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Abstract: This paper proposes a revaluation of the Brazilian wind energy policy framework and the
energy auction requirements. The proposed model deals with the four major issues associated with the
wind policy framework that are: long-term wind speed sampling, wind speed forecasting reliability,
energy commercialization, and the wind farm profitability. Brazilian wind policy, cross-checked
against other countries policies, showed to be too restrictive and outdated. This paper proposes its
renewal, through the adoption of international standards by Brazilian policy-makers, reducing the
wind time sampling necessary to implement wind farms. To support such a policy change, a new
wind forecasting method is designed. The method is based on fuzzy time series shaped with a
statistical significance approach. It can be used to forecast wind behavior, by drawing the most-likely
wind energy generation intervals given a confidence degree. The proposed method is useful to
evaluate a wind farm profitability and design the biding strategy in auctions.

Keywords: energy policy-framework; wind energy; renewable energy; energy auctions; forecasting;
electricity market; fuzzy time series

1. Introduction

1.1. Motivation

Brazilian government aims at installing 17GW of new wind generation capacity by 2024 [1].
This represents a 10.9% expansion in the Brazilian energy matrix, and it is sufficient to power supply
18 million residences [2]. New technologies available in last energy auctions have been forcing a sharp
negative goodwill in energy prices. Voltalia SA won the 2018 first Brazilian wind energy auction,
offering R$96.60/MWh (US$29.82) [3], a 400% reduction and accounting for R$402.30/MWh actual
Brazilian prices [4]. It means that, for each year in advance this energy is available, the Brazilians save
up to R$45,524,844,000.00, or US$14.05 billion. By adopting international regulations in Brazil, it makes
possible to double that number, and make the energy available two years in advance. These significant
savings shed light on this paper’s investigation. Brazilian wind notices so far are based on a Brazilian
self-regulation, and demand a three years time wind measurements to afford the energy generation.
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This aims at ensuring the energy supply, but nowadays new techniques could assure the same, saving
time and attracting investments. Notwithstanding, the wind stochastic component is a challenge.
Authors in [5,6] highlights the need for new and good quality forecasting methods to deal with this
component in the wind energy integration to any energy matrix. Hence, this paper proposes changes in
the wind energy policy and some methods to support these changes, providing a confident forecasting
in a shorter time, fostering the wind energy growth in Brazil, and speeding up the reduction of
energy prices.

1.2. The Literature Review

Brazilian renewable energy market growth depends strongly on the policy-makers [7]. In fact,
this is a worldwide issue. Sen [8] states that renewables growth could be as fast as the policy allows,
and the market is ready to shift in that direction; provided that government and entrepreneurs could
reach an agreement that fits in renewables.

Other issues also block the renewables growth, such as: capital demand and operation costs,
policy, site choice, external benefits, cost grid and time to grid integrations; causing economic, technical,
infrastructure, market financial, regulatory and administrative barriers. A good representation of this
barriers could be found in [9]. However, the key issue is that the energy policy initiatives should be
shaped to break barriers that debar investments from occurring, leading to the market reliability and
renewable growth [10].

Wind energy has one of the most prominent growing among the renewables, since its worldwide
abundant and fuel free [11]. Differing from traditional sources, subdued on oil prices volatility or even
renewables like hydroelectric, that is penalized by a trade-off between water for human consumption,
agriculture, and energy generation. Altogether, new wind technologies bring wind energy to one of
the lowest energy production prices [12]. Onshore wind energy, in particular, is cheaper than many
other renewables [11].

The wind seasonality has also a beneficial complementarity behavior along hydroelectricity,
making it possible to cheaply layup water in hydroelectric reservoirs when the wind plant is producing
and later using this water to supply, and tackle the demand [13]. Since the country growth depends on
its energy resources, the introduction of a renewable, not fossil-fuel dependent, and cheaper energy,
could boost the national economy, saving billions in electricity fees. The European Wind Energy
Association [11], for example, states that by 2020 the wind energy sector is expected to generates
520,000 jobs and e 32 billion to the European Union (EU) economy.

The report [14] states the regulatory framework for wind energy growth in the EU member
states, highlighting the challenges and also states the growth level expected till 2022. As reported,
many countries are not expected to reach the stated level due to their policy bureaucracy to have the
implementation approvals. That is also strengthened in [15].

Actual main barriers faced to increase the number of wind energy sites are reported in [14],
and they are mainly concerned with bureaucracy, political and economic framework, transparency,
and market structure. Countries outside the EU face similar issues, as reported by [16]. The policy-
frameworks also remain as an employment key driver. Thus, a robust policy-framework could foster
the wind industry, and a lame one disassembles it all [17].

Brazil has three main stakeholders driving its policy: the Ministry of Mining and Energy (MME),
the Energy Research Company (EPE) and the National Electric Energy Agency (ANEEL). They define
how much, from which kind, and when the energy is going to be hired. They also drive the auctions to
hire this energy. The agents’ competition throughout the auctions defines the energy price and the
amount hired. Wind farms joining these auctions must gather a row of requirements addressed by
ANEEL, MME, and EPE policy-framework. Some are overly rigid, for instance, the wind sampling
time. The EPE [1] draws the line in three years of anemometric measurements to be held on wind farm
building candidate sites. Also there could not be a rate of missing data higher than 10%, or missing for
30 consecutive days. The ANEEL agrees with the period and the MME enhances this statement in [18],
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laying down that it is necessary at least three years of sampling. These samples are used to address
the farm viability, evaluate how much energy it will generate, and are required as a prior condition to
build the farm.

These three years lag period is a limitation that affects the wind farm profitability and even
its feasibility as an investment. For instance, the Brazilian inflation rate in 2015 was 10.67% and
the accumulated one in the last three years was 21.21% [19]. These high rates make harder for the
entrepreneurs to wait three years to analyze its feasibility, and they could decide to invest in less
bureaucratic markets.

In [20] it was pointed out IEC 61400-1, IEC 61400-12, MEASTNET and TG 6, as the most commonly
used standards for performing and evaluating wind measurement and wind potential energy yields.
The international standard IEC 61400 [21] lays down that it is necessary one year of wind speed
sampling. That is two years less than the EPE and the MME instructions. By adopting this measurement
time, the cost invested to build a Brazilian wind farm could be reduced by 15%, according to the
Brazilian actual inflation rate [19]. That value could be even higher if accounting for the market
competition and the final consumers. Both are benefited having this cheap energy available two years
in advance. Drawing a comparison, this two years reduction in the approval time is enough time to
build a complete wind farm. In [20] it was pointed out in between two and three years, for all the
process to plan, project and build a mid-size wind farm.

Hence, it could be inferred that the Brazilian wind framework is less competitive than other
markets adopting international standards as IEC 61400 [21], which is adopted in the USA, Germany
through the version DIN EN 61400-12-1 [22], UK through BS EN 61400-12-1:2017 [23] and India [24],
for instance. This statement is strengthened by the world ranking in wind power installed capacity,
whose the top six countries are China, EUA, Germany, India, Spain, and the UK, respectively [25]. All,
except China, adopted the IEC 61400.

The wind stochastic component casts an imprecision degree in any forecasting. That component
is a real challenge to be dealt with in the wind energy integration to any electric grid [5]. These authors
emphasize stronger the need for new and good quality forecasting methods. The Brazilian policy
adopts long-term metering as the approach to deal with this imprecision. However, improved wind
forecasting approaches can be a more effective way to overcome and represent this imprecision.
Authors in [26] reinforces this statement, pointing out to an accurate wind power forecasting method
as the major contribution for a reliable large-scale wind power system. In this regard, many wind
forecasting methods were developed [27].

The wind forecasting schemes could be classified into deterministic approaches, statistical or
hybrid. In [28] it was reviewed the most popular forecasting techniques, highlighting Artificial Neural
Network (ANN), Autoregressive Integrated Moving Average (ARIMA), Support Vector Machines
(SVM), Case-Based Reasoning (CBR), Fuzzy time series (FTS), Grey prediction model, Moving average
and exponential smoothing (MA & ES), k-Nearest Neighbor prediction method (kNN) and Hybrid
models. Each of them owns a particular advantage and disadvantage. Notwithstanding, a 100%
accuracy time series forecasting may not be possible, but the forecasting accuracy and processing
speed can be enhanced.

The wind characteristics cannot be described accurately, having an intrinsic imprecision and
incomplete knowledge on it. Purely mathematical or statistical models do not deal well with imprecise
knowledge, and therefore their accuracies are below the satisfactory levels in these cases [29]. Hence,
Fuzzy Time Series (FTS) become a good candidate to resolve forecasting problems since they are based
on uncertain and imprecise information pertaining time series data. They are also suitable to represent
linguistic variables such as Temp = [low, medium, high], and thus, can represent qualitative inputs,
and numeric ones at the same time. For example, a specialist advice, or a qualitative index.

Wind power predictions are commonly provided in point forecasts, which correspond to a single
value for each look ahead [30]. As an advantage, this approach is easier to understand, however it
is less representative, since it represents only the most-likely outcome, overlooking the most-likely
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outcome region. Interval forecasting, as proposed in [31], are rarer in the literature, but allows an
insightful understanding of the possible forecasting area.

In short, the literature review disclosed the benefits of wind energy showing that it is cheap [4],
abundant [11], and renewable [12]. It also highlighted its challenges such as the stochastic behavior [13],
its energy grid integration [6], and the need for good quality forecasting methods [5]. However,
the literature did not reveal any proposal to change the actual Brazilian wind policy in such a way to
reduce the wind power plants implementation time. This is an unsolved issue in the current body of
knowledge and that is addressed in this study. This work aims at filling this gap, bringing the wind
energy benefits in a shorter time to the Brazilian market, and making it competitive worldwide.

Given the above arguments, this paper proposals for the Brazilian wind policy are: adopting
international standards such that IEC 61400, which are less restrictive than Brazilian policy-makers
standards, and reduce the sample time duration in wind sites to obtain building approvals. Section 2
develops this idea, proposing an improved wind forecast approach to enhance the proposed changes
in the Brazilian energy policy.

1.3. The Main Contributions

The paper enhances the literature in two main aspects: proposing an improvement in the Brazilian
wind energy policy-framework, and a new wind forecasting method to support this policy change.
The new method is used to forecast the wind behavior and wind energy generation. It is based on
Fuzzy Time Series (FTS) with a statistical processing in the universe of discourse. That makes possible
to draw the pessimist, optimistic, and the most-likely forecasts with a certain degree of confidence,
and also design a risk index. This is helpful in tackling the main issues regarding the energy production
that are forecasting energy generation and prices.

The main contributions of this paper are listed below:

1. Reducing the wind farms implementation time in Brazil:

• fostering the wind energy growth in Brazil, adopting international standards which are less
restrictive than Brazilian policy-makers standards, making it competitive worldwide;

• drawing international attention to the Brazilian wind energy market, and bringing
investments;

• speeding up the reduction of Brazilian energy prices, more players in the grid improving
competition and reducing prices;

2. Introducing a reliable method to forecast the wind behavior:

• improving the wind farm planning and helping to choose the best moment and how much
energy will be sold at the energy auctions;

3. Using a risk index to treat the wind samples: that allows training the model with the most likely
and the most-unlikely samples, and creating a forecasting interval of confidence;

4. Including a statistical analysis in the FTS universe of discourse that allows designing more
representative intervals;

1.4. The Structure of the Paper

The remainder of this paper contains four sections. Section 2 proposes the method that supports
the proposing changes to the current Brazilian wind energy policy and describes the applied tools.
Its topics are wind power calculation, forecasting, and statistical inference. Experimental results are
presented in Section 3, Section 4 discusses the work achievements, and Section 5 concludes the paper.

2. Materials and Methods

This section presents the methods designed and applied in this paper regarding energy generation,
forecasting methods, and the statistical approach used.
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Figure 1 contains a block diagram depicting the main sequence of steps that one has to process in
order to reproduce the results of the conducted study. The proposed method was implemented in the
software Matlab, 2017a release, running on Windows 10 Operational System, using a CPU Intel core i7,
8GB RAM, and the wind speed databases available on [32,33]. These databases represent the wind
speed in meters per second (m/s).

Step 1: Data input

1.1 Variables 
definition 

1.2 Wind speed 
sampling

1.3 Wind 
energy 

calculation

Step 2: Data 
Processing with 

tuning parameters 

Algorithm 2: 
Subtractive 
Clustering 
Algorithm

A2.1 Calculating 
the number of 

clusters

A2.2 Calculating 
the clusters 
initial center

A2.3 Validating 
the optimal 
number of 

clusters

Step 3: Data 
clustering, training 

model, and 
forecasting

Algorithm 3: 
Clustering 
Fuzzy Time 

Series Forecast 
Based 

Forecasting

A3.1 Split the 
data into 

training and 
forecasting 

batch

A3.2 Cluster the 
training input 

data

A3.3 Calculate 
the weighted 

linear 
parameters

A3.4 Train the 
model 

A3.5 Forecast

Step 4: Forecast 
statistical analysis

Algorithm 4:

Determining 
confidence 

areas into the 
forecasting

A4.1 Define 
moving window 

size into the 
forecasting

A4.2 Set the 
confidence level

A4.3 Calculate 
the cutoff value

A4.4 Find the 
most likely and 

the cautious 
forecast values 
throughout the 

year

A4.5 Analyze

the results

Figure 1. Method Flowchart.

This work main idea is that it is not necessary to have three years of wind measurement in a
prospective wind site to have an accurate forecasting, as discussed in the last section. An up to date
forecasting method could reduce significantly this time, and bring a set of benefits.

To demonstrate it, here it is proposed an adaptation of the forecast method developed by [34],
represented in Figure 1, Step 3, including some improvements. This paper improves the method on
Step 3, by including the optimizations of the number of clusters, and the optimization of the initial
matrix of cluster center values (Step 2, based on [35,36]). In the original version, these variables are set
arbitrarily. At last, it is proposed the algorithm on Step 4, that performs a statistical analysis on the
forecasting, drawing the line on the risky values of energy generation and its occurrence throughout
the year. Step 4 produces an insightful comprehension about the forecasting and it is the base for
further decisions about the wind energy farm. The Step 3 algorithm was chosen because it beats the
similar algorithm in literature, as discussed in [34].

The proposed procedure main benefit is its suitability to represent the intrinsic uncertainty of wind
behavior. Both inputs and outputs uncertainties are represented. The input ones are well-represented
through the fuzzy variables, that group into clusters the similar wind speed behavior, and the output
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ones create forecasting intervals, instead of a point forecast, to represent the wind energy stochasticity.
Next, the whole procedure is detailed.

2.1. Wind Energy Generation

The wind speed and its occurrence distribution are the main variables to estimate the wind farm
energy generation. Wind energy generations could be determined such as [37]:

Ot =
1
2

CpρDS3
t , (1)

where Ot is given in kW and it is the produced energy in the instant t; Cp is the Power Coefficient, a
measure of the wind turbine efficiency; ρ is the air density constant in kg/m3 , D is the wind turbine
propellers area in square meters m2, and St is the wind speed in m/s in time t.

Thereafter, energy forecasting is performed with the following FTS approach.

2.2. Fuzzy Time Series

Time series are data sets that represent the behavior of one or more variables over time, in which
the variable successive observations are not independent of each other [38]. These variables have
groups of behavior that repeat from time to time, and thus, could be used to estimate a similar situation
in the future.

The Fuzzy Time Series concept was first proposed by Song and Chissom [39], aiming at forecasting
time series using linguistic values rather than numeric values as data inputs. They proposed to partition
a time series into regular intervals, creating sets of linguistic functions that define groups of behavior
in each of those intervals. Then, it is determined a mathematical connection that could link a past
group of behaviors to the next value in the time series. Further, the pertinence of new elements on the
series are cross-checked into this structure, the new element is fitted in the respective group pattern,
and then a new output is calculated.

To set the FTS fundamentals, let γ(t) : t = 0, 1, 2, · · · , be the universe of discourse in R by which
fuzzy sets µj(t) are defined, and t is time. Each fuzzy sets µj(t) can equally represent a numeric
function or a linguistic one such as µ1(t) = low, µ2(t) = medium, .... The fuzzy sets µj(t) maps a
partition of the universe of discourse, representing the variables behavior. Thereafter, F(t) is called
a FTS defined on γ(t) if F(t) is a collection of fuzzy sets as µ1(t), µ2(t), µ3(t), · · · . If exists a fuzzy
relationship R(t − 1, t), such that F(t) = F(t − 1) ◦ R(t − 1, t) where ◦ is an arithmetic operator,
then F(t) is said to be caused by F(t− 1). The relationship between F(t) and F(t− 1) can be denoted
by F(t− 1)→ F(t). Now assume F(t− 1) = Bi and F(t) = Bj; a Fuzzy Logical Relationship (FLR) can
be defined as Bi → Bj, where Bi is called the left-hand side (LHS) and and Bj is called the right-hand
side (RHS) of the fuzzy logical relationship, respectively [39]. The FTS simplest form consists of the six
steps presented in Algorithm 1.

Over time, many improvements have been proposed in each of those steps proposed by [39].
The universe of discourse partition have been one of main research fields in FTS since it affects
the forecast performance [40], and it is an open issue indeed [41]. Huang [42] first realized it,
proposing the distribution-based and average-based approach to define the intervals size in the Cheng
model [39], improving the interval fit. Many techniques were used aiming at this purpose, like the
ant colony algorithm [43], imperialist algorithm [44], particle swarm [45] and genetic algorithms [46].
A further approach proposes clustering techniques in the universe of discourse partition, such as
fuzzy c-means [47], Gath-Geva cluster [48] and granular information [49]. Some works developed
a cluster approach directly in data history fuzzification, dismissing the creation of intervals in the
universe of discourse [50,51]. The last addressed the clustering approach dismissing intervals in the
universe of discourse as a better approach, rather than trying to find the best partition for the universe
of discourse [34].
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Algorithm 1: Fuzzy Time Series [39]

1 Step 1: γ← Define universe of discourse;
2 Step 2: Partition γ into subintervals as γ = γ1, γ2, · · · , γb;
3 Step 3: Define fuzzy sets, Bi on γ;
4 Step 4: Establish first-order FLR, e.g., F(t− 1)→ F(t);
5 Step 5: Establish FLR groups (FLRG) grouping those FLRs which have the same left hand side;
6 Step 6: Forecasting and defuzzification;
7 if at time t, the RHS contains one fuzzy set in the sequence i.e. Bi1 → Bj then
8 Forecast(t + 1) = Zj;
9 end

10 if at time t, the RHS contains more than one fuzzy set i.e. Bi1 → Bj1 , Bj2 , · · · , Bjh then

11 Forecast(t + 1) =
Zj1

+Zj2+···+Zjh
h ;

12 end
13 if at time t, the RHS contains no fuzzy sets in the sequence i.e. Bi1 → ∅ then

14 Forecast(t + 1) =
Zi1

+Zi2+···+Zig
g ;

15 end
16 Note: Zi stands for the defuzzified value of Bi; h and g are the numbers of fuzzy sets in the

RHS sequences.

Thus, regarding the universe of discourse partition, this work implemented a clustering approach.
The procedure consists of splitting the input variables into a set of clusters. The clusters are chunks of
data that represents a characteristic behavior of the inputs, and it substitutes the universe of discourse
partition of the FTS. Further, the weighted linear contribution of each cluster is used to map the output.
This linear combination behaves as a FLR. As improvements, a subtractive cluster method is used
to define the number of clusters, and do the automatic tuning of the cluster centers. The number of
clusters is validated with Bezdek index.

This paper proposes a procedure that could be split into three stages: i.data processing with
tuning parameters; ii.training; iii.testing.

Data processing stage implements a subtractive clustering (SC) method [52] to calculate the c
number of clusters and each most likely center values ~vi for each input set of data Xr×N . Where r is
the number of inputs, and N the number of observations. The matrix Vr×c = [v1, v2, · · · , vi, · · · , vc]r
stores the vector of cluster prototypes center of the data set r. There is a set of c centers for each input
variable Xr. SC algorithm is a single-pass method for estimating the number of clusters used by the
FCM, as well as determining the initial centers in near-optimal values, helping the FCM convergence.

Each point xN in the row r of Xr×N is considered as a potential cluster center of the r input [35].
The potential Ψ of data point’s xN is cross-checked with the xi other possible points and is defined
as [35]

ΨN =
N

∑
i=1

e
−4xN−x2

i
l2a , (2)

where la and lb are th cluster radius in data space and the cluster radius penalty, respectively. Then,
let x1 and Ψ1 be the first cluster center and its respective potential. The potential is revised for each
data point by using [35]:

ΨN = ΨN −Ψ1e
−4xN−x2

1
l2b . (3)

x1 then becomes v1, the first cluster center of the vector ~vi. An amount of potential is subtracted from
each data point as a function of its distance from the first cluster center. The data near the first cluster
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center will have greatly reduced potential, and, therefore, will unlikely be selected as the next cluster
center. At last, the optimal number of clusters c is validated with the Bezdek index as follow [36]:

Vpc =
1
N

c

∑
i=1

N

∑
j=1

u2
ij, (4)

where uij is the membership of element xj to cluster vi. The optimal number of clusters is given by [36]:

Maximize
X

Vpc

subject to 2 ≤ c ≤ (N − 1)
(5)

Algorithm 2 summarizes this process.

Algorithm 2: Subtractive Clustering Algorithm

1 Ψn ← determine the potential of each point to become a cluster center (2);
2 Ψ1 = max(Ψn)← set the first center as the point with the greatest potential;
3 while there is still data out of a cluster influence do
4 eliminate all data points near the first cluster center (3);
5 set the new cluster center as the remaining highest potential point;
6 end
7 Validate the optimal number of clusters with Equation (5).

The number of clusters and the centers values calculated with Algorithm 2 are inputs in the FTS
algorithm. Next stage is training. Thus, let ~y1×N be the FTS respective output data from the inputs
Xr×N . Then ~xj = [x1j x2j · · · xrj]

T become the jth input data vector and yj is its corresponding
output. Thus, using Fuzzy C-means, the matrix X is grouped into the c calculated clusters. This is
done minimizing J1 [53]:

J1 =
N

∑
j=1

c

∑
i=1

um
ij
∥∥~xj − ~vi

∥∥2
A ,

c

∑
i=1

uij − 1 = 0

(6)

where uij is an element of Uc×N and represents the membership degree of the jth data vector in the ith
cluster; m is a parameter which determines the fuzziness of the resulting clusters; ~vi is center of the
ith cluster calculated by the SC in Algorithm 2; ||.||2A is the distance between the input elements and
cluster centers weighted by the inputs covariance norm matrix Ar×r. The distance is calculated such as∥∥~xj −~vi

∥∥2
A = (~xj −~vi)

T A(~xj −~vi), and the norm matrix calculated as equation [53]:

A =

(
1
N

N

∑
j=1

(~xj − ~̄v)(~xj − ~̄v)T

)−1

,

~̄v =
1
N

N

∑
j=1

~xj.

(7)

The J1 minimization is done by an iterative algorithm. Thus J1 is rewritten as Equation (8) by
Lagrange multiplier, and in each repetition, the values of ~vi and uij are updated [34].
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~vi =
∑N

j=1 um
ij ~xj

∑N
j=1 um

ij
, uij =

 c

∑
k=1

( ∥∥~xj − ~vi
∥∥2

A∥∥~xj − ~vk
∥∥2

A

) 1
m−1


−1

. (8)

The final cluster center is defined when changes in U and V lead to insignificant improvements.
Thereafter, Equation (9) defines the membership function for the qth variable in the ith cluster [34]:

uqij =

 c

∑
k=1

∥∥xqj − vqi
∥∥2∥∥∥xqj − vqk

∥∥∥2


1

m−1

−1

,

∥∥xqj − vqi
∥∥2

=
(
xqj − vqi

)2 ,

∀j ∈ [1, N].

(9)

Function (10) calculates the weighted contribution of each cluster for each bonded ~xj and
respective output [34]:

τij =
∏r

q=1 uqij

∑c
i=1 ∏r

q=1 uqij
. (10)

The output forecasting yj (11) is the weighted linear combination of the inputs ~x∗j = [1 ~xj],
where [34]:

yj =
c

∑
i=1

τij

r+1

∑
q=1

piqx∗qj, (11)

and piq is the weight parameter of linear combination for each input, considering X∗(r+1)×N such that:
x∗1j = 1, x∗(q+1)j = xqj ∀q ∈ [1, r], j ∈ [1, N].

J2 in (12) is minimized to calculate the piq values:

J2 =

(
c

∑
i=1

τij

r+1

∑
q=1

piqx∗qj − yj

)2

(12)

∂J2

∂piq
=

c

∑
i=1

τij

r+1

∑
q=1

piqx∗qj − yj = 0 ∀j ∈ [1, N] (13)

Leading to the matrix of weighted contributions H, used to design the set of N Equation (14) [34]:

H =



τ11 · · · τc1 τ11x11 · · · τc1x11 · · · τ11xr1 · · · τc1xr1

τ12 · · · τc2 τ12x12 · · · τc2x12 · · · τ12xr2 · · · τc2xr2
... · · ·

...
... · · ·

... · · ·
... · · ·

...
τ1j · · · τcj τ1jx1j · · · τcjx1j · · · τ1jxrj · · · τcjxrj
... · · ·

...
... · · ·

... · · ·
... · · ·

...
τ1N · · · τcN τ1N x1N · · · τcN x1N · · · τ1N xrN · · · τcN xrN


,

H~P = ~y ∴ ~P = [~p1 ~p2 · · · ~pi · · · ~pc]
T ,

~pi = [pi1 pi2 · · · piq · · · pi(r+1)],

(14)

for each x∗1j = 1, x∗(q+1)j = xqj ∀q ∈ [1, r], j ∈ [1, N]. Thereafter, H~P = ~y could be solved minimizing

the error e = (~y− H~P)T(~y− H~P).
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Then, ~P is calculated from (15), where (HT H)+ is the pseudo-inverse of HT H [34].

~P = (HT H)+HT~y (15)

The Algorithm 3 resumes the procedure.

Algorithm 3: Clustering Fuzzy Time Series Forecast

1 m← set the degree of fuzziness (m = 2 for standard [54]);
2 if Ot is not available then
3 calculate (1) ;
4 end
5 c, V ← apply Algorithm 2 to define the number of clusters and its respective centers;
6 Step 2: split the data into training and forecasting batch;
7 Step 3: cluster the training input data with (8);
8 Step 4: calculate uqij and τij from (9) and (10), respectively for the training set. Then, H is

computed using τij and the training input data matrix X;
9 Step 5: calculate the linear combination parameters ~P, using (15), where ~y is the training data

set output. Then, the vector of parameters of the ith linear equation, ~pi ∈ [1, c], is extracted
from ~P;

10 Step 6: compute outputs for each vector ~xj = [x1j x2j · · · xrj]
T (training or testing) using

(11) as following: yj = τ1jy1j + · · ·+ τcjyrj

The Algorithm 3 yields two outputs: a set of equations that represent the wind behavior, and the
forecast set of wind power generation. The forecast values are examined and used to find the most
likely values, and the pessimist periods of generation along the year. Thus, a statistical analysis is
performed onto forecasting. The analysis can be graphically represented, having in the x-axis the time,
and in the y-axis, the power generated. Then the limits are drawn for the critical values, most unlikely
values, and the risk generation periods in each part of the year.

Given a chosen significance level α, and a moving window wn with Λ samples, two particular
situations are from interest here: the critical values (cutoff) from which the above values satisfy the
chosen criteria of occurrence probability [55], and the lowest values in the last Λ past points of a moving
window wn where n is the number of windows. These two calculations indicate, in the forecasting
values, the most likely happening values and the worst case region in the last windows. For example,
let α = 0.01. Thus, it means it was chosen to have a 99% probability of having the forecasting values
above the cutoff values in a one-sided z test given the past Λ samples. Also, it means that it is expected
to have 1% of the values under the cutoff. Under the cutoff region, the most cautious value is the
lowest value in each past Λ samples (or the minimum value in the past wn window), which represents
a conservative forecast. The region between the cutoff slope and this cautious forecast slope is the
risk taken for further decisions in the energy trade. Lower α values and longer window samples are
most-likely to decrease the area between the cutoff and the conservative forecast. The length of these
two variables keeps helpful information about the data seasonality to be used both from who sells
than who buys the energy.

The procedure is resumed in Algorithm 4:
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Algorithm 4: Determining confidence areas in the forecasting

1 Λ← define moving window size in the forecasting ~y;
2 α← set the confidence level;
3 calculate mean µ and standard deviation σ for each window wn with Λ samples;
4 foreach ~ywn do
5 cutoffn = pdf(y ~wn , (1− α), µ, σ);
6 ~wnmin = min(y ~wn );
7 end
8 foreach year = 1 : φ do
9 i← days in a year or chosen seasonal repeating period;

10 ycutto f f i= min cutoffi (year1, · · · , yearφ);
11 ymini=min ~wnmini (year1, · · · , yearφ);
12 note: this loop finds for each day of the year, in between all forecasting years a year vector

with the most cautious value of cutoff, and the minimum generation in the last chosen wn

window.
13 end
14 Where φ is the last year of the set, n is the number of windows;
15 pdf(.) is the probability distribution function of the forecasting set y ~wn accounting for α, µ, σ;
16 min(.) is the minimum function.

Next section puts forward a case study for the proposed procedure from above.

3. Results

The implemented experiments aim at presenting the proposed method, that has as its main
contribution to prove that it is possible to reduce the implementation time of wind-farms in Brazil,
leading to a change in the Brazilian wind policy.

The experiments draw a comparison between the wind behavior in many different countries,
investigating if they have a distinct wind behavior from Brazil that could justify its shorter
implementation time.

Two kinds of experiments were proposed. The first focuses on the sample size necessary to
forecast the wind energy generation, checking also the location influences. The second experiment
focuses on how to use the forecasting to make confident decisions about the energy trade. The second
experiment has as output a forecasting interval with a degree of confidence.

3.1. Experiment 1

Databases from NASA [32], NREL [33], and Petrolina were engaged in the experiments.
The selections encompassed distinct countries, Brazilian regions and time sampling to assess the
method suitability. Datasets of ten years durations were used with different training periods (from one
to ten years) to forecast the remaining period of time. The procedure aims at comparing the wind speed
measurements duration pointed out in Brazilian and international standards. To calculate the energy
generation in each site we used the wind speed sample in m/s and the Equation (1). Algorithms 2
and 3 were applied in each site, performing the forecasts. Root mean square error (RMSE), and Mean
Square Error (MSE) were used for validation, calculating the error in between the real wind power
generation and the forecast using the proposed method.

Table 1 presents the error using data sources (NASA, NREL, and Petrolina) for different training
durations. Each sample has 10 years duration. The column Year represents the amount of data, in the
sample, used for training and for forecasting. Thus, a value “2–10” in the column Year means it is used
two years of a ten years sample to training the Algorithm 3. The same notation was used in all tables
and figures.
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Table 1. Forecasting error for different training samples and durations accounting for different data sources.

NREL Petrolina NASA

Years RMSE MSE RMSE MSE RMSE MSE

1–10 4.82 23.22 209.83 41,146 147.67 21,808.53
2–10 5.57 31.09 197.21 43,420 145.95 21,302.85
3–10 6.16 38.06 211.95 40,219 142.74 20,375.66
4–10 6.16 38.00 212.26 45,712 143.05 20,463.44
5–10 6.02 36.25 213.46 45,259 140.53 19,750.16
6–10 5.82 33.92 213.48 45,844 136.10 18,523.47
7–10 6.02 36.27 215.22 46,174 134.44 18,076.17
8–10 5.82 33.87 215.37 46,320 131.74 17,357.86
9–10 5.61 31.50 188.93 46,385 130.84 17,119.88

10–10 5.48 30.03 203.80 34,409 130.41 17,006.85

It is noted that, in the same database, the error behavior is similar for different sampling intervals,
but it changes depending on the location. Thereafter, the NASA data source was adopted, once it
covers a larger number of locations worldwide. Table 2 cross-check different countries and three
regions in Brazil, one in the extreme north, one extreme south and one in the middle. This aims
at investigating if the wind behavior in Brazil is different from other countries. As could be noted,
increasing the training sample and reducing the forecast horizon do not always decrease the forecasting
error. Some cases showed better results with smaller training sample times. Between one and three
years, it is not possible to say statistically that one training sample time is better than the other in the
same site. Also, it was noted that the error in Brazilian wind sites is not an outlier when cross-checked
with other countries error. The smallest set of errors was found in India and the greater one in Belgium.
This is an evidence that the Brazilian wind policy is restrictive since the Brazilian wind behavior is
similar to other countries ones.

Table 2. RMSE error on the testing set at different locations and durations.

Years Training/ Brazil Brazil Brazil Scotland Belgium USA China Spain India
Testing Natal Janauba Floripa Ghent Florida Hongkong Barcelona Mumbai

1–10 156.98 109.18 264.57 113.48 304.89 163.76 188.79 254.80 33.57
2–10 148.37 111.04 295.65 120.57 298.44 155.04 201.18 238.70 32.75
3–10 146.37 110.69 240.41 114.87 256.56 150.63 227.75 251.25 32.12
4–10 147.85 117.51 265.34 116.84 262.73 154.05 214.93 223.29 32.72
5–10 148.13 116.72 266.84 116.02 243.29 158.75 256.12 251.75 33.37
6–10 146.49 118.29 267.19 114.45 252.05 160.25 251.60 252.13 33.44
7–10 147.80 120.17 252.10 111.98 240.86 162.41 231.67 247.94 33.31
8–10 147.66 117.82 250.46 113.54 233.07 163.05 231.11 250.20 35.65
9–10 146.75 115.88 247.24 114.17 229.59 161.51 233,16 250.71 35.74

10–10 146.75 117.60 269.15 113.93 229.59 159.98 182.48 249.91 35.90

Hence, Table 3 focuses on Brazilian sites. Ten years duration samples from all Brazilian regions
were accounted for. As could be seen, changing the interval duration leads to the same magnitude
errors. Some sites even presented smaller forecasting errors with one-year sample training set than
with three-years.
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Table 3. RMSE Forecasting error for different training samples and durations in all Brazilian states.

Years Training—Forecasting

Brazilian States 1–10 2–10 3–10 4–10 5–10 6–10 7–10 8–10 9–10 10–10

Sergipe—SE 127.96 123.37 125.89 125.84 123.62 121.33 122.74 120.68 119.86 119.86
Pará—PA 127.55 120.40 122.25 122.34 120.50 119.75 118.53 116.74 115.99 115.97

Minas Gerais—MG 75.90 73.29 71.59 76.13 77.15 73.16 72.79 71.70 71.90 71.83
Roraima—RR 9.74 9.24 8.65 8.69 8.98 8.99 8.78 8.46 8.40 8.39

Distrito Federal—DF 90.15 89.01 88.90 93.10 94.16 96.08 95.23 95.26 95.61 95.25
Mato Grosso do Sul—MS 128.90 115.50 107.95 112.17 107.95 106.13 101.87 94.58 93.15 92.49

Mato Grosso—MT 76.31 79.45 76.07 73.27 72.59 72.33 70.26 68.34 68.20 67.28
Paraná—PR 20.28 20.30 19.22 18.67 18.52 17.71 16.86 15.76 15.62 15.36

Santa Catarina—SC 174.84 179.78 182.72 175.85 173.85 177.60 177.17 173.55 171.82 170.38
Ceará—CE 153.68 144.66 146.27 145.04 149.11 148.80 153.48 150.15 151.25 151.00
Goiás—GO 116.58 111.69 110.89 107.78 109.40 107.04 105.92 105.94 107.45 107.27
Paraíba—PB 148.45 140.84 136.10 139.72 139.63 139.05 140.02 139.44 138.58 138.24
Amapá—AP 28.21 28.05 28.32 28.87 29.40 29.67 29.54 28.93 28.64 28.57
Alagoas—AL 138.19 129.79 130.71 128.36 130.22 131.47 131.32 131.37 133.12 133.12

Amazonas—AM 9.87 10.99 10.06 10.21 10.50 10.48 10.27 9.24 8.57 8.44
Rio Grande do Norte—RN 174.63 145.05 151.35 149.69 147.22 148.08 147.93 149.65 151.10 150.13

Tocantins—TO 82.00 76.25 81.40 81.88 84.53 83.67 86.12 87.01 87.74 87.25
Rio Grande do Sul—RS 98.67 85.15 89.10 87.67 82.29 74.89 74.44 74.15 69.93 69.24

Rondônia—RO 5.54 5.38 5.58 5.18 4.92 4.74 4.47 4.23 4.11 4.09
Pernambuco—PE 153.54 154.45 154.17 157.44 158.07 157.83 161.71 163.17 165.13 165.13

Acre—AC 11.48 7.78 7.34 7.03 6.64 6.51 6.09 5.99 5.41 5.24
Rio de Janeiro—RJ 70.64 73.96 70.69 72.05 72.26 74.83 70.96 70.47 69.02 68.99

Bahia—BA 87.98 84.56 89.36 90.15 91.51 91.25 88.26 88.96 89.33 89.33
Maranhão—MA 156.80 151.26 149.59 148.37 147.66 145.59 144.81 145.20 144.19 143.81
São Paulo—SP 63.76 60.60 59.81 58.76 57.39 55.61 56.75 53.73 53.81 53.26

Piauí—PI 102.21 100.09 99.65 99.38 100.20 99.55 99.18 97.82 96.94 96.82
Espírito Santo—ES 137.76 122.64 121.90 121.15 116.88 116.50 115.02 112.73 112.02 111.02

Then, for each Brazilian state, it was cross-checked the 10 years forecasting with the real 10 years
energy generation. One year of each sample was used to forecast the next nine years. Figure 2
shows the states box-plot. Each pair (forecast and real) represents a ten years sample, from 2007 till
2017 in each Brazilian state. The two letters abbreviations in the Figure 2 stands for the state name,
(see Table 3). Each state has a pair of boxplots representing the real and forecast samples. As could be
seen, these paired samples are quite similar. A hypotheses test between them showed in none of the
states was possible to say that the real and forecast samples are different with a 95% confidence interval.

Figure 2. Boxplot for Brazilian states on 10 years sample (1–10)—comparing real generations, and the
forecasting ones.

Thereafter, Figure 3 compares a real 10 years energy generation and its forecastings obtained from
different durations of training. The training periods vary from 1 to 10 years of the sample. The number
before the “y-10” represents the number of years used to train the algorithm to forecast the remaining
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data of the 10 years sample. It is easy to realize how similar are the real and forecasting samples,
no matter how long it is the training period. This is an evidence of the method robustness to deal with
wind energy forecasting.

Figure 3. Boxplot years training duration—comparing real generations, and the forecasting ones.

The experiments performed did not show any evidence that Brazil could not adopt an international
standard, and reduce the time for wind enterprises approval to one year rather than the current
three years.

3.2. Experiment 2

Next experiments perform analysis about how the forecasting could be used to improve the
confidence in energy trades, devising different levels of risk into the forecasting, assisting the
stakeholders’ decision. Here, was used a wind speed dataset (m/s) from NASA’s database [32],
in the Brazilian state Sergipe.

First, it was selected one year of this database, splitting 10% of the data for training and 90% for
testing the forecast. Experiment 1 implemented Steps 1 to 3 from the proposed procedure in Figure 1.
Now, Experiment 2 implements also the Step 4, that devises the confidence values into the forecasting,
accounting for the last window of forecasting. This window move on time and, for each new value
forecast, it is analyzed the set of data forecast in the last window.

Figure 4 considers the year 2007 in Sergipe’s dataset, and α = 0.01. In that figure, the wind
behavior is represented by the energy generated, that is Step 3 output. The blue slope represents the
real energy generated in the wind site, and the red slope is the forecast energy. In black, it is shown the
slope of the cutoff values with 99% occurrence probability in the last 30 days window data. That means,
considering the last 30 days, the next energy generation value have 99% of chance to be higher than
the value in the black slope (the cutoff value). Just 1% of all samples are expected to be under that
line. That window was adjusted to a monthly interval, but could be set to any lag time at decision
maker convenience. This figure allows to analyze the forecasting against the most likely occurrence
probability. The generation above the cutoff slope is the profitable risk, the values that the generation
company is risking to gain. It is the optimistic risk scenario.

The black line (cutoff values) is the generated energy with α confidence level, considering the last
forecast windows. Pinpointing this values reduces forecast volatility, once they represent the most
likely value to happen, giving low importance to the noise and outliers in the prediction. The output is
a more reliable value of forecasting. This cutoff values can be used by the energy trader to know the
likely scenario of energy generation in the wind farm through the year.
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Figure 4. Wind Behavior—Generated and Forecasted.

Then, Figure 5 complements the Figure 4 with two new decision areas: the pessimist risk (green)
and decision risk (black). The green line in the figure represents the lowest generation value in the last
30 days windows sample. Thus, the green area is the most pessimist generation in the last window
sample, or the safest generation known in the last windows. The black area in between the green and
red line is the decision risk area. The wind prospected sites with the smallest black area are the ones
with the highest certainty in the energy generation. When the company already has the wind power
plant implemented, this black area helps the decision maker to know when it is more risky to sell energy,
and when is necessary to take into account other measures to mitigate the risk, for example, buy from
another source of energy. In an auction situation, it helps to know what kind of procurement is more
indicated to that site due the seasonality generation behavior. Also, it helps in formulating the bids
limits once the bounds of the minimum energy generation are addressed. For example, an amount
contract auction could not be indicated from the year ending to the beginning season once there is a
higher possibility of zero generation at that period (no green area). Instead, the middle year has a bigger
green area denoting a higher probability of generation where there is reduced chance of no generation.

Figure 5. One year Wind Behavior—real generation and the generation probability.
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Then, the whole procedure is extended to a 10 years sample, from which the first year of training
was used to forecast the next 9 years of energy generation. This aims at planning in the long term.
The same wind site from Sergipe was used. Figure 6 shows the result.

Figure 6. Ten years Wind Behavior—real generation and the generation probability.

Figure 6 green areas represents the energy generation minimum risk, the red slope represents the
most likely energy generation, and the blue one represents the 10-years real generation from 2007 to
2017. It is realized the wind seasonality through the year, with windy winters and little-wind summers.
The green areas sum points out to the stakeholders the minimum energy generation expected for this
wind site in the long term, and the sum of the area under the red slope represent the likely generation
expected along these ten years. This information gives to the stakeholder the optimistic and pessimist
scenarios of generation. Then, a minimum operator is used to summarize these ten years forecasting in
just one year. Thus, the Algorithm 4 calculates, for each day of the year, the minimum value occurred
in all forecasting years. The procedure is repeated for the minimum risk and to the cutoff values,
giving a concise and cautious interpretation of the forecasting.

4. Discussion

EU approved in June 2018 the final agreement for decarbonizing its energy sector [56]. This is one
of many efforts to reduce fossil fuel consumption worldwide. Indeed, migrating for a greener energy
matrix have been the present days’ challenge, and it is better as fast as the countries move in that
direction. However, different countries devise distinct policies to drive its energy market. This study
aims at helping this energy matrix change in Brazil, that even with up to 60% of renewable sources,
can become even greener and cheaper through fostering on wind energy. It was realized that other
countries adopted a better policy that allows to implement the wind farms in a shorter time. Hence,
it was investigated if it is possible to reduce the wind farms implementation time in Brazil and how.
This topic is an open issue in literature, lacking on meaningful researches. This work focused on
wind energy growth since it is cheaper, renewable and more abundant than other sources. Its main
drawback is it stochasticity, that here it is overcome with a robust forecast method. This study has
achieved three main contributions:
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1. Reducing the wind farm implementation time in Brazil:

Experiment 1 Section 3.1 investigated the wind behavior in Brazil, checking its similarity to other
countries. It was implemented the steps 1 to 3 from the proposed method in Figure 1. From the results
can be concluded that the Brazilian wind behavior is similar to the ones in countries adopting the
standard IEC 61400. It was investigated also the sample size influence into the forecasting. Thus,
it was examined the forecast quality and its relation with the training sample length in the 27 Brazilian
states, and 6 other countries. It was used samples with 1 to 10-years duration to forecast the next
years’ generation. The RMSE error was low in all the cases, and increasing the sample length from
1-year to 3-years did not reduce significantly the RMSE forecasting errors. Indeed, in 6 (SC, AP,
AM, BA, MT, PR) of the 27 Brazilian states, the error had an increment using training samples of
2 and 3-years duration when compared at 1-year duration sample (Table 3). Now, consider the
training periods of 1 and 3-years duration in all Brazilian states. The average percent difference
between the respective RMSE forecasting errors was 5.36%, taking these two durations (Table 3).
However, this 5.36% imprecision is insignificant comparing with the benefits of reducing with two
years the wind farm implementation time. The Brazilian inflation target is 4.5% per year, the last
3 years inflation was 21.21% [19], and the last wind energy auctions offered a 400% reduction in the
actual Brazilian energy price [3,4]. These indexes overcome this 5.36% difference in reducing the
wind-farms implementation time in Brazil from 3 to 1 year. To the government, it is more effective
to loosen the wind energy regulation, admitting 1-year duration samples to concede the building
approvals. This will make the wind farms more attractive to the entrepreneur, fasten the Brazilian
energy price reduction, and align Brazilian policy with the best international policies. If it is necessary,
the government can devise a transitory reduction index of 5.36% to offset the expected amount of
energy in the prospected site. Thereafter, the wind farm can claim this index review when the farm
starts its energy generation. That keeps the balance, minimizing the wind farm implementation time
without harm to the government conservative position. Both solutions, reduce the wind sample size
to one year or include a transitory reduction index, could be easily implemented in the Brazilian
wind policy with great benefits to the market. The whole market is benefited from this policy change,
the government is benefited by bringing investments and new technology, the market by encouraging
competition, and the final consumer by the energy price reduction.

2. Introducing a reliable method to forecast the wind behavior:

This study also investigated the method capacity to represent the wind behavior. Real and forecast
data behavior was cross-checked in Figure 2, identifying the samples’ level of similarity. That figure
shows, with a high degree of confidence, that it is not possible to distinguish the real and forecast data,
giving its high similarity. This indicates the method deals well with the wind stochasticity. RMSE error
also denoted small values, reinforcing the statement. The statistical analysis in the FTS universe
of discourse also contributed to the wind stochasticity representation and led to a robust forecast.
The Step 3 approach was compared to other methods in [34], showing it outperforms in speed and
precision the other FTS methods. However, this approach can suffer from the curse of dimensionality,
increasing substantially the computational cost if a high-dimensional problem is designed.

The method is also suitable to represent linguistic variables such as Temp = [low, medium, high]
and thus, can represent qualitative inputs. For example, a specialist advice, such as the Brazilian
risk index of water shortage called Bandeira Tarifaria. Brazilian energy mix is highly dependent on
hydroelectricity, so the government monitors the water shortage risk representing it in four levels:
low, medium, high, and extra-high. Each level represents the government expectation of shortage,
a truly fuzzy linguistic variable that should be interpreted by the energy market, reflecting on the
prices. The market energy price increases and decreases depending on each level this index points out.
The proposed method is perfectly suitable to represent this kind of situation and it could be explored
in future works.
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3. Designing a risk index to treat the wind samples:

Proposed method in Step 4 introduces a risk representation into the forecasting. It allows
representing a forecasting interval bounded by the most likely forecasting and the most cautious
one. The most likely values are based on the cutoff values in the PDF slope for a given α, and
the most cautious slope represents the minimum value in a past window of data. Experiment 2 in
Section 3.2 demonstrated this idea, extending the forecast duration from 1 to 10 years. Although
the proposed method has shown a small RMSE error forecasting, the Step 4 improves the forecast
representation, turning it from a point forecast to an interval forecast. This better represents the
uncertainty, softening the wind volatility effects into the forecasting. The uncertainty representation is
a key performance indicator to the energy market agents. The ratio between the likely forecast and the
cautious one represents the spread of the possible values of forecasting. That ratio gives an uncertainty
measurement, and it is helpful for designing the energy trader selling strategy. As near as it is this
ratio to 1, more trustful is the expected energy generation, and as higher it is this number, as greater is
the wind farm volatility. That helps to compare different wind sites, representing its risk and volatility
in one index easily comparable.

5. Conclusions

This paper tackle some of the main issues of wind power industries. It was discovered it is possible
to reduce with two years the wind farm implementation time in Brazil, bringing many benefits and no
harm to the energy market. The experiments led to conclude that in the same wind site, a year, three years
or even nine-year sample length are equally good and lead to a forecasting error of similar magnitude
order. The benefits of a reduced time overcome the possible difference in the forecasting. The error seems
to be more related to the wind behavior in the site than to the sample’s length. This can indicate that
Brazilian wind policy imposes unnecessary constraints by establishing three years of sampling to approve
the wind farms building licenses. Hence, it could be inferred that the Brazilian wind framework is less
competitive than other markets adopting international standards. That disadvantage drives investments
migration to other countries, indicating that adopting international standards could foster the Brazilian
wind energy growth and make it more competitive worldwide.

The paper also showed that Clustering FTS methods are a good approach to represent wind
behavior and its stochasticity. The proposed method shown to be flexible and trustworthy. Here,
only the inputs wind speed and power generation were used in forecasting, but this method can
use as many inputs as necessary, even linguistic ones and a mix of numeric and linguistic variables.
Thus, further works could use many simultaneous generation sites to forecast distribution companies
generation portfolio or use exogenous variables, like air humidity, solar radiation, and temperature
to improve the forecasting. Another issue of interest to the market is the energy price. The approach
designed here could be adapted to tackle that issue, having as output the energy prices.
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ANEEL National Electric Energy Agency
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
CBR Case-Based Reasoning
EPE Energy Research Company
EU European Union
FTS Fuzzy time series
FLR Fuzzy Logical Relationship
FLRG Establish FLR groups
KNN k-Nearest Neighbor prediction method
LHS Left-hand side
MA&ES Moving average and exponential smoothing
MF Membership Function
MME Ministry of Mining and Energy
PDF Probability Distribution Function
RHS Right-hand side of the fuzzy logical relationship
SVM Support Vector Machines
SC Subtractive clustering
TS Time series
VaR Value at Risk
List of Symbols
Ar×r inputs covariance norm matrix
Bi left-hand side (LHS) of the fuzzy logical relationship (FLR)
Bj right-hand side (RHS) of the fuzzy logical relationship (FLR)
Cp Power Coefficient, a measure of the wind turbine efficiency
c number of clusters
D wind turbine propellers area in square meters m2

F(t) FTS defined on γ(t)
F(t− 1)→ F(t) Fuzzy Logical Relationship (FLR)
H matrix of weighted contributions
h, g numbers of fuzzy sets in the RHS sequences
J Fuzzy C-means index to be minimized
la cluster radius in data space
lb cluster radius penalty
N number of observations
n number of moving windows (number of forecast sets from which are calculated the cutoff values)
Ot energy produced in the instant t, given in kW
P matrix of weight parameter of linear combination
piq weight parameter of linear combination for each input
R(t− 1, t) fuzzy relationship
r number of inputs distinct sets
St wind speed in m/s in time t
Uc×N the matrix of elements uij
uij membership of element xj to cluster vi
Vr×c matrix that stores the vector of c prototypes center of the data set r
v1 first cluster center of the vector ~vi
~vi center of the ith cluster calculated by SC in Algorithm
wn a moving window n of size Λ (Λ is the number of samples in Wn)
Xr×N input set of data
~xj jth input data vector
~y1×N be the FTS respective output data from the inputs Xr×N
yj jth output value
Zi stands for the defuzzified value of Bi
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α significance level
◦ arithmetic operator that maps a fuzzy relation
γ(t) universe of discourse in R
µj(t) fuzzy set
µ mean
Λ number of samples in a moving windows wn. A set of Λ elements from the forecasting ~y
ΨN potential of data point’s xN become a center
φ number of years in a set of forecasting
ρ air density constant in kg/m3

σ standard deviation in a given wn set
||.||2A distance between the input elements and cluster centers weighted by the inputs covariance

norm matrix Ar×r

pd f (.) probability distribution function of the forecasting set y ~wn
accounting for α, µ, σ

min(.) minimum function. A function that giver the minimum value in a chosen φ set of values for a
determined position i in the sets.
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