘Forest Residues’,
includes both logging residues and other biomass generated by forest management activities, and is
measured in tens of millions of cubic meters [70]. Communities that are distant from woody biomass
resources are expected to have structural zeros because they are less likely to install systems that
require this fuel. An increase in each of the variables in the ZI model step is expected to increase the
count of institutions using woody biomass as a fuel source. The NB step of the model includes the
predictor variables shown in Table 2, with various hypothesized relationships discussed earlier in
this section.

It should be noted that domestic production of woody biomass from forests as measured by
the variable ‘Forest Residues’ is directly connected to active forest management and was included
as a proxy for woody biomass supply. It was impossible to accurately and directly quantify woody
biomass supply at a national scale at county resolution using market data because such data do not
exist. Several other sources of woody biomass could be considered, such as urban wood waste,
dedicated energy crops, and biomass imported from other countries. However, in the case of
distributed-scale biomass thermal energy in the USA, the vast majority of fuel is provided by forests
relatively close to the facility in the form of wood chips, cord wood and bulk pellets [4]. This supports
the use of ‘Forest Residues’ as a metric of woody biomass fuel supply.

2.3. Model Diagnostics

As discussed previously, a variety of different models have been developed that account for large
zero counts. An important step in all data modeling is checking both the model assumptions as well
as model performance compared to alternative modeling techniques. In this case, competing models
include: (1) the un-nested NB model for overdispersed count data that are not zero inflated, (2) the
nested Poisson model for count data that are not overdispersed nor zero inflated, and (3) the ZIP
for zero inflated count data that are not overdispersed. Recall ZINB models are designed for data
that are both overdispersed and zero inflated. Model diagnostics and comparisons were carried out
using STATA (STATA 12.1, StataCorp LP, College Station, TX, USA) [71]. Model selection was carried
out using a series of three tests: (1) a t-test on the dispersion parameter alpha (α) to determine if
there is overdispersion in the response, indicating the NB distribution is preferred to the Poisson
distribution (Table 4); (2) a Vuong test [72] of the un-nested ZINB and NB models to determine if
overdispersion in the response is the result of zero inflation (Table 5); and (3) a likelihood ratio test of
the ZINB model and nested ZIP model to confirm that the ZINB model does a better job modeling
zero inflation than the ZIP model (Table 5). These tests were chosen because they are widely used to
compare such models [67,68], and are relatively easy to interpret. Test results showed a preference for
the NB, ZINB and ZINB models, respectively, with each being statistically significant at the 1% level
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for all three models. For the Vuong test, the null hypothesis that NB is preferred to ZINB is rejected.
For the likelihood ratio test, the null hypothesis that the ZIP is preferred to ZINB is rejected.

In addition to formal statistical tests, the percent of counties correctly predicted was calculated
(Table 4), and a comparison of actual and predicted counts was prepared (Table 6). The percent of
counties correctly predicted to contain their actual count of woody biomass heating systems within
±0.49 institutions was 92.08% and 92.27% for Models 1 and 2, respectively (Table 4). Furthermore,
the percentage of counties that are predicted to have a zero count in Model 1 and Model 2 are 92.92%
and 92.94%, respectively, which are very close to the actual percentage of 92.84% (Table 6). In summary,
model diagnostics supported the use of the ZINB model in this case.

Table 4. Results for the Zero Inflated Negative Binomial (ZINB) Model 1 and Model 2.

Dependent: Institutions Model 1 Model 2
Independent Variables Coefficient OR Robust p Coefficient OR Robust p

IRR SE IRR SE
Zero Inflated (ZI-Logistic)
Heating Degree Days −0.214 * 0.807 0.122 0.08 −0.194 * 0.824 0.107 0.07
Population Density −0.050 * 0.951 0.029 0.08 −0.050 * 0.951 0.029 0.09
Forest Residues −2.111 *** 0.121 0.794 0.01 −2.045 *** 0.129 0.695 0.00
_cons 2.854 *** 0.903 0.00 2.666 *** 0.819 0.00

Negative Binomial (NB-Count)
Heating Degree Days 0.195 * 1.215 0.105 0.06 0.160 1.174 0.099 0.11
Natural Gas Prices 0.232 *** 1.261 0.058 0.00 0.187 *** 1.206 0.066 0.00
House Value 0.002 1.002 0.001 0.13 0.001 1.001 0.001 0.39
Forest Residues 0.001 1.001 0.007 0.90 0.000 1.000 0.007 1.00
Biomass NFP 0.008 ** 1.008 0.004 0.04 0.009 ** 1.009 0.004 0.03
Proportion Federal Land 0.851 *** 2.343 0.299 0.00 0.845 *** 2.329 0.289 0.00
Population −0.022 0.978 0.038 0.56 −0.006 0.994 0.036 0.87
Road Density −1.302 ** 0.272 0.591 0.03 −1.456 ** 0.233 0.618 0.02
Port Capacity −0.014 * 0.987 0.008 0.08 −0.013 * 0.987 0.007 0.07
County Area 0.001 1.001 0.002 0.71 0.001 1.001 0.001 0.56
Latitude 0.009 *** 1.009 0.003 0.01 0.009 *** 1.009 0.003 0.00
Longitude 0.009 *** 1.009 0.002 0.00 0.010 *** 1.011 0.002 0.00
West Coast 1.549 4.707 1.216 0.20 1.492 4.446 1.224 0.22
South 1.039 ** 2.828 0.450 0.02 0.650 1.916 0.429 0.13
Lake States 1.240 *** 3.456 0.413 0.00 1.092 ** 2.980 0.431 0.01
Northeast 1.161 *** 3.192 0.387 0.00 1.024 ** 2.785 0.467 0.03
Northwest 2.730 *** 15.333 0.676 0.00 2.983 *** 19.755 0.716 0.00
Midwest 1.821 *** 6.180 0.457 0.00 1.483 *** 4.405 0.409 0.00
Southwest 3.686 *** 39.868 0.652 0.00 3.646 *** 38.336 0.642 0.00
Total Policies −0.049 ** 0.953 0.025 0.05
Cost Share Grants −0.101 0.904 0.096 0.29
Technical Assistance −0.003 0.997 0.063 0.97
Financing 0.109 1.115 0.129 0.40
Procurement −0.332 *** 0.717 0.110 0.00
Rules and Regulations 0.052 1.054 0.080 0.51
Tax Incentives −0.118 *** 0.888 0.045 0.01
PM10 Historical Emissions 0.016 1.016 0.015 0.28 0.012 1.012 0.015 0.41
PM10 Recent Emissions 0.013 1.013 0.045 0.77 0.033 1.034 0.047 0.48
PM2.5 Recent Emissions 0.007 1.007 0.034 0.83 0.006 1.006 0.035 0.86
SO2 Historical Emissions 0.027 1.027 0.020 0.19 0.028 1.029 0.019 0.15
SO2 Recent Emissions 0.017 1.018 0.108 0.87 0.008 1.008 0.093 0.93
CO2e Emissions −0.000 1.000 0.000 0.40 −0.000 1.000 0.000 0.57
RPS Support 6.913 *** 1005.638 1.837 0.00 7.512 *** 1829.667 1.825 0.00
cons −11.656 *** 1.447 0.00 −10.904 *** 1.463 0.00
lnalpha cons −0.604 * 0.340 0.08 −0.766 ** 0.357 0.03
alpha cons 0.546 *** 0.186 0.00 0.465 *** 0.166 0.01

N 3142 3142
Log Likelihood −783.66 −776.67

Chi Square 524.44 626.96
% correctly predicted ± 0.499 residual 92.08% 92.27%

The base case for the regional control is South Appalachia. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 5. Tests of ZINB model fit.

Vuong Test a

ZINB vs. NB
Likelihood Ratio Test b

ZINB vs. ZIP

Statistic (V c) p-Value Statistic (z-score) p-Value

Model 1 4.18 <0.0001 29.31 <0.0001
Model 2 4.16 <0.0001 24.79 <0.0001

a H0: NB is preferred to ZINB. b H0: ZIP is preferred to ZINB. c V is the Vuong statistic as described by Vuong [72].

Table 6. Actual count versus predicted count using the model.

Institutions Actual Predicted Difference

Model 1

0 92.84% 92.92% −0.08% pts.
1 04.87% 04.90% −0.03% pts.
2 01.15% 01.11% 0.04% pts.
3 00.60% 00.42% 0.18% pts.
4 00.16% 00.22% −0.06% pts.
5 00.06% 00.13% −0.07% pts.

Model 2

0 92.84% 92.94% −0.10% pts.
1 04.87% 04.91% −0.04% pts.
2 01.15% 01.08% 0.07% pts.
3 00.60% 00.41% 0.19% pts.
4 00.16% 00.21% −0.05% pts.
5 00.06% 00.13% −0.07% pts.

Note: Actual, Predicted, and Difference values for institution counts 6 to 16 are not included, but are all <0.01% and
<0.01% pts., respectively.

3. Results

3.1. Model 1

The response variable is the number of institutions using biomass heating systems within a
county’s borders, and in the base model (Model 1) is predicted depending on local air quality,
emissions and local attitudes towards RPS. In Model 2 biomass energy policy was further split
by policy type to evaluate which policy instruments are associated with an increased number of woody
biomass heated institutions. Looking at Model 1 (Table 4) most of the variables are robust to results
from previous studies [4,5]. The odds of a structural zero (odds ratios (OR), Table 4) significantly
decreases with higher heating degree days, higher population density, and higher forest residues.
Variables that significantly increase the likelihood that an institution is using a woody biomass heating
system (incidence rate ratio (IRR), Table 4) include ‘Heating Degree Days’, ‘Natural Gas Prices’,
the available ‘Biomass Planned’ under the National Fire Plan, and the proportion of ‘Federal Lands’.
On the other hand, an increase in ‘Road Density’ and ‘Port Capacity’ significantly decreases the
likelihood of institutions using woody biomass, possibly because high levels of infrastructure indicate
highly urbanized areas.

Also, in the NB model step, ‘Total Policies’ is negatively associated with institutional biomass
heating at the 5% significance level. For each additional biomass policy, the likely count of
institutional biomass heating systems changes by a factor of 0.953, ceteris paribus (Table 4). A priori,
we hypothesized that policy variables would have a positive effect on the number of institutions.
Additionally, and the significant negative association is counterintuitive given the prior work of
Aguilar et al. [19] and Song et al. [73], who note that regional government incentives provided
by a variety of policy instruments can stimulate biomass consumption. There are many possible
explanations for this result, but to understand this phenomenon further Model 2 separates ‘Total
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Polices’ into policy types based on prior work by Becker, Mosely, and Lee [6] (Tables 1 and 3), which is
discussed in the next section.

Model 1 provides no statistical or economic evidence that county-level emissions and air quality
influence the adoption and retention of institutional biomass heating systems. This includes both
emissions of visible PM pollutants that are connected with smog and smoke and also high levels of
SO2. In addition, GHG emissions measured in CO2e from new point source emitters held no statistical
or economic influence. These results are robust to the removal of local attitudes towards RPS and the
removal of median house value from the model. Though the prior hypothesis was one-tailed in favor
of high air quality connected to stronger adoption, the result stands also for the opposite relationship.

In contrast to the emissions-adoption relationship, there is evidence that local attitudes towards
RPS standards have both a statistical and economic impact on the likelihood of adopting and retaining
institutional biomass heating systems. The addition of one standard deviation in local support for RPS
as a proportion of the county population (roughly 0.046) is associated with just over a 1.37 (= 1005.638
exp(0.046)) factor increase in the expected count of institutions using biomass (Tables 3 and 4).

3.2. Model 2

In order to further explore the negative association between ‘Total Policies’ and institutional
biomass heating, Model 2 separates ‘Total Policies’ by policy type as described in Table 4. Likelihood
ratio tests were carried out for model comparison between Model 2 and the nested Model 1 (Table 7),
resulting in a chi-squared value of 13.98 (p-value = 0.016), giving moderate evidence that Model 2 is
preferred. Of the policy types examined, ‘Financing’ policies encourage institutional use of woody
biomass the most (p-value = 0.40, and IRR = 1.12), but this evidence is inconclusive and does not hold
statistical significance (Table 4).

Table 7. Likelihood ratio test for model comparison of fit, with degrees of freedom (d.f.), chi-squared
statistic and p-value.

Likelihood Ratio Test d.f. Chi Squared p-Value

Model 1 nested in Model 2 5 13.98 * 0.0157

* p < 0.05.

In contrast, ‘Procurement’ and ‘Tax Incentive’ policies appear to have significant negative effects
(p-value < 0.01, IRR = 0.72 and p-value = 0.01, IRR = 0.89) (Table 4). It is worth emphasizing that
both of these policy instruments have an interesting relationship with institutional biomass heating.
In the forest sector, procurement often refers to raw material supply, including biomass, fiber and logs.
In contrast, ‘Procurement’ policies in this context are focused on down-stream, end use of bioenergy
and bio-based products such as electricity and liquid fuels. For example, utilities may be forced to
purchase renewable energy from decentralized producers through net metering policies. Such policies
do not target biomass procurement directly. In the case of ‘Tax Incentives’, many of the institutions
in the modeled population are tax exempt and would therefore not be influenced by ‘Tax Incentive’
policies. Alternatively, there may be unobserved heterogeneity in the policy variables that is not
explained within the model. One potential control that may relieve some of the heterogeneity is
the inclusion of a count of firms in competing biomass sectors that are more accurately targeted by
‘Procurement’ and ‘Tax Incentive’ (e.g., number of large-scale industrial operations such as sawmills
using biomass in the county).

Other policy types are largely insignificant, with IRRs that are very close to one, meaning an
additional policy will have very little influence on the number of institutions using biomass.
As supported by Becker, Mosely, and Lee [6], biomass policies focused primarily on the manufacturing
and utility sectors many not be supporting the institutional heating sector. Another possible
explanation is that the small degree of cross-sectional variation in state-level policy types may be
limiting the statistical associations that can be quantified [48].
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4. Discussion

Despite negative air quality effects being commonly cited in public opposition to biomass energy,
and apparently being central in the demise of some proposed projects, based on this analysis the
effects of these factors seem to be negligible in the context of distributed-scale biomass heating systems.
There is no evidence that historic or current local air quality and emissions effect the adoption of these
systems when controlling for other influential factors. Our primary hypothesis was that counties with
good air quality would be more likely to adopt these systems because air quality was not a major
concern, and that counties with poor air quality would be less likely to adopt because of a perceived or
real aggravation of already poor conditions. Alternatively, one might suppose that communities with
low air quality perceive further marginal degradation as insignificant compared to areas with relatively
good air quality, and therefore might be more likely to install these systems. It is also conceivable that
communities with good air quality would be less likely to adopt these systems because they want to
protect good air quality by minimizing new point source emissions. None of these hypotheses appear
to be supported by the data, at least as it relates to PM and SO2 attainment and GHG emissions as
metrics of air quality and emissions. This is not to say that a failure to detect an effect means that there
is none, but other variables clearly have more significant association with adoption. Furthermore, it is
possible that more direct metrics of air pollution impacts on human health might be more strongly
associated with adoption.

This study does provide evidence that local attitudes toward renewable energy, as measured
by support for RPS, are positively associated with the installation and retention of these systems.
Although Yoo and Ready [7] indicate that biomass use can be viewed as unfavorable when compared
to other renewable energy options, possibly due to emissions from combustion, distributed-scale
biomass heating systems may not experience the same push back as large industrial and utility
projects due to their relatively small impact on local air quality. In other words, objections to local
energy projects at the distributed-scale based on emissions and their potential negative effects may
be outweighed by support for renewable energy over fossil fuels. This hypothesis needs further
investigation, especially with regards to the scale of projects and in the context of projects that are
opposed on the basis of acute local impacts, but not their general characteristics (colloquially known
as “not in my back yard”, or NIMBY).

In addition, communities that adopt distributed-scale biomass heating may place a higher value
on healthy forests that are resistant to wildfire and climate change related stressors (e.g., drought
and insects) when compared to the value placed on the impacts to air sheds as a result of additional
emissions from these systems. Communities close to forest resources may associate biomass energy
with lower wildfire risk tied to fuel treatments, especially in the western USA. In a large choice
modeling experiment, Campbell et al. [74] showed that residents of three western states (Montana,
Colorado and Arizona) had a positive mean willingness to pay for benefits associated with bioenergy
from woody biomass, including better forest health, reduced likelihood of large wildfires and better
air quality due to reduced wildfire smoke. If these benefits are associated with biomass as a renewable
energy source and reflected in public attitudes and social acceptance of these systems, the perception
of emissions tradeoffs may be complex and opposition or support of a particular project may be
nuanced. The results of this study provide some insight into this relationship. Consistent with
prior work [4,5], the statistical models presented in this study indicate that institutional adoption
of woody biomass heating is driven by heating needs and fossil-fuel prices, as would be expected.
Cold temperatures and high fossil fuel prices are associated with adoption. Woody biomass supply is
also an important variable, and there is evidence that proximity to federal land and fuel treatments
under the National Fire Plan significantly influence the adoption and retention of woody biomass
heating systems. This result is congruent with an association between fuel treatments to reduce fire
risk and the adoption of these systems.

In contrast, the association with biomass-oriented public policy is fuzzy. There appears to be
a negative effect of aggregate policies on adoption, but these results conflict with our expectations
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and the work of Aguilar et al. [19], who highlight policies as one of the potential driving forces for
using woody biomass as a fuel source. Based on a model variant that separates ‘Total Policies’ by
policy type (Model 2) there is only very weak evidence that the presence of financial policies, such as
project financing, may support biomass adoption. Typically, public financing is seen as alleviating
large start-up costs that take an extended period of time for institutions to recoup. Financing of these
systems has a direct impact on adoption, compared to indirect mechanisms such as biomass fuel
subsidies, for example [75]. In contrast to financing policies, procurement and tax incentive policies
have a negative association with the presence of woody biomass heating systems, possibly due to the
fact that they target large-scale utilities, not distributed-scale systems. It may also be that this study
lacks variables designed to capture effects applicable to different sectors of the biomass energy space,
ranging from very large power plants to residential firewood. In general, it appears that pro-biomass
energy polices may not be effectively targeting small biomass heating systems, and are instead more
focused on the manufacturing industry, which is a conclusion supported by Becker, Mosely, and Lee [6].

Some of the limitations of this study point toward potentially fruitful areas of future research.
This study relied heavily on existing national databases and previous research that provided national
scale data at county resolution [1,6,16,45,53]. This fact was limiting from the standpoint that variables
included for analysis had to be reported at the county level for every county in the USA. However,
these databases are updated periodically, sometimes on an annual basis, which provides an opportunity
to repeat the study over time. If using our approach, this would also require replication of appropriately
designed policy studies and opinion surveys [6,45] and would provide insight into relationships that
are likely to change over time. In addition, the current W2E database and web tool [1] includes
biomass power, CHP, biofuel, and pellet mill facilities, which provides an opportunity to replicate this
methodology for other bioenergy sectors.

Opportunities also exist to refine both the scale and resolution of the approach presented here.
This study included variables to capture regional variation (Figure 2), and it is possible to replicate
the study for individual regions. At the regional scale, data may be available for additional variables
that were excluded from this analysis due to a lack of coverage or nation-wide relevancy. This study,
along with previous research [4,6,45], provides a strong foundation for regional-scale analyses. At the
local level, the tradeoffs between support for renewable energy and opposition to specific projects is
likely to have significant nuance that is not addressed by a national or regional study. Direct survey of
communities that considered bioenergy systems and then either adopted or rejected them e.g., [35–41]
could provide additional insight on multiple fronts. For example, we do not know of any database that
includes detailed information about the financing or other policy support of existing biomass systems,
but a survey of institutions would allow for a higher resolution analysis of specific policies that were or
were not factors in the installation and operation of these systems. More broadly, we believe that there is
excellent opportunity for the integration of econometric studies such as this one, with technoeconomic
models used to value specific bioenergy projects [76,77], policy and social science research [6,45],
life cycle assessment [78], and non-market valuation using choice modeling and other methods [74].
An integrated approach would help provide a more holistic view of the costs, benefits and potential
value of biomass energy projects.

5. Conclusions

The USA has used a variety of policy instruments to encourage the expansion of renewable
energy production as a means to ensure affordable, domestic and stable energy supply and to reduce
greenhouse gas emissions. Local attitudes toward biomass energy can have a negative effect on the
support and adoption of large biomass facilities used to achieve these goals, especially with regards
to point source emissions from biomass combustion. This study found no evidence that past or
current air quality and emissions affect the adoption of distributed-scale biomass heating systems.
Similarly, public policies did not show a strong association with adoption. However, support for
renewable energy, as measured by support for renewable portfolio standards, was associated with
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greater adoption of these systems. In combination with the association between biomass heating and
biomass supply from forest management, it appears that communities with sufficient heating needs
and comparatively high fossil fuel prices, are more likely to adopt institutional biomass heating when
they support renewable energy and are close to active forest management, especially management to
improve forest health and reduce wildfire risk.

In practice, results indicate that advocates of expanding distributed-scale biomass heating and
CHP technologies may improve their chances of meeting this goal by stimulating support for renewable
energy, making clear links to broader benefits associated with forest biomass, and encouraging policies
that target this sector directly, rather than assuming that broad pro-biomass and utility-sector policies
will have an encouraging effect on the adoption of distributed-scale systems. Air quality does not
appear to be a major factor in this case, but should not be underestimated as a factor that can influence
public opinion in specific cases. In this light, it may be beneficial for local and state governments
to adopt targeted policies that better support the installation of distributed-scale biomass heating
systems directly, using well-targeted policies coupled with public outreach focused on the benefits of
renewable energy. This is of particular importance for rural areas that have limited access to natural
gas and have to rely on propane or fuel oil. In such cases, higher energy prices provide additional
incentive for biomass heating. Under the right conditions, this renewable energy transition can ensure
affordable energy to rural institutions while displacing fossil fuels and generating additional benefits
from forest restoration.
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Abbreviations

BLM USA Bureau of Land Management
BRDI Biomass Research and Development Initiative
CAA Clean Air Act
CHP Combined heat and power
CO2e Carbon dioxide equivalent
d.f. Degrees of freedom
DGP Data generating process
DOE USA Department of Energy
EIA USA Energy Information Administration
EPA USA Environmental Protection Agency
FIA Forest Inventory and Analysis of USFS
FIP Federal implementation plan
FWS USA Fish and Wildlife Service
GHG Greenhouse gas
HDD Heating degree day
IRR Incidence rate ratio
ISO4 Interim Standard Offer 4
MW Megawatt
NAAQS National Ambient Air Quality Standards
NB Negative binomial
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NIMBY
“Not in my back yard”, opposition on the basis of acute local impacts, but not their
general characteristics

NOAA USA National Oceanic and Atmospheric Administration
NOx Nitrogen oxides
NSPS New Source Performance Standards
Obs. Observations
OR Odds ratio
PM Particulate matter
PM10 Particulate matter with a diameter greater than 2.5 µm but smaller than 10 µm
PM2.5 Particulate matter 2.5 µm in diameter or smaller
REC Renewable energy certificate
RPS Renewable portfolio standard
SE Standard error
SIP State implementation plan
SO2 Sulfur dioxide
Std. Dev. Standard deviation
TSP Total suspended particulate
USA United States of America
USDA United States Department of Agriculture
USFS United States Forest Service
W2E Wood2Energy, see [1]
ZI Zero inflated
ZINB Zero inflated negative binomial
ZIP Zero inflated Poisson
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