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Abstract: The optimal power flow (OPF) module optimizes the generation, transmission, and
distribution of electric power without disrupting network power flow, operating limits, or constraints.
Similarly to any power flow analysis technique, OPF also allows the determination of system’s
state of operation, that is, the injected power, current, and voltage throughout the electric power
system. In this context, there is a large range of OPF problems and different approaches to solve
them. Moreover, the nature of OPF is evolving due to renewable energy integration and recent
flexibility in power grids. This paper presents an original hybrid imperialist competitive and grey
wolf algorithm (HIC-GWA) to solve twelve different study cases of simple and multiobjective OPF
problems for modern power systems, including wind and photovoltaic power generators. The
performance capabilities and potential of the proposed metaheuristic are presented, illustrating the
applicability of the approach, and analyzed on two test systems: the IEEE 30 bus and IEEE 118 bus
power systems. Sensitivity analysis has been performed on this approach to prove the robustness of
the method. Obtained results are analyzed and compared with recently published OPF solutions.
The proposed metaheuristic is more efficient and provides much better optimal solutions.

Keywords: multiobjective optimization; optimal power flow; metaheuristic; wind energy;
photovoltaic

1. Introduction

Optimal power flow (OPF) is the mathematical tool used to find the optimal settings of the power
system network [1]. The main target of the OPF problem is to optimize a specific objective function
while satisfying feasibility and security constraints [2]. OPF has been broadly used in previous
studies [3], and has served as a substantial optimization test problem because it is characterized
as multidimensional, large-scale nonlinear nonconvex, and highly constrained [4,5]. Several OPF
formulations have been developed during the last few decades in order to optimize the operation
of an electric power system subject to physical constraints [6]. The emerging optimization problem
uses different names and different objective functions [7]. A lot of OPF solution approaches have
been developed, each with distinct mathematical characteristics and computational requirements [8,9].
In recent years, OPF optimization problems have regained importance due to the rapid adoption
of distributed energy resources in the network [10]. The integration of distributed and intermittent
renewable energy sources, such as photovoltaic (PV) systems and wind energy (WE), into modern
power systems has introduced new types of challenges for operating and managing the power grid [11].
The stochastic nature of WE and PV units must be taken into consideration to ensure successful
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implementation of these intermittent energy sources to the network [12]. Solving the OPF problem has
become more complicated with massive incorporation of renewable resources that impose volatile
dynamics to the power grid because of their uncertainty.

Conventional optimization methods, like linear (LP) and nonlinear programming (NLP) [13],
quadratic programming (QP) [14], interior point method (IPM), and Newton’s method [15] showed
excellent convergence characteristics in solving OPF problems; however, they use theoretical
assumptions not suitable for practical systems having non-differentiable, non-smooth, and nonconvex
objective functions. Sometimes, the preceding approaches fail to represent the main characteristics
of the fuel cost as a convex function [16]. Such a situation emerges when piecewise quadratic
cost, valve points, and prohibited operating zones characteristics are presented [17]. Usually,
multiple trials and accurate adjustment of associated parameters are needed to achieve the optimal
solution for a specific problem. As a result, we need a faster and more robust algorithm to
solve realistic OPF problems. Recently, many publications have focused on metaheuristics to
solve hard optimization problems. Metaheuristics, based on a common set of principles which
make it possible to design solution algorithms, may be used to overcome the abovementioned
weaknesses. Most metaheuristics have the following features: they are inspired from nature,
they do not use the objective function’s Hessian or gradient matrix, they make use of stochastic
components, and they have many parameters that need to be adapted to the problem [18]. The
following artificial intelligence based optimization methods have been successfully used to solve
OPF problems: moth swarm algorithm, MSA [19]; modified particle swarm optimization, MPSO [20];
modified differential evolution, MDE [21]; moth-flame optimization, MFO [22]; flower pollination
algorithm, FPA [23]; adaptive real coded biogeography-based optimization, ARCBO and real coded
biogeography-based optimization, RCBBO [24]; grey wolf algorithm, GWO and differential evolution,
DE [25]; modified Gaussian bare bones imperialist competitive algorithm, MGBICA and Gaussian
bare bones imperialist competitive algorithm, GBICA [26]; artificial bee colony, ABC [27]; simulated
annealing and hybrid shuffle frog leaping algorithm [28]; Lévy mutation teaching-learning-based
optimization, LTLBO [29]; teaching learning-based optimization, TLBO [30]; hybrid MPSO and shuffle
frog leaping algorithms, HMPSOSFLA, and particle swarm optimization, PSO [31]; Gbest-guided
artificial bee colony, GABC [32]; differential search algorithm, DSA [33]; efficient evolutionary
algorithm, EEA and eclectic genetic algorithm, EGA [34]; particle swarm optimization with aging
leader and challengers, ALCPSO [35]. The above optimization approaches have been developed to
solve simple and multiobjective OPF problems. These algorithms performed better than traditional
mathematical programming techniques in solving multiobjective optimization problems because they
are less affected by the Pareto front shape, and are capable of finding the optimal solutions sets in one
run [36]. The assessment of these metaheuristics is commonly based on experimental comparisons.

The objective of this research is to develop an original metaheuristic called hybrid imperialist
competitive and grey wolf algorithm (HIC-GWA) to solve twelve different cases of simple and
multiobjective OPF problems for hybrid power systems that includes PV and WE sources, in order to
find effective, faster, and better solutions. The potential and efficiency of the HIC-GWA are presented
and evaluated on two standard test systems: IEEE 30 and IEEE 118 bus power systems. Simulation
results are compared with the abovementioned optimization approaches. The proposed HIC-GWA
is a combination of two algorithms: the imperialist competitive algorithm (ICA) and the grey wolf
optimization (GWO). ICA is a sociopolitically inspired optimization strategy that has been proposed
to handle tough optimization problems [37]. This approach exhibits good performance in terms of
convergence rate and improved global optimum [38,39]. The GWO algorithm is an original swarm
intelligence technique stimulated by the leadership hierarchy and hunting structure of grey wolves.
This robust algorithm has been used in different complex problems because of the reduced number of
random parameters and a faster convergence due to continuous reduction of search space [40,41]. Each
optimization technique, ICA and GWO, possesses certain specific intelligence to search for the solution
of a problem. Therefore, a collection of such abilities enhances the power of the proposed metaheuristic.
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2. OPF Problem Formulation

2.1. Objective Functions

OPF research seeks to compute a steady state operating point that reduces cost, emission, loss, etc.,
while maintaining good system performance. The general OPF problem usually contains discrete and
continuous control variables. It is a large-scale, nonconvex, and nonlinear optimization problem. OPF
seeks to optimize the generation, transmission, and distribution of electric power with no disruption
of flow, operating limits, or constraints. Similar, to other power flow analysis techniques, OPF also
allows the determination of system’s state of operation, that is, the injected power, voltage, and current
throughout the electric power system. In this context, a large array of OPF formulations and solution
methods have been developed. Furthermore, OPF research is growing, due to contemporary electricity
markets and integration of renewable energy sources.

The following objective functions are minimized by the proposed HIC-GWA:

2.1.1. Wind Cost Function

Wind energy is increasingly being integrated into the power grid due to its rapidly declining cost
and emission free nature. The WE power cost function can be modeled as

Cd,w,i = dw,iPw,i (1)

Wind power operators get penalized if they fail to provide the scheduled amount of wind energy.
Penalty costs consists of two parts: (1) underestimation cost which should be considered when available
power of wind farm is not utilized, (2) overestimation cost which is calculated for buying power from
alternate sources (reserves) or load shedding. These costs can be modeled as follows [12]:

Cue,w,i = Kue,w,i

∫ Pw,r,i

Pw,i

(P− Pw,i) f (P)dP (2)

Coe,w,i = Koe,w,i

∫ Pw,i

0
(Pw,i − P) f (P)dP (3)

where i = 1, 2, . . . , nw and f (P) symbolizes the probability density function (PDF) of WE output power.
The WE total cost is given by the following function:

F1 =
nw

∑
i=1

COSTw,i =
nw

∑
i=1

Cd,w,i + Cue,w,i + Coe,w,i (4)

To model the unpredictable nature of wind speed, we use the Weibull distribution with PDF
f (Vw) and cumulative distribution function (CDF), F(Vw), defined as follows [12]:

f (Vw) =
K
C

(
Vw

C

)K−1
e−(Vw/C)K

, Vw > 0 (5)

F(Vw) = 1− e−(Vw/C)K
, Vw > 0 (6)

The generated power of WE is computed as

Pw(Vw) =


0 Vw< Vw,in, Vw >Vw,out

Pw,r
Vw,r−Vw,in

Vw −
Vw,in ·Pw,r

Vw,r−Vw,in
Vw,in ≤ Vw ≤ Vw,r

Pw,r Vw,r≤ Vw ≤ Vw,out

(7)

where
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Vw and Vw,r symbolizes speed and rated speed of WE generators,
Vw,in and Vw,out symbolizes cut-in and cut-out speed of WE generators,
K, C symbolizes shape and scale parameters of the Weibull distribution.

2.1.2. PV Cost Function

Photovoltaic systems are gaining popularity as a clean energy source due to their affordable cost
and simple design. PV characteristics are highly dependent on various factors, including irradiance
level, shades, and temperature, which makes it hard to accurately forecast its power production. The
generation and penalty costs for PV power can be calculated as follows:

Cd,pv,i = dpv,iPpv,i (8)

Cue,pv,i = Kue,pv,i

∫ Ppv,r,i

Ppv,i

(
P− Ppv,i

)
f (P)dP (9)

Coe,pv,i = Koe,pv,i

∫ Ppv,i

0

(
Ppv,i − P

)
f (P)dP (10)

where i = 1, . . . , nv and f (P) represent the PDF of the PV unit’s output power.
The total cost of PVs is given by the following function:

F2 =
nv

∑
i=1

COSTPV,i =
nv

∑
i=1

Cd,pv,i + Cue,pv,i + Coe,pv,i (11)

The PDF of the ith PVs’ output power is calculated as follows:

• Solar cells or PV cells are hypersensitive to the amount of solar radiation. The PDF of solar
radiation f (R) can be modeled by a beta distribution [12]:

f (R) =
Γ(α + β)

Γ(α)Γ(β)
Rα−1(1− R)β (12)

where Γ(.) is the gamma function, α and β are parameters of the beta distribution, and R is the
solar radiation.

• The relation between power output of PV and output power of solar cell generator which is
related to the solar radiation can be calculated as follows:

Ppv(R) =


Ppv,r

(
R2

RC RSTD

)
0 ≤ R ≤ RC

Ppv,r

(
R

RSTD

)
RC ≤ R ≤ RSTD

Ppv,r RSTD ≤ R

(13)

where RC and RSTD are solar radiation in W/m2. Usually, a typical solar radiation point is set to
150 W/m2, and it is set to 100 W/m2 under standard conditions.

2.1.3. Basic Fuel Cost Function

The basic fuel cost is OPF’s most common objective function. A power plant’s fuel cost is
commonly modeled as a quadratic function [42]:

F3 =
nG

∑
i=1

ai + biPGi + ciP2
Gi (14)

where i represents the ith power plant and nG is the number of power plants. ai, bi, and ci are cost
coefficients for the ith power plant. PGi is power of ith power plant.
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2.1.4. Piecewise Quadratic Fuel Cost Function

For a given operating range, power plants usually use the most economical available fuel option.
Such a system has piecewise quadratic fuel cost function

F4 =
nG

∑
i=1

fi(Pi) (15)

Each quadratic piece of the fossil fuel cost can be calculated using the following function:

fi(Pi) =

n f

∑
k=1

ai,k + bi,kPGi + ci,kP2
Gi (16)

where n f is the number of fossil fuel options for ith power plant and ai,k, bi,k, ci,k, are coefficients for
the cost of ith power plant for kth fuel option.

2.1.5. Piecewise Quadratic Fuel Cost with Valve Point Loading

The generator cost is a convex function with an incremental heat rate curve, subjected to
discontinuities caused by the steam admission valves in large turbines. The valve point effect must be
included in order to have an accurate cost for each generating unit [43]:

F5 =
nG

∑
i=1

ai + biPGi + ciP2
Gi +

∣∣∣eisin
(

fi

(
Pmin

Gi − PGi

))∣∣∣ (17)

where ei and fi are valve point cost coefficients of ith power plant.

2.1.6. Emission Cost Function

To produce electricity, a fossil fuel power station burns natural gas, petroleum, or coal. Significant
amounts of emission are produced during the burning process. In this paper, the emission level of
the two important pollutants, nitrogen oxides (NOx) and sulfur oxides (SOx), are modeled by the
following function [19]:

F6 =
nG

∑
i=1

αi + βiPGi + γiP2
Gi + ζie(θi PGi) (18)

where, αi, βi, ζi, and θi are emission coefficients of ith power plant.

2.1.7. Power Loss Cost Function

To reduce the active power loss of transmission lines, the following power loss function has to be
minimized [27]:

F7 =
nl

∑
i=1

nl

∑
j = 1
j 6= i

GijV2
i + BijV2

j − 2ViVj cos δij (19)

where nl is the number of transmission lines, (Gij,Bij) are (real, imaginary) of ith jth components of the
admittance matrix, δij is the angle separating the ith bus from the jth bus, and Vi is the ith bus voltage.

2.1.8. Fuel Cost and Active Power Loss Cost Function

This function model two simple objectives: fuel cost and active power loss.

F8 = F3 + β1F7 (20)

where β1 is a weighting factor.



Energies 2018, 11, 2891 6 of 23

2.1.9. Fuel Cost and Voltage Deviation

One of the valuable quality and security indices is the voltage magnitude fluctuation from the
specified reference value at each load bus. This function models both fuel cost and voltage deviation
(VD).

F9 = F3 + β2

nL

∑
i=1
|1−VLi| (21)

where nL is the number of load buses, VLi is the ith voltage of load buses, and β2 is a weighting factor.

2.1.10. Fuel Cost and Voltage Stability Enhancement

Voltage stability is the ability of a power system to sustain stable voltages at each bus within
acceptable level after being exposed to a disruption. It is represented by indices like the L index, which
has been introduced to evaluate the stability limit [19]. The L index is a quantitative measure of how
close a point is to the system stability limit. Reducing the value of the L index is very important in
power system planning and operations.

This function models the fuel cost and the L index maximum.

F10 = F3 + β3Lmax (22)

where β3 is a weighting factor.
The nodal admittance relates system voltages and currents as

Ibus = Ybus ×Vbus (23)

Equation (23) can be reformulated by separating the PQ bus—active and reactive power; and the
PV bus—active power and voltage magnitude.[

IL
IG

]
=

[
Y1 Y2

Y3 Y4

][
VL
VG

]
(24)

The L index is calculated by

Lj =

∣∣∣∣∣1− GN

∑
i=1

γji
Vi
Vj

∣∣∣∣∣ j = 1, 2, · · · , NL (25)

γji = −[Y1]
−1 × [Y2] (26)

where Y_1 and Y_2 are the system Y bus submatrices.

Lmax = max(Lj) j = 1, 2, · · · , nb (27)

2.1.11. Fuel Cost and Voltage Stability Enhancement during Contingency Condition

Transmission lines outages are used to replicate a contingency condition. This function models
both fuel cost and enhancement of voltage stability.

F11 = F3 + β4(max(Li)) (28)

where β4 is a weighting factor.
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2.1.12. Fuel Cost, Emission, Voltage Deviation, and Active Power Loss

This function models fuel cost, emission, voltage deviation, and active power loss.

F12 = F3 + β5F6 + β6

nL

∑
i=1
|1−VLi|+ β7F7 (29)

where β5, β6, and β7 are weighting factors.

2.2. Constraints

The OPF optimization problem should satisfy the following constraints:

(1) Active and reactive power balances

PGi − PDi =
n
∑

j=1
ViVj

(
Gijcosδij + Bijsinδij

)
i = 1, . . . ., n

QGi −QDi =
n
∑

j=1
ViVj

(
Gijsinδij − Bijcosδij

)
i = 1, . . . ., n

(30)

where the number of power system bus is represented by n. PGi, QGi, and PDi, QDi are active and
reactive power of generators and load, respectively, at the ith bus.

(2) The voltage magnitude of the power plant

Vmin
i ≤ Vi ≤ Vmax

i , i = 1, 2, . . . , nG (31)

where Vmin
i and Vmax

i are minimum and maximum limit of ith bus voltage of power plants Vi.

(3) Prohibited operating zones

There is a risk of machine or accessory failure when a power plant operates outside acceptable
ranges, as shown in Equations (32)–(41).

Pmin
Gi ≤ PGi ≤ Pl

Gi,1
Pu

Gi,k−1 ≤ PGi ≤ Pl
Gi,k

Pu
Gi,z ≤ PGi ≤ Pmax

Gi

k = 1, 2, . . . , z (32)

where Pl
Gi,k and Pu

Gi,k are lower and upper bounds of the kth POZ of ith unit. Pmin
Gi and Pmax

Gi are active
power boundaries of ith generator.

(4) Active and reactive power

Pmin
Gi ≤ PGi ≤ Pmax

Gi
Qmin

Gi ≤ QGi ≤ Qmax
Gi

, i = 1, 2, . . . , nG (33)

where Qmin
Gi and Qmax

Gi are boundaries’ reactive power of ith traditional generator.

(5) Phase shifter and transformer tap

PSmin
i ≤ PSi ≤ PSmax

i , i = 1, 2, . . . , Nphase (34)

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, 2, . . . , Ntap (35)

Tmin
i and Tmax

i are boundaries of ith tap changer transformer Ti, PSmin
i , and PSmax

i are boundaries
of ith phase shifter transformer PSi, and Ntap, Nphase, are the number of tap changer and installed
phase shifter to the network.
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(6) Shunt compensator
Qmin

c,i ≤ Qc,i ≤ Qmax
c,i i = 1, 2, . . . , Ncap (36)

where Qmin
c,i and Qmax

c,i are the ith shunt compensator Qc,i limits. Ncap represents the number of
capacitors linked to the network.

(7) Transmission line loading
|Si| ≤ Smax

i i = 1, 2, . . . , Nl (37)

where Smax
i is MVA’s maximum. Nl is the number of lines.

(8) Active power of WE
0 ≤ Pw,i ≤ Pw,r,i (38)

Each wind turbine is equipped with a squirrel cage induction generator modeled as PQ buses [44].

P2
w,i + Q2

w,i +
V2

ww,iQw,i

Xi
= 0 (39)

−V2
ww,i

2Xi
≤ Qw,i ≤ 0 (40)

where Xi is the sum of the leakage reactance of the stator and rotor of the ith wind turbine.
Vww,i and Qw,i represents the voltage and the reactive power of the associated bus of the ith
wind generator.

(9) Active power of photovoltaic
0 ≤ Ppv,i ≤ Ppv,r,i (41)

3. New Hybrid Optimization Algorithm

In this research, a new metaheuristic HIC-GWA is considered to solve twelve cases of simple
and multiobjective OPF problems. This approach is a combination of two algorithms: ICA and GWO.
Each of such optimization techniques, ICA and GWO, possesses certain specific heuristics to search
for the solution of a problem. Therefore, a collection of such abilities enhances the power of the
proposed metaheuristic.

3.1. Imperialist Competitive Algorithm (ICA)

The ICA is stimulated by the sociopolitical aspect of imperialistic competition between countries
in the same population. Countries can be colonies or imperialists. Powerful countries are selected to
be imperialists. Colonies are distributed among imperialists based on imperialist’s power. Empires are
formed with imperialist states and their colonies. Imperialistic competition between empires converge
to one imperialist state which represent the optimum point of the ICA [37–39].

3.1.1. Creation of Initial Empires

A country is usually represented by an Nvar-dimensional array of variables that should
be optimized.

country = [P1, P2, . . . , PN var] (42)

The cost of each country is inversely proportional to its power.
The cost function f is given by

cost = f (country) = f (P1, P2, . . . , PN var) (43)
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In the initialization process, the algorithm produces NCountry initial countries. A certain number
of empires, Nimp, are formed with the most powerful countries. The remaining countries, Ncol, become
colonies of the empires.

The cost of the nth imperialist is

Cn = cn − max
i {ci} (44)

The power of the nth imperialist is

pn =

∣∣∣∣∣∣ Cn

∑
Nimp
i=1 Ci

∣∣∣∣∣∣ (45)

The nth empire’s initial number of colonies is

NCn = round{pn × Ncol}

where Ncol is the total number of original colonies.

3.1.2. Assimilation

To absorb their colonies, the imperialist states use different sociopolitical axes to make colonies
move toward themselves. This movement can be modeled using different optimization axes. In
a two-dimensional problem, colonies are absorbed by the imperialist using language and culture.
Colonies will move toward the imperialist among these two axes. This acclimatization, modeled by
approaching the colonies to the imperialist, will continue until all colonies are fully assimilated. This
motion is represented by a uniform distribution:

x ∼ U(0, β× d) (46)

where β > 1. d represents the distance separating the colony to the imperialist state.
A random deviation θ is added to the direction of movement to increase the search space around

the imperialist. θ is represented by a uniform distribution.

θ ∼ U(−γ,+γ) (47)

where γ accommodates the fluctuation from the initial direction.

3.1.3. Revolution

Revolution is simulated to denote a shift in sociopolitical institutions that prohibits the
convergence of a country to a local minimum which increases the exploration of this approach.

3.1.4. Exchanging Positions of a Colony and the Imperialist

The colony and the imperialist countries will change positions if the colony reaches a position
with higher power than the imperialist.

3.1.5. Union of Empires

While moving toward the optimum solution, two imperialists may merge into one empire if they
are too close to each other. Their colonies become colonies of the new empire which take the position
of one of the two imperialists.
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3.1.6. Total Empire Power

An empire’s total power is highly correlated to the power of the imperialist country, but it is
slightly affected by the power of the colonies. An empire’s total cost is modeled as

TCn = Cost(imperialistn) + ξmean{Cost(colonies o f empiren)} (48)

where ξ is a positive small weight factor.

3.1.7. Imperialistic Competition

This competition is built on the total power of the empires. Empires try to take control of each
other’s colonies to expand their territory. Every empire will have the possibility of possessing colonies
that it is competing for. Powerful empires will control weaker colonies. The weakest colony of the
weakest empire will be selected in the initiation process of the competition. An empire’s possession
probability (PP) is proportional to the empire’s total power.

Empire’s normal total cost:
NTCn = TCn −maxi{TCi} (49)

Empire’s possession probability:

PPn =

∣∣∣∣∣∣ NTCn

∑
Nimp
i=1 NTCi

∣∣∣∣∣∣ (50)

The algorithm will stop after a predetermined number of iterations which represents maximum
number of decades.

3.2. Grey Wolf Optimizer (GWO)

The GWO is a conventional swarm intelligence algorithm stimulated by the leadership hierarchy
and hunting structure of grey wolves. This algorithm has been used in diverse complex problems
because of its simplicity and robustness. The wolf colony (Nw) is divided into four clusters: alpha (α),
beta (β), delta (δ), and omega (Ω). The hunting mechanism involves three main steps: searching and
approaching the prey, encircling and harassing the prey, and attacking the prey [40,41].

3.2.1. Social Hierarchy

The leaders α are mostly responsible for making decisions about hunting. They are considered as
the fittest solution. The second-best candidates are the β wolves, based on the democratic behavior
of the colony. Consequently, the δ wolves take place after the β wolves. The rest are assumed to
be the ωwolves. The optimization (hunting) process is guided by α, β, and δ, with the ω wolves
tracking them.

3.2.2. Encircling Prey

Hunting in groups is another compelling social behavior of grey wolves. A grey wolf can revise
its position neighboring the prey in any random place using the following equations [40]:

→
D =

∣∣∣∣→C ×→Xp(t)−
→
X(t)

∣∣∣∣ (51)

→
X(t + 1) =

→
Xp(t)−

→
A×

→
D (52)
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where
→
Xp represent the prey’s location vector,

→
X indicates the wolf’s location vector, t represents the

current iteration; and
→
A and

→
C are coefficient vectors:

→
A = 2

→
a ×→r1 −

→
a (53)

→
C = 2×→r2 (54)

where
→
r1 and

→
r2 are random vectors in [0, 1], and vector

→
a components vary from 2 to 0, linearly,

throughout the iterations.

3.2.3. Hunting

The α, β, and δ type wolves have better awareness about the possible prey’s position.
Consequently, the initial three best solutions are saved. The other search agents should update
their locations according to the position of the leading search agents [40] using Equations (55)–(61).

→
Dα =

∣∣∣∣→C1 ×
→
Xα −

→
X
∣∣∣∣ (55)

→
Dβ =

∣∣∣∣→C2 ×
→
Xβ −

→
X
∣∣∣∣ (56)

→
Dδ =

∣∣∣∣→C3 ×
→
Xδ −

→
X
∣∣∣∣ (57)

→
X1 =

→
Xα −

→
A1 × (

→
Dα) (58)

→
X2 =

→
Xβ −

→
A2 × (

→
Dβ) (59)

→
X3 =

→
Xδ −

→
A3 × (

→
Dδ) (60)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(61)

3.2.4. Attacking Prey (Exploitation)

When attacking the prey, the value of
→
a is reduced, which decreases the variation of

→
A. If |A| < 1,

then, the next location of the search agent will be closer to the prey.

3.2.5. Search for Prey (Exploration)

The search is guided according to the α, β, and δ type grey wolves’ positions. They go in different
directions to search for prey, and gather again to attack it. This divergence is modeled using |A| > 1,
which allows the GWO to search all over the space by forcing the search agent to get away from the

prey. The
→
C vector is another constituent of the GWO that helps exploration. It contains random values

between 0 and 2 inclusive. This parameter provides random weights for prey to emphasize (C ≥ 1) or
deemphasize (C < 1) the effect of prey in determining the distance in Equation (51). Consequently, the
GWO exhibits a random behavior during optimization to avoid local optima and promote exploration.

The GWO intentionally requires
→
C to provide random values to accentuate exploitation/exploration

during initial and final iterations. This helps if there is a stagnation of the local optima. C is not linearly
decreased in comparison to A.
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3.3. Hybrid IC-GWA Optimization Approach

Hybrid algorithms are created to increase the performance of an optimization algorithm. They
combine the advantages of two or more algorithms. The HIC-GWA is a combination of two
evolutionary algorithms where the GWO is used to enhance the exploration ability of the ICA as
shown in Figure 1.
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Figure 1. Flowchart of the proposed hybrid imperialist competitive and grey wolf algorithm
(HIC-GWA).

In this proposed approach, ICA is initialized first to solve the OPF optimization problem. The
assimilation and revolution of colonies, imperialist competition, elimination, and uniting empires are
performed. The best solution of ICA is calculated as an initial condition of the GWA. The solution of
the GWA is saved as the best value if it is less than the ICA’s solution. The simulation continue until
the stop condition is satisfied. The converged answer is achieved after termination of the algorithm.

The following steps show how to use the HIC-GWA to solve the OPF problem:

i. The power system data is specified. The HIC-GWA parameters are determined.
ii. Initialize the countries randomly, calculate their costs, and use assimilation.
iii. Revolution.
iv. Exchange positions between imperialist and colony if it has a lower cost.
v. Unite similar empires.
vi. Calculate the total cost of all empires.
vii. Imperialist competition.
viii. Discard powerless empires.
ix. Use solution obtained by ICA as initial condition for GWA.
x. The lower solution between ICA and GWA is saved as best solution.
xi. Go to step (ii) if the stop condition is not satisfied, otherwise, finish simulation.
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4. Simulation Results

The HIC-GWA has been applied on the IEEE 30 and 118 bus power systems to solve 12 different
cases of OPF problems. The maximum number of iterations is 500 for IEEE 118 bus power system, and
100 for the IEEE 30 bus power systems. Power systems parameters are given in Table 1. The setting of
the proposed HIC-GWA approach can be found in Table 2. MATLAB 8.3 (R2014a) has been used to
implement simulations on a personal computer with i7 CPU 3.0 GHz 8.0 GB RAM [45,46].

Table 1. Power system’s parameters.

Characteristics IEEE 30 IEEE 118

Buses 30 [47] 118 [48]
Branches 41 186

Load voltage 24 [0.95, 1.05] [0.94, 1.06]
Control variables (Nvar) 24 130

Table 2. Setting of the proposed HIC-GWA approach.

ICA Parameters GWA
Parameters

ξ
NCountry β

Nimp Nw
30 bus 118 bus 30 bus 118 bus 30 bus 118 bus

1.02 15 100 0.90 5 20 5 10

The initial population is represented by Ncountry. Each population contains one vector with Nvar

components, including bus voltage and active power of the power plant, transformer tap changers,
and shunt power injection compensator. The parameter Nvar, given in Table 1 is different for each case.

Solutions using the proposed approach will be compared with recently published OPF solutions
using different optimization methods and objective functions shown in Table 3.

Table 3. Recently published approaches to solve OPF problems.

Acronym Reference Simple Objective Multiobjective Fuel Cost Emission Ploss VD L Index

MSA [19] 3 3 3 3 3 3 3

MPSO [20] 3 3 3 3 3 3 3

MDE [21] 3 3 3 3 3 3 3

MFO [22] 3 3 3 3 3 3 3

FPA [23] 3 3 3 3 3 3 3

ARCBBO [24] 3 3 3 3 3 3

RCBBO [24] 3 3 3 3 3 3

GWO [25] 3 3 3 3

DE [25] 3 3 3 3

MGBICA [26] 3 3 3 3

ABC [27] 3 3 3 3 3 3 3

HSFLA-SA [28] 3 3 3 3 3 3

LTLBO [29] 3 3 3 3 3

TLBO [30] 3 3 3 3 3

HMPSO-SFLA [31] 3 3 3 3

PSO [31] 3 3 3 3 3

GABC [32] 3 3 3 3 3 3

DSA [33] 3 3 3 3 3 3 3

EEA [34] 3 3 3 3 3

EGA [34] 3 3 3 3 3

ALC-PSO [35] 3 3 3 3

4.1. IEEE 30 Bus Test System

This power test system is used to exhibit the efficiency of the HIC-GWA. The details for busses
and line data are shown in [43]. The system active and reactive power are 283.4 MW and 126.2 MVAR.
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4.1.1. Simple Objective OPF

The first five case studies have been used to solve simple objective OPF problems.

Case 1: Fuel Cost

This first single objective function considers minimizing the total fuel cost of power generation.
It is modeled by the quadratic cost curve given in Equation (14). Simulation results, illustrated in
Table 4, show that the fuel cost using the HIC-GWA is 798.20 ($/h).

Table 4. Optimal solution of IEEE 30 bus power system for case studies 1 to 5.

Solutions Case 1 Case 2 Case 3 Case4 Case 5

Fuel cost ($/h) 798.20 645.85 902.25 959.54 1000.30
Emission (t/h) 0.37 0.28 0.45 0.20 0.21

Ploss (MW) 8.86 6.59 11.18 2.67 2.61
VD (p.u.) 1.15 1.25 0.96 1.68 1.41
L index 0.13 0.13 0.17 0.13 0.12

Compared with solutions from state-of-the-art existing optimization approaches in Table 5, the
proposed HIC-GWA has significantly reduced the total fuel cost.

Table 5. Comparison of HIC-GWA with the literature for case study 1.

Algorithm Fuel Cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.) L Index

MSA 800.51 0.37 9.03 0.90 0.14
MPSO 800.52 0.37 9.04 0.90 0.14
MDE 800.84 0.36 808365.00 0.78 0.14
MFO 800.69 0.37 9.15 0.76 0.14
FPA 802.80 0.36 9.54 0.37 0.15

ARCBO 800.52 0.37 9.03 0.89 0.14
HSFLA-SA 801.79
HIC-GWA 798.20 0.37 8.86 1.15 0.13

The convergence curve of the total cost ($/h) for case 1 is shown in Figure 2. Note that it converged
in less than 30 iterations.
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Figure 2. Total cost convergence curve during iterations for case 1.

Case 2: Piecewise quadratic fuel cost

Thermal generators produce electricity by burning fuels such as coal, petroleum, or natural
gas. The model for the fuel cost curve is given by Equation (15). Simulation results, illustrated in
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Table 4, show that the fuel cost using the proposed approach is 645.85 ($/h). Compared with existing
optimization methods in Table 6, HIC-GWA has significantly reduced the total fuel cost.

Table 6. Comparison of HIC-GWA with the literature for case study 2.

Algorithm Fuel Cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.) L Index

MSA 646.84 0.28 6.80 0.84 0.14
MPSO 646.73 0.28 6.80 0.77 0.14
MDE 650.28 0.28 6.98 0.58 0.14
MFO 649.27 0.28 7.29 0.47 0.14
FPA 651.38 0.28 7.24 0.31 0.15

LTLBO 647.43 0.28 6.93 0.89
TLBO 647.92 7.11 1.42 0.12

HIC-GWA 645.85 0.28 6.59 1.25 0.13

In cases 1 and 2, the proposed metaheuristic has a better convergence than recently published
optimization methods.

Case 3: Piecewise quadratic fuel cost with valve point loading

The valve point loading effect is included in the cost function of Equation (17). Simulation results,
illustrated in Table 4, show that the fuel cost using HIC-GWA is 902.25 ($/h). Compared with existing
optimization methods in Table 7, HIC-GWA has significantly reduced the fuel cost in this case.

Table 7. Comparison of HIC-GWA with the literature for case study 3.

Algorithm Fuel Cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.) L Index

MSA 930.74 0.43 13.14 0.45 0.16
MPSO 952.30 0.30 7.30 0.72 0.14
MDE 930.94 0.43 12.73 0.45 0.16
MFO 930.72 0.44 13.18 0.47 0.16
FPA 931.75 0.43 12.11 0.47 0.15

HIC-GWA 902.25 0.45 11.18 0.96 0.17

Case 4: Emission

The objective, in this case, is to reduce the emission level of important air pollutants like NOx and
SOx, using the emission function described in Equation (18). Simulation results, illustrated in Table 4,
show that the emission using HIC-GWA is 0.2009 (ton/h). Compared with existing optimization
methods in Table 8, HIC-GWA has significantly reduced the emission level.

Table 8. Comparison of HIC-GWA with the literature for case study 4.

Algorithm Fuel Cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.) L Index

MSA 944.50 0.2048 3.24 0.87 0.14
MPSO 879.95 0.2325 7.05 0.57 0.14
MDE 927.81 0.2093 4.85 0.40 0.15
MFO 945.46 0.2049 3.43 0.71 0.14
FPA 948.95 0.2052 4.49 0.43 0.14

ARCBO 945.16 0.2048 3.26 0.86 0.14
MGBICA 942.84 0.2048
GBICA 944.65 0.2049

ABC 944.44 0.2048 3.25 0.85 0.14
DSA 944.41 0.2583 3.24 0.13

HMPSO-SFLA 0.2052
HIC-GWA 959.54 0.2009 2.67 1.68 0.13
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Case 5: Active power loss

To reduce transmission lines active power loss, we use the objective function given in Equation (19).
Simulation results, illustrated in Table 4, show that the power loss using HIC-GWA is 2.61 (MW).
Compared with existing optimization methods in Table 9, HIC-GWA has significantly reduced the
power loss.

Table 9. Comparison of HIC-GWA solutions with the literature for case study 5.

Algorithm Fuel Cost ($/h) Emission (t/h) Ploss (MW) VD (p.u.) L Index

MSA 967.66 0.2073 3.10 0.89 0.14
MPSO 967.65 0.2073 3.10 0.96 0.14
MDE 967.65 0.2073 3.16 0.77 0.14
MFO 967.68 0.2073 3.11 0.92 0.14
FPA 967.11 0.2076 6.57 0.39 0.14

ARCBO 967.66 0.2073 3.10 0.89 0.14
GWO 968.38 3.41

DE 968.23 3.38
ABC 967.68 0.2073 3.11 0.90 0.14
DSA 967.65 0.2083 3.09 0.13
EEA 952.38 3.28
EGA 967.93 3.24

ALC-PSO 967.77 3.17
HIC-GWA 1000.30 0.2080 2.61 1.41 0.12

In cases 3, 4, and 5, the proposed metaheuristic showed a better exploration than recently
published optimization methods that appear to be stuck at a local minimum.

4.1.2. Multiobjective OPF

In the next five cases, we used the proposed metaheuristics to find better solutions for
multiobjective OPF problems. Table 10 summarizes the best solutions of the simulation results using
the HIC-GWA approach for cases 6–10.

Table 10. Optimal solution of IEEE 30 bus power system for case studies 6 to 10.

Solutions Case 6 Case 7 Case 8 Case 9 Case 10

Fuel cost ($/h) 856.99 802.45 797.80 802.00 817.59
Emission (t/h) 0.23 0.36 0.37 0.36 0.27

Ploss (MW) 4.04 9.95 8.75 9.67 5.29
VD (p.u.) 1.78 0.10 1.98 1.97 0.23
L index 0.12 0.13 0.11 0.11 0.15

Case 6: Fuel cost and active power losses

Cases 1 and 5 have been combined to reduce the fuel cost and the active power losses using the
multiobjective function given in Equation (20). Simulation results show that the fuel cost and power
loss using HIC-GWA are 856.99 ($/h) and 4.04 (MW). Compared with MSA, MDE, MPSO, FPA, and
MFO approaches in Table 11, HIC-GWA has significantly reduced the fuel cost and power loss.

Table 11. HIC-GWA solutions compared with the literature for case 6.

Solutions MSA MDE MPSO FPA MFO HIC-GWA

Fuel cost ($/h) 859.19 868.71 859.58 855.27 858.58 856.99
Emission (t/h) 0.23 0.23 0.23 0.23 0.23 0.23

Ploss (MW) 4.54 4.39 4.54 4.80 4.58 4.04
VD (p.u.) 0.93 0.88 0.95 1.01 0.90 1.78
L index 0.14 0.14 0.14 0.14 0.14 0.12

Total cost 1040.81 1044.05 1041.22 1055.72 1041.67 1018.45
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Case 7: Fuel cost and voltage deviation

Voltage profile management is essential to ensure system security. Voltage profile improvement
reduces the deviation of load bus voltage. A multiobjective function is presented in Equation (21)
to reduce the voltage deviations and fuel cost simultaneously. Simulation results show that the fuel
cost and voltage deviations using the proposed approach are 802.45 ($/h) and 0.10 (p.u), respectively.
Compared with MSA, MDE, MPSO, FPA, and MFO approaches in Table 12, HIC-GWA has significantly
reduced the fuel cost and voltage deviations.

Table 12. Comparison of the proposed approach with different approaches for this case.

Solutions MSA MDE MPSO FPA MFO HIC-GWA

Fuel cost ($/h) 803.31 803.21 803.98 803.66 803.79 802.45
Emission (t/h) 0.36 0.36 0.36 0.37 0.36 0.36

Ploss (MW) 9.72 9.60 9.92 9.93 9.87 9.95
VD (p.u.) 0.11 0.13 0.12 0.14 0.11 0.10
L index 0.15 0.15 0.15 0.15 0.15 0.13

Total cost 814.15 815.86 816.00 817.32 814.35 812.05

Case 8: Fuel cost with voltage stability improvement

The L index describes the system stability by measuring the distance of the actual state of the
system to the stability limit. We are using the objective function given in Equation (22) to reduce both
fuel cost and voltage stability. Simulation results, illustrated in Table 13, show that the fuel cost and L
index using the proposed approach are 797.80 ($/h) and 0.11 (p.u), respectively. Compared with MSA,
MDE, MPSO, FPA, and MFO approaches in Table 13, HIC-GWA has significantly reduced the fuel cost
and L index.

Table 13. Comparison of the proposed approach with different approaches for case 8.

Solutions MSA MDE MPSO FPA MFO HIC-GWA

Fuel cost ($/h) 801.22 802.10 801.70 801.15 801.67 797.80
Emission (t/h) 0.36 0.35 0.36 0.37 0.34 0.37

Ploss (MW) 8.98 9.06 9.20 9.32 8.56 8.75
VD (p.u.) 0.93 0.89 0.83 0.88 0.84 1.98
L index 0.14 0.14 0.14 0.14 0.14 0.11

Total cost 814.94 815.84 815.44 814.91 815.43 808.38

Case 9: Fuel cost with voltage stability improvement during contingency condition

We consider the previous case with disruption of line (2–6) to simulate N - 1 contingency. Best
solutions for the fuel cost and the L index using HIC-GWA are 802.00 ($/h) and 0.11 (p.u), respectively.
Compared with MSA, MDE, MPSO, FPA, and MFO approaches illustrated in Table 14, HIC-GWA has
significantly reduced the fuel cost and L index during contingency condition.

Table 14. Comparison of the proposed approach with different approaches for case 9.

Solutions MSA MDE MPSO FPA MFO HIC-GWA

Fuel cost ($/h) 804.48 806.67 807.65 805.54 804.56 802.00
Emission (t/h) 0.36 0.37 0.36 0.36 0.36 0.36

Ploss (MW) 9.95 10.72 10.76 10.18 9.95 9.67
VD (p.u.) 0.92 0.57 0.43 0.45 0.91 1.97
L index 0.14 0.14 0.14 0.14 0.14 0.11

Total cost 832.32 834.63 835.75 833.84 832.43 823.06
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Case 10: Fuel cost, voltage deviation, emission, and power loss

The multiobjective function defined by Equation (24) combines three previous cases: 4, 5, and 7 to
minimize fuel cost, voltage deviation, emission, and power loss simultaneously. Simulation results,
illustrated in Table 15, show that HIC-GWA has significantly reduced the fuel cost, emission, power
loss, and voltage deviation compared with MSA, MDE, MPSO, FPA, and MFO approaches

Table 15. Comparison of the proposed approach with different approaches for case 10 of IEEE 30.

Solutions MSA MDE MPSO FPA MFO HIC-GWA

Fuel cost ($/h) 830.6 829.1 833.7 835.4 830.9 817.6
Emission (t/h) 0.3 0.3 0.3 0.2 0.3 0.3

Ploss (MW) 5.6 6.1 6.5 5.5 5.6 5.3
VD (p.u.) 0.3 0.3 0.2 0.5 0.3 0.2
L index 1.5 0.1 0.1 0.1 0.1 0.1

Total cost 965.3 973.6 986.0 971.9 965.8 944.0

In cases 6–10, the proposed metaheuristic showed a better exploration than recently published
optimization methods that appear to be stuck at a local minimum.

The total cost convergence curve for case 10 is displayed in Figure 3. The HIC-GWA approach
converged in less than 50 iterations.Energies 2018, 11, x FOR PEER REVIEW  19 of 24 
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Convergence curves of the fuel cost, voltage deviation, power loss, and emission are shown in
Figure 4.
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4.2. The IEEE 118 Bus Power System

The IEEE 118 bus test system [44], has been used for the next two cases to confirm the effectiveness
of the HIC-GWA approach. The active and reactive power demand are 4242 MW and 1439 MVAR.

Case 11: Fuel cost

The function modeled by the quadratic cost curve given in Equation (14) is considered to minimize
the total fuel cost of power generation. The simulation results, illustrated in Table 16, show that the
HIC-GWA has significantly reduced the fuel cost compared with MSA, MDE, MPSO, FPA, and
MFO approaches.

Table 16. Comparison of HIC-GWA results with the literature for case study 11.

Solutions MSA MDE MPSO FPA MFO HIC-GWA

Fuel cost ($/h) 129640.72 130444.57 132039.21 129688.72 129708.08 129633.70
Ploss (MW) 73.26 71.64 112.85 74.32 74.71 76.80
VD (p.u.) 3.07 1.31 1.15 2.54 2.38 3.13
L index 0.06 0.07 0.07 0.06 0.06 0.06

In this case, the proposed metaheuristic has a better convergence than recently published
optimization methods.

Case 12: Fuel cost with renewable energy sources (Wind/PV)

The objective in this case is to use the HIC-GWA to minimize the fuel cost (F1), wind cost (F2),
and PV cost (F3) for a system that includes renewable sources like WE and PV. The conventional power
plants 12, 31, 66, 72, and 100 are replaced by five wind power units, and the conventional power plants
34, 36, 46, and 62 are replaced by four PV units. The simulation results are illustrated in Table 17.

Table 17. Optimal solution of IEEE 118 bus power system for case study 12.

Fuel cost ($/h) 112,545.51
Wind cost ($/h) 5340.42

PV cost ($/h) 4211.38
P loss(MW) 76.64
VD (p.u.) 3.13
L index 0.06

The total cost convergence curve for case 12 is presented in Figure 5. The proposed HIC-GWA
approach converged in less than 100 iterations.

Energies 2018, 11, x FOR PEER REVIEW  20 of 24 

 

In this case, the proposed metaheuristic has a better convergence than recently published 
optimization methods. 

Case 12: Fuel cost with renewable energy sources (Wind/PV) 

The objective in this case is to use the HIC-GWA to minimize the fuel cost  (𝐹 ), wind cost (𝐹 ), 
and PV cost (𝐹 ) for a system that includes renewable sources like WE and PV. The conventional 
power plants 12, 31, 66, 72, and 100 are replaced by five wind power units, and the conventional 
power plants 34, 36, 46, and 62 are replaced by four PV units. The simulation results are illustrated 
in Table 17. 

Table 17. Optimal solution of IEEE 118 bus power system for case study 12. 

Fuel cost ($/h) 112,545.51 
Wind cost ($/h) 5340.42 

PV cost ($/h) 4211.38 𝑃  (MW) 76.64 
VD (p.u.) 3.13 
L index 0.06 

The total cost convergence curve for case 12 is presented in Figure 5. The proposed HIC-GWA 
approach converged in less than 100 iterations. 

 
Figure 5. Total cost convergence curve for case 12. 

4.3. HIC-GWA Robustness Analysis 

Robustness analysis, which is a non-empirical form of confirmation, is an indispensable 
procedure in studying complex phenomena. A sensitivity analysis for case studies 1 and 11 has been 
performed to evaluate the robustness of the considered metaheuristic. Each parameter of the HIC-
GWA has been perturbed by changing the values up and down. Likewise, optimization parameters 
values have been changed also to check the global effect of parameter’s variations on the solution of 
the OPF problem. The equivalent Pareto solutions are illustrated in Table 18. The deviation ratio 
between normal and perturbed solutions is calculated using the following equation: 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (%) = 𝑁𝑜𝑟𝑚𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 × 100, (62) 

Small deviations affirm the robustness of the HIC-GWA to variation of parameters in solving 
OPF problems. 
  

0 100 200 300 400 500 1.1 

1.15 

1.2 

1.25 

1.3 

1.35 
× 105

Iteration 

To
ta

l C
os

t (
$/

h)
 

Figure 5. Total cost convergence curve for case 12.



Energies 2018, 11, 2891 20 of 23

4.3. HIC-GWA Robustness Analysis

Robustness analysis, which is a non-empirical form of confirmation, is an indispensable procedure
in studying complex phenomena. A sensitivity analysis for case studies 1 and 11 has been performed
to evaluate the robustness of the considered metaheuristic. Each parameter of the HIC-GWA has been
perturbed by changing the values up and down. Likewise, optimization parameters values have been
changed also to check the global effect of parameter’s variations on the solution of the OPF problem.
The equivalent Pareto solutions are illustrated in Table 18. The deviation ratio between normal and
perturbed solutions is calculated using the following equation:

Deviation (%) =
Normal Solution− Perturbed Solution

Normal Solution
× 100, (62)

Table 18. Sensitivity analysis for IEEE 30 bus and 118 bus power systems.

Parameters
30 Bus Power System

Parameters
118 Bus Power System

Cost ($/h) Deviation (%) Cost ($/h) Deviation (%)

Normal Solution 798.20 0.0 Normal Solution 129,633.70 0.0
NCountry = 15 + 5 797.38 +0.1017 NCountry = 200 + 30 129,631.93 +0.00137
NCountry = 15 − 5 799.07 −0.1102 NCountry = 200 − 30 129,636.79 −0.00238

Nimp = 5 + 2 797.33 +0.1082 Nimpw = 40 + 10 129,632.44 +0.00098
Nimp = 5 − 2 797.00 +0.1491 Nimpw = 40 − 10 129,630.66 +0.00235
Nw = 5 + 2 797.12 +0.1341 Nw = 10 + 3 129,631.77 +0.00149
Nw = 5 − 2 798.98 −0.0984 Nw = 10 − 3 129,634.92 −0.00094

All (up) 797.06 +0.1420 All (up) 129,630.94 +0.00213
All (Down) 799.08 −0.1110 All (Down) 129,645.84 −0.00936

Small deviations affirm the robustness of the HIC-GWA to variation of parameters in solving
OPF problems.

To confirm the robustness of the HIC-GWA, we compare best and worst fuel cost averages to
recently published OPF optimization methods in Table 19. The proposed HIC-GWA has consistently
better solutions over 30 trial runs.

Table 19. Comparisons of the results obtained for case 2.

Algorithm Best Cost ($/h) Worst Cost ($/h) Average Cost ($/h)

MSA 646.84 648.03 646.86
MPSO 646.73 656.23 649.86
MDE 650.28 653.40 651.26
MFO 649.27 650.62 649.89
FPA 651.38 654.33 652.96

LTLBO 647.43 647.86 647.47
ABC 649.09 659.77 654.08

GABC 647.03 647.12 647.08
HIC-GWA 645.85 647.03 645.87

Table 20 shows the convergence speed of the HIC-GWA compared to recently published optimization
methods. With 14.34 (s), HIC-GWA is second fastest to MFO by one hundredth of a second.

Table 20. Case 2 simulation time.

Algorithm Time (s)

MICA-TLA 30.74
LTLBO 22.78

HMPSO-SFLA 19.06
MPSO 16.05
MDE 15.63
MSA 14.91
FPA 14.79

HIC-GWA 14.34
MFO 14.33
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5. Conclusions

A novel hybrid optimization method combining imperialist competitive and grey wolf algorithm,
HIC-GWA, has been proposed, developed, and applied successfully to solve twelve different test
cases of single and multiobjective OPF problems in two IEEE test power systems with a mixture of
wind energy and photovoltaic units. The results show that this metaheuristic is found to be very
effective for large-scale applications, due to fast convergence and very few chances to get stuck at local
minima. Analysis of the obtained solutions, along with a comparative study with recently published
OPF optimization algorithms, proved the validity, effectiveness, and robustness of the HIC-GWA in
precisely providing a set of stable optimal solutions, computed under realistic conditions, for a hybrid
power system. This is very important in managing modern power systems, which are incorporating
an ever-increased number of alternative energy sources. The proposed metaheuristic outperformed
current well known and powerful algorithms in the literature, which confirms its superiority and
potential to find valid and accurate solutions for multiobjective optimization. Indeed, the proposed
paradigm may be used as a tool to answer many specific features of large-scale complex systems in
general, thereby motivating further studies.
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Nomenclature

Cd,i direct cost of WE and PV($/h)
Cue,i underestimating penalty cost of ith WE and PV ($/h)
Coe,i overestimating penalty cost of ith WE and PV ($/h)
COSTi total cost of ith WE and PV ($/h)
dw,i direct cost coefficient of WE and PV ($/MW)
Kue,i underestimating coefficient cost of ith WE and PV ($/MW)
Koe,i overestimating coefficients cost of ithWE and PV ($/MW)
Pw,i power of the ith WE (MW)
Ppv,i power of the ith PV (MW)
Pw,r,i rated power of the ith WE (MW)
Ppv,r,i rated power of the ith PV(MW)
nw number of WEs
nv number of PVs
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