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Abstract: This paper deals with clamping force simulation and experimental result of the Electro
Mechanical Brake (EMB) for the High-Speed-Train (HST). Three phase Surface Permanent Magnet
Synchronous Motor (SPMSM) is applied to the clamping force control of EMB. At the initial
development stage, Proportional Integral (PI) current control under synchronous d-q axis frame was
applied to the SPMSM torque control. In addition, an anti-windup controller, which is advantageous
for fast current tracking, is proposed to improve the torque output. Matlab/Simulink simulation
results were compared with the experimental results measured by the clamping force sensors of the
EMB test rig. The experimental results were verified compared to the brake design specification of
the High-Speed Electric Multiple Unit-430 Experimental (HEMU-430X) train.

Keywords: Brake-By-Wire (BBW); Electro Mechanical Brake (EMB); Surface Permanent Magnet
Synchronous Motor (SPMSM); inverter; High-Speed-Train (HST)

1. Introduction

Due to the problems of hydraulic brakes with respect to the maintenance of oil and oil pressure
lines, as well as the efficiency of hydraulic pump operation in conventional brake systems in the
automotive field, EMB is drawing more attention [1,2].

At the initial stage of the development of EMB, a wedge brake structure was used for the
generation of maximum clamping force in the caliper under a low input voltage of 12 Vdc. However,
a great deal of research into electric vehicles has made it possible to use 42 Vdc input voltage to achieve
brake control of the caliper in the vertical direction of the brake disc directly [3].

There have been numerous studies on motor control methods that address clamping force control,
including PI controller using basic control of current and speed under vector control [4], control of
clamping force using a sliding mode controller [5], adaptive sliding mode control using a neural
network to estimate [6], estimation methods of clamping force considered as gear friction [7], estimated
control of clamping force using the rotor position due to impossible applications of force sensors
based on the spatial constraints of the driving part [8,9], observer-based sensor-less robust force
control methods [10], and fault diagnosis and tolerant control techniques based on the failure of the
sensor [11–16]. Despite the number of studies, challenges still remain in terms of improving the safety
requirements in automotive field, as well as the aspect of increasing costs of the entire braking system
due to the complexity of the control system in comparison with hydraulic systems.

Studies are being actively conducted in the field of the railroad, such as the increase of
transportation capacity and the upgrade of performance and miniaturization. In terms of the braking
system, which is an important component of a train, applying EMB to the brake system is drawing
attention as an alternative to existing pneumatic braking systems. EMB can decrease the volume of
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the entire braking system by up to 50% by eliminating the air compressor, air container for braking,
piping for braking, valves, etc., which unnecessarily take up space at the bottom of the train, while it
can also perform high-precision braking control and reduce latency time through fast response control.
In addition, it is possible to design a structure that allows the brakes installed on different axles to
share the braking force, even if one or more brakes breaks down. In Europe, an electric motor-type
combined with a spring, called the Spring Loaded Brake System (SLBS) driving system, was developed
and applied to low-speed light rail vehicles such as trams and monorails. In Korea, EMB clamping
force performance had been tested by replacing the pneumatic braking part with the caliper, and was
applied in urban railway vehicles with electric mechanical systems [17]. However, this mechanical
torque transmission structure used ball screw-type transmission, which is different from the spur gear
and camshaft-type transmission used in this paper.

This research study involves the simulation and experimental results of the EMB system.
The output clamping force of the caliper, the braking force of the EMB system, and decelerating
performance are predicted in an analytical approach using a Matlab/Simulink simulation, and the
simulation results are compared with experimental results measured by the clamping force sensors of
the EMB test rig. In addition, it is proposed to add an anti-windup controller to improve the PI current
control and maximum clamping force performance for the control of output torque. The experimental
results showed that the brake design specification of HEMU-430X can be satisfied, ensuring the
possibility of applying EMB system to trains.

2. Construction of EMB

Figure 1 shows the EMB concept applied to the pneumatic brake of the HEMU-430X, a train
being test run in Korea. The rotational torque generated at the motor, which is connected to the
drive shaft, is transmitted to the cam shaft of the caliper by the ratio of the reduction gear. The pads
connected with Lever 1 and 2 are moved to the brake disk to generate clamping force at the brake
disk. The braking force generated at that moment is transmitted to the wheel of the train to activate
the brakes. The motor used for the rotation of the driving shaft is the SPMSM, and Table 1 depicts the
specifications of the SPMSM.
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Figure 1. EMB concept for application to the pneumatic brake caliper of HEMU-430X.

Table 1. SPMSM Specification.

Motor Specification

Output Power 600 W
Rated Speed 3000 rpm

Inductance (Ld, Lq) 0.744 × 10−3 H
Torque Constant 0.25 Nm/A

Rated Torque 1.9 Nm
Number of Phase 3
Number of Poles 8
Number of Slots 12

Weight 2.37 kg
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3. Simulation Results of the EMB System

SPMSM mathematical modeling is necessary for the vector control simulation using
Matlab/Simulink (R2018a, The MathWorks, Inc., Natick, MA, USA). The voltage equation of the
synchronous d-q axis frame for SPMSM can be expressed as [18]:

υr
ds = Rsirds + Ld

d irds
dt

− ωrLqirqs (1)

υr
ds = Rsirqs + Lq

d irqs

dt
+ ωr(Ldirds + φ) (2)

where ωr is angular velocity, Rs is resistance of stator, Ld and Lq are d-q axis inductance of stator,
irds and irqs are synchronous d-q axis current of stator, φ is flux linkage.

From Equations (1) and (2), the output torque of SPMSM can be expressed as:

Tout =
P
2

3
2
[φ irqs + (Ld − Lq) irds irqs] (3)

From Equation (3), because of the mechanical structure of SPMSM, the d-q axis inductance Ld and
Lq are designed with the same value, as shown in Table 1. Therefore, the SPMSM has no reluctance
torque and the d-axis current irds has no impact on the output torque. Finally, output torque is defined
as follows:

Tout =
P
2

3
2

φ irqs (4)

where P is number of poles.
Figure 2 shows the relationship between current vector and output torque from Equations (3) and

(4). From Figure 2, SPMSM can be controlled with minimum current when irds is zero and all stator
current input Is is controlled by irqs.
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Figure 2. d-q axis current for vector control of SPMSM.

The mechanical part of Matlab/Simulink is constructed based on Figure 3b. The mechanical
clamping force and the braking characteristics of EMB can be predicted analytically. A Train Brake
Model (TBM) block is constructed using a Shoe Brake for the modeling, similar to the caliper structure
in Figure 1. The torque output of the motor and reduction gear ass’y generated in Figure 3a is used as
an input of TBM that consists of the wheel and axle ass’y. If the wheel and axle ass’y moves at a certain
constant velocity, the braking force, braking distance and deceleration speed can be predicted during
the motor torque input. However, because Matlab/Simulink cannot implement a motor stall operation
in the braking state, the output torque is used as an input value of TBM as the motor is rotated in the
normal state.
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Figure 3. Simulation concept of EMB for Matlab/Simulink: (a) SPMSM current control concept diagram
for EMB control; (b) train brake model for mechanical parts.

Figure 4 shows the wave form of current control of the d-q axis for the SPMSM. The standard
current values of the q axis and the d axis are entered as 10 A and 0 A, respectively, and it is shown
that both d-q axis follow the reference value within 40 ms.
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Figure 4. Simulation results for current control: (a) d-axis; (b) q-axis.

Figure 5a shows the torque output value of the motor according to the reference current value of
the q-axis, and Figure 5b shows the clamping force output value generated in the mechanical modeling
by the reduction ratio between the first reduction gear and the second reduction gear from Figure 1.
The output rotating torque value of the motor is 1.75 Nm at a q-axis input current reference of 10 A,
and the clamping force of the pad at this time is 51.5 kN.
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Figure 5. Simulation results for current control: (a) torque output from SPMSM; (b) clamping force
from caliper.

Figure 6 shows the output results of the deceleration speed and braking force calculated in the
TBM in Figure 3. Deceleration speed is calculated assuming that the wheel and axle in the TBM of
10 kg moves at a constant initial velocity of 300 km/h during the simulation time. Figure 6 shows
that the brake is activated within 0.2 s, and the wheel and axle stop after moving a distance of 12 m.
The braking force at that moment is 10.4 kN. Braking force can be converted to clamping force per
caliper and expressed as:

CFcaliper = BFsystem / (D × Fr) = 10.4 kN / (0.667 × 0.3) = 51.97 kN (5)

where CFcaliper is clamping force per caliper, BFsystem is braking force of system, D is effective diameter
ratio, and Fr is coefficient of friction. According to Figure 5b, braking force output of TBM can be
verified from Equation (5).
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4. Experimental Results of the EMB system

Figure 7 shows the installation of the EMB test rig for the performance test. The experimental
results from the EMB test rig are compared with the Matlab/Simulink simulation results in order
to verify the EMB performance. Figure 7b shows the EMB applied to the caliper, which is the same
type as the pneumatic brake of the HEMU-430X, as shown in Figure 1. Measurement of clamping
force was performed by removing pads from both sides of the caliper in which the braking pads were
installed and attaching two equivalent sensors (Loadcell). The specifications of the sensor for the
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measurement of clamping force are shown in Table 2. The output of the Loadcell is measured by
converting to voltage through an amplifier. The maximum clamping force and the response time to
reach the maximum clamping force were recorded by the output waveform from the scope.

Energies 2018, 11, x FOR PEER REVIEW  6 of 12 

 

force was performed by removing pads from both sides of the caliper in which the braking pads 

were installed and attaching two equivalent sensors (Loadcell). The specifications of the sensor for 

the measurement of clamping force are shown in Table 2. The output of the Loadcell is measured by 

converting to voltage through an amplifier. The maximum clamping force and the response time to 

reach the maximum clamping force were recorded by the output waveform from the scope. 

(a) (b) 

Figure 7. Installation for the EMB performance test rig: (a) system installation; (b) parts of caliper. 

Table 2. Loadcell specifications. 

Loadcell Specifications 

Rated Output 2.0  0.005 mV/V 

Excitation Voltage 10 Vdc 

Zero Balance 0.0  0.02 mV/V 

Accuracy 0.02% 

Resistance (Input/Output) 350  3.5 Ω 

Figure 8 shows the experimental clamping force results for the conventional pneumatic brake 

installed in the HEMU-430X. The clamping force was measured with the sensor installed as shown 

in Figure 7b by injecting the same pneumatic pressure as that of an actual vehicle. At that time, no 

overshoot occurred in the transient response. The response time from the initial zero clamping force 

to the maximum clamping force was 900 ms, and the maximum clamping force was 51.3 kN. When 

the brake is actuated, the occurrence of overshoot has a bad effect on ride comfort for passengers, 

caused by jerk. In this paper, SPMSM control was done by minimizing the overshoot in the 

transient response characteristic of the EMB system, and experimental results were compared with 

the pneumatic braking system. 

Figure 7. Installation for the EMB performance test rig: (a) system installation; (b) parts of caliper.

Table 2. Loadcell specifications.

Loadcell Specifications

Rated Output 2.0 ± 0.005 mV/V
Excitation Voltage ±10 Vdc

Zero Balance 0.0 ± 0.02 mV/V
Accuracy ±0.02%

Resistance (Input/Output) 350 ± 3.5 Ω

Figure 8 shows the experimental clamping force results for the conventional pneumatic brake
installed in the HEMU-430X. The clamping force was measured with the sensor installed as shown
in Figure 7b by injecting the same pneumatic pressure as that of an actual vehicle. At that time,
no overshoot occurred in the transient response. The response time from the initial zero clamping
force to the maximum clamping force was 900 ms, and the maximum clamping force was 51.3 kN.
When the brake is actuated, the occurrence of overshoot has a bad effect on ride comfort for passengers,
caused by jerk. In this paper, SPMSM control was done by minimizing the overshoot in the transient
response characteristic of the EMB system, and experimental results were compared with the pneumatic
braking system.
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Figure 9 shows the reference values for emergency braking in accordance with the speed of the
HEMU-430X. As shown in Figure 9, maximum braking force occurs at 110 km/h in each vehicle.
The reference value for maximum braking force at that time was determined to be 54 kN. Compared to
the experimental values in Figure 8, there was an error of about 5% at the maximum clamping force.
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Figure 10a shows the experimental clamping force waveform of the EMB. As mentioned above in
the previous section, the q-axis current was applied to control EMB. As shown in Figure 8, to generate
similar output clamping force to the pneumatic brake, the reference current value of q-axis was set
at 10 A. The gain of the PI current controller was set in order not to generate overshoot. At that time,
the transient response time to reach the maximum clamping force was 410 ms, and the maximum
clamping force was measured at about 51.8 kN. Compared to the pneumatic system, the transient
response time to reach the maximum clamping force was faster by more than 50%. There was an
error in output torque that was within 1% compared to the result of the simulation in Figure 5. From
Equation (6), when the current of the q-axis is applied to 10 A, the motor output torque is 1.75 Nm,
and if the reduction gear ratio is considered, the motor output torque is 1.7547 Nm, based on the
experiment results of a clamping force of 51.8 kN. This shows that the calculation torque and the
experimental torque values are almost the same.

Tout = irqs × (1.5 × Pn × φ) = irqs × 0.175 (6)

where Pn is pole pair.
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Figure 10b shows the transient response time in accordance with the clamping force reference
input. After the synchronous current reference input of the q-axis is applied, the clamping force of the
EMB occurs within 50 ms. In addition, the total time of 450 ms is measured until the occurrence of
maximum clamping force. The EMB shows about a 2.5 s faster response time than the conventional
pneumatic brake system, which has a latency time of about 3 s. This shows that the reduction of the
braking distance is about 200 m, in the case of a train running at a speed of 300 km/h.

Figure 11a shows the synchronous current control experimental result of q-axis in SPMSM. When
the q-axis current of 10 A is applied to the motor and the motor stall occurs, at that time, the motor current
increases rapidly under the brake pads and cannot move any more. However, the q-axis output current
tracks stably to the reference current. In the case of the current control simulation results in Figure 5,
because Matlab/Simulink simulation uses the motor output torque under a normal rotation state, the
waveform of the q-axis current control is different from EMB experimental results. Figure 11b shows the
mechanical rotation angle that occurs in accordance with the rotation of the motor. One sawtooth wave
occurs when the motor rotates once, and a straight line waveform is shown when the motor rotation
stops. The maximum clamping force is generated and maintained at the time of the motor stopping, as
can be seen from the wave form. A total of 19 rotations were carried out before the occurrence of the
maximum clamping force, and the rotation speed was measured at about 2800 rpm.
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As mentioned above, the maximum clamping force of the experimental result is 4% smaller than
the design specifications of the HEMU-430X at 110 km/h, as shown in Figure 9. This paper suggests a
PI controller which includes an anti-windup controller. Anti-windup controllers are used widely in
industry to prevent the saturation phenomenon of integrators. Integrator saturation leads to a step
response with a large overshoot and a high settling time. There has been a great deal of research
on anti-windup PI control schemes. In this paper, the tracking back calculation scheme is applied
to reduce the settling time and improve the clamping force. Figure 12 shows the anti-windup PI
control schemes [19]. In the linear range, if u and v are the same, er is applied to the integrator input.
In the saturation range, u and v are different, at that time, er − Kpae f b is applied to the integrator
input. Usually, an anti-windup gain of Kpa = 1/Kp is selected. Appropriate gain choice results in fast
transient response, because the integrator is reset quickly. If the anti-windup gain value is too high,
errors can cause input saturation.

Figure 13 shows the application of anti-windup controller in the EMB system. Input values are
divided into a synchronous d-q axis frame. The output voltages of the three-phase inverter was limited
by the control programing. In addition, anti-windup gain Kpa was denoted to be 1/Kp.
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Figure 13. Concept diagram for proposed PI controller using anti-windup feedback control.

Figure 14 shows the experimental results for clamping force when an anti-windup controller is
added. The current references for the synchronous d-q axis frame of 0 A and 10 A, respectively, were
applied. As shown in Figure 14a, the maximum clamping force value was measured as being 54 kN,
and overshoot did not occur at transient response. Figure 14b shows the output latency time according
to the input of the q-axis reference current, and it took 170 ms. In comparison to Figure 10, the time
taken to reach the maximum clamping force and the latency time increased by 90 ms and 120 ms,
respectively. It is thought that the response time was delayed due to the increase in the calculation
time of the EMB inverter controller.
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Figure 15 shows the current control waveform at the time of the occurrence of maximum clamping
force. Compared to Figure 11, the current of the q-axis increased by about 2 A under the motor
stall state. However, the tracking performance to the reference current was faster by more than 1 s.
The sawtooth width under the transient response is different, because the rising time of Figure 15b is
90 ms longer than Figure 11b. In addition, the angle values under the motor stall state are different
in accordance with clamping force. If electric parts, especially the switching devices of inverters,
are designed to have a current margin, this control method will not affect the EMB system. In addition,
as shown in Figure 15b, under the motor stall state, the sustained performance of the clamping force
was the same.
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Table 3 shows the experimental results for clamping force according to the synchronous frame
current reference of the q-axis in the EMB and the braking steps corresponding to each operation speed
of HEMU-430X in Figure 9. The braking force was divided into a total of 7 stages, and the clamping
force output for each braking step, corresponding to each speed, was satisfied in all areas of speed
through the adjustment of the synchronous-frame d-axis current reference for the EMB.

Table 3. Clamping force for current reference.

Current
Reference

Simulation Result of
Clamping Force (kN)

Experimental Results of
Clamping Force (kN)

Braking Steps of
HEMU-430X

Operation
Speed (km/h)

4 20.7 21.2 1 400
5 25.8 26.0 2 350
6 31.0 31.0 3 300
7 36.2 37.6 4 230
8 41.3 42.6 5 160
9 46.5 48.5 6 110
10 51.5 54.0 7 0

5. Conclusions

This paper deals with Matlab/Simulink simulation and experimental results for the maximum
clamping force for EMB. The PI current controller was applied to control clamping force. The maximum
clamping force was improved by about 4.8% when the anti-windup controller was added to the PI
current controller for the SPMSM control. The performance requirements are a maximum clamping
force of 52 ± 2 kN and a response time of within 500 ms. As a result, the EMB requirements
were satisfied. In addition, the clamping force errors between the simulation and the experimental
results were within 5% for each current reference. Braking outputs categorized into seven steps
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in accordance with operating speed for the HEMU-430X train are enabled by this EMB system.
Although clamping force tracking performance was satisfied by the static experimental results, there
was no consideration of the effects of dynamic test environments, such as thermal effects, vibration
of the caliper, and parameter variations. In future works, an additional control algorithms will
be needed, such as speed control, force control, gap compensation control and robust control of
parameter variation.
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