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Abstract: One of the most crucial and economically-beneficial tasks for energy customers is peak
load curtailment. On account of the fast response of renewable energy resources (RERs) such as
photovoltaic (PV) units and battery energy storage system (BESS), this task is closer to be efficiently
implemented. Depends on the customer peak load demand and energy characteristics, the feasibility
of this strategy may vary. When adaptive neuro-fuzzy inference system (ANFIS) is exploited for
forecasting, it can provide many benefits to address the above-mentioned issues and facilitate its easy
implementation, with short calculating time and re-trainability. This paper introduces a data-driven
forecasting method based on fuzzy logic (FL) for optimized peak load reduction. First, the amount of
energy generated by PV is forecasted using ANFIS which conducts output trend, and then, the BESS
capacity is calculated according to the forecasted results. The trend of the load power is then
decomposed in Cartesian plane into two parts, namely left and right from load peak, for the sake of
searching for equal BESS capacity. Network switching sequence over consumption is provided by a
fuzzy logic controller (FLC) considering BESS capacity and PV energy output. Finally, to prove the
effectiveness of the proposed ANFIS-based peak power shaving/curtailment method, offline digital
time-domain simulations have been performed on a test microgrid system using the data gathered
from a real-life practical test microgrid system in the MATLAB/Simulink environment and the results
have been experimentally verified by testing on a practical microgrid system with real-life data
obtained from smart meters and also, compared with several previously-reported methods.

Keywords: adaptive neuro-fuzzy inference system; battery energy storage; photovoltaic unit; power
demand; peak power curtailment; peak shaving

1. Introduction

The concept of smart microgrids has emerged from high penetration of distributed generation (DG)
and distributed/renewable energy resources (DERs/RERs) and energy storage systems (ESS) [1–5].
A microgrid is a small-scale, low-voltage power grid in the low voltage designed to solve energy
issues locally and enhance flexibility. These systems can function in either grid-connected or islanded
(autonomous) modes of operation [5–8]. The growth trend of RERs and rise of constant power
costs brings new dimension of old problems exposing new ways. RERs, DERs and ESSs forces
distribution network (DN) to be more flexible, faster, safer, and less expensive [9,10]. On the other
hand, customer of distribution system operator (DSO) tends to use all capabilities of RERs/DERs
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provides with minimum human involvement [11]. Power peak shaving/curtailment is an old problem
with new possible solutions. Micro- and smart grids tend to provide new algorithms for power
peak shaving/curtailment such as game theory in role of locating and displacing load in DN [12].
Some researchers have been conducted for integration of DERs into DN based on optimization tools
and dynamic programming methods [13]. Demand side management (DSM) of DNs, especially in
micro- and smart grid applications, also need new materials for energy efficiency [14].

In addition, many new trends tend to increase peak load power on DN based on battery charging
of plug-in hybrid electric vehicles (PHEVs) in charging stations [15,16]. Peak shaving with DERs/RERs
and BESS is one of the major issues in microgrid power management. Role of ESS in peak shaving of
medium voltage direct current (MVDC) systems based on smart algorithms has been discussed in [17].
Forecasting power demand or energy consumption is also essential which has been done before based
on FL, artificial neural networks (ANNs), particle swarm optimization (PSO), and other computational
intelligence technique [18–20]. Fuzzy logic has also been used to manage available energy sources for
peak power shaving/curtailment in a system composed of RERs and/or energy accumulations [21,22]

Another topic that is being introduced through the introduction of renewable energy sources into
the distribution network is energy self-sustainability and independence. The road to it is through
sustainable transition from traditional DN to smart grid. Some of the studies have dealt with this
issue, including an analysis of the electricity market using agents for forecasting fluctuation of energy
price [23,24]. Any sustained transition to the energy sector cannot be achieved without the participation
of DERs/RERs with or without BESS. Said references include intelligent methods (AI) in the analysis
of the search by buying energy when it is cheap. This action opens the market of energy sales when it
is set to introduce DER/RER as a compulsory technical predisposition for a single market participant.
The purpose of this paper is the technical part of energy self-sustainability.

The contribution of this paper is reflected in a structured and systematic approach to solving
one of the actual problems in the distribution network: cutting the maximum load using the method
of artificial intelligence. The aforementioned reports have mainly dealt with peak cutting methods
over load deployment during the consumer curve, but this was mainly done without renewable
energy sources in combination with the energy storage. The contribution of this paper is in the smart
prediction of the available energy, using ANFIS, that will be generated, and the consumption that will
take place with the inclusion of energy storage in the optimization of the distribution network load.
The proposed hybrid method used in DN load optimization is multidisciplinary and with it entails
a great computational complexity and close connection of inputs and outputs of different methods
with measurements.

In this paper, a new method for load peak shaving/curtailment is proposed by combining essential
components for optimizing peak power curtailment. This paper combines DERs/RERs with BESS
connected to customer and microgrid that have been modeled and simulated in MATLAB/Simulink
2017a (Mathwork Inc., Natick, MA, USA) software environment and then, experimentally tested on a
real-life practical test microgrid system. The proposed solution includes three parts: (1) Describing the
proposed system configuration based on real-life existing examples in DSO networks; (2) Presenting the
proposed methodology based on ANFIS to forecast energy generation and power-peak demand with
dimensioned energy components of the system configuration and; (3) Exploiting FLC as a major part
to determine optimal BESS usage for the sake of power peak shaving/curtailment. Finally, to show the
effectiveness of the proposed method, offline digital time-domain simulation studies are performed in
MATLAB/Simulink environment and after comparing the results with previously-reported methods,
they are experimentally verified by testing on a practical micro grid system with real-life data obtained
from smart meter.

The paper covers mentioned themes as follows: Section 2 describes the system configuration.
Section 3 elaborates on the proposed peak shaving method due proposed methodology. Section 4
presents the ANFIS and its structure for forecasting application. Section 5 presents simulation results.
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Section 6 presents experimental results regarding proposed method testing. Finally, conclusions and
final remarks are provided in Section 7 to summarize all points.

2. System Configuration

As illustrated in Figure 1, the micro grid system mainly consists of: (1) DERs//RERs and ESSs;
(2) DN and; (3) Electric energy customers consisting of various energy consumers.
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The goal of this study is: (1) minimize or ideally, deduct maximum power demand from
customer’s electricity bill, measured by energy and power meter and (2) Independent focusing of
energy for power peak demand curtailment, considering other related technical issues. To accomplish
the mentioned goals, many inputs shall be considered for successful obtaining of the output, so, there is
a mandatory input for the energy consumed in one sample of 15–min. In same sample amount of
generated energy from a Photovoltaic System (PVP) and also state of charge SoC of BESS. Based on
the definition of these inputs, only one output is given from intelligent electronic device (IED) that
is switching sequence of switch 1 and switch 2. Readings from smart meters (SM) cover two inputs:
customer’s energy consumption and power surge in sample of 15–min. The proposed algorithm uses
the mentioned inputs is detailed in Section 3. Additional inputs are number of sample and season.
They are collected automatically according to the date and time (hour) reading. Training of FLC is
conducted according to these data and the inputs besides energy and power consumed. Training
details of FLC and sampling are also discussed in Section 3.

In this study, the DER/RER unit is assumed to be a photovoltaic (PV) unit; however, this study
can be performed based on any other type of DERs/RERs such as wind generation, thermal energy
source, hydro plant, etc. There is the same situation for ESS, but the purpose of this paper is focused
on BESS in role of ESS. The PV and BESS are installed on same site to give minimal or no voltage drop,
and both are dimensioned as:

Cb = ∑24
h=0 EPt(h) (1)

where Cb is capacity of BESS in measure of kWh, and Ept is generated energy from DER/RER in form
of PV system in measure of kWh. Equation (1) explains relation between daily generated energy from
PV system and BESS storage capacity in 24 h. Equation (1) is the main relationship for dimensioning
BESS and DER/RERs. When BESS is considered as ESS, the most important issue is SoC. The BESS can
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be modeled according to Figure 2 for one battery cell [25]. BESS is a string of single batteries that are
unified as one battery cell. SoC is to be taken from BESS model as (Figure 2) [25]:

Cb = CCbo + CCb1 × SoC + CCb2 × SoC2 + · · ·+ CCbi × SoCi (2)

Cb = CCpo + CCp1 × e(CCp1SoC) + · · ·+ CCpi × e(CCpiSoC) (3)

where CCbi is battery capacity of particular cell in BESS string, SoC is the State of Charge of a battery
cell. Equations (2) and (3) are extended (1) in a vector of quantity of battery cells in BESS. Also, where i
= 1, 2, . . . , n. For simpler representation of BESS and its functionality in case study, Cs and Rs are taken
minimal so impact of snubbed resistance of battery is high enough and battery engagement is fast
enough. So, the SoC is defined as follows:

SoC = 1− qmax − qb
Cmax

(4)

where qb is the Charge stored in Cb, qmax is maximum charge that battery can hold, and Cmax is
maximum charge drowned from battery. For effective management of BESS, SoC is basically the only
required information. However, for dimensioning of BESS and calculating its SoC, Cb is still required.
BESS is assembled of batteries for gathering energy capacity large enough for daily PV generation on
sunny days (Figure 3).
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In this way, the BESS will always be able to gather all generated electric energy and use it for over
peak curtailment. PV is modeled based on available sun irradiance at installation site and power load
peak demand based on smart meter data gathered from monthly readout. The PV output power is
given by [26]:

Pt = C
IPV,t

1000
[1− µ(TPV,t − 25)] (5)

Considering that C and µ are constant factors in (5), we conclude that Pt can be forecast based
only on IPV,t and TPV,t. Figure 4 illustrates I-V and P-V characteristic from the PV designed for case
study simulations. The DN is modeled as infinite bus that consists of infinite power and ESSs are ready
for customer engagement at any time. Just like real-life practical case, the DN is always on and ready
for usage from customer. In this paper, internal resistance of grid model is considered to be near zero
so that this relation is focused: PV + BESS→ Customer↔ DN. Also, the customer is modeled as one
10 kW power demand. Various power consumers inside customer’s house hold are presented by daily
power demand curve presented in Figure 5 whose data has been gathered from energy and power
meter between DN and customer. The placement of smart meter is presented on Figure 1. Sizing of
PV and BESS has been done based on customer’s power demand and energy consumption curve as
shown in Figure 5.
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However, in these cases, some optimal sizing algorithms are beneficial [27]. Based on the articles
of the contract between DSO and customer, the maximum power reserved for customer is 10 kW.
So, we have:

C = 10 kW (6)

where C can be much more or less; however, considering customers power peak, there is no need
for over dimensioning RERs. There is the same story with BESS and Cb can be higher than C.
The best guideline for dimensioning Cb is PV energy generation during the longest day of the year.
According to customer’s geographical location (Croatia, Zagreb), it is concluded that the longest day
was 21 June 2017, with 15 h and 36 min of sunlight and maximum temperature of 30 ◦C. Based on this
information, DN operator’s database is searched for PV energy generation of 10 kW on the mentioned
day and the output resulted from database is presented in Figure 6 that depicts PV generation curve
on 21 June 2017. Basically, the PV can generate as much energy as the BESS is able to store. In reality,
the longest day doesn’t have to be necessarily the most productive day of PV, but it is good start for the
first parameterization of PV capacity. Also in practice, a 10 kW customer rarely achieve higher power
swell, but PV with 10 kWp installed capacity commonly achieves about 7 kW generated power peak.
Owing to this fact, the value of C in (6) is more than enough. Table 1 shows the energy generation of
10 Kw PV before and after the target day. Based on Figure 6 and Table 1, Cb should be 54 kWh. There
are some more productive days for PV; but, there is no need for over dimensioning BESS. If the PV
takes the maximum sun irradiation, the BESS is ready to accumulate entire energy generation from PV
which results in SoC ≤ 100%. In this way, the PV never over recharge the BESS, and BESS make most
of accumulated energy on power peak curtailment.
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Table 1. Energy Generation of 10 Kw PV before and after longest day in year.

Day Energy [kWh]

18 June 2017 19.12
19 June 2017 52.07
20 June 2017 58.31
21 June 2017 54.42
22 June 2017 54.59
23 June 2017 47.78
24 June 2017 53.54

3. Proposed Methodology

The proposed methodology for power peak demand reduction using ANFIS forecasting algorithm
for estimation of energy generated by PV and BESS is illustrated in Figure 7. The proposed power
peak curtailment algorithm includes the following steps:
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(1) Calculating SoC of BESS based on PV output forecasted from daily input data, and forecasted
customer‘s daily consumption curve from which load peak is calculated.

(2) Calculating the left and right energy consumption value from peak load with given parameters
and calculation step, and summing both.

(3) Comparing with BESS capacity based on SoC. If not equal, go to Step 2.
(4) Giving switch boundaries for training input for FLC.

Energies 2018, 11, x FOR PEER REVIEW  7 of 25 

 

(1) Calculating SoC of BESS based on PV output forecasted from daily input data, and forecasted 
customer`s daily consumption curve from which load peak is calculated. 

(2) Calculating the left and right energy consumption value from peak load with given parameters 
and calculation step, and summing both. 

(3) Comparing with BESS capacity based on SoC. If not equal, go to Step 2. 
(4) Giving switch boundaries for training input for FLC. 

 
Figure 7. Flowchart of the proposed algorithm. 

In this paper, the ANFIS is used for forecasting of day-ahead PV power generation. On account 
of its flexibility and processing speed, the ANFIS method has been widely used as a method of 
forecasting [18,28]. The first stage of the algorithm is defining input and output datasets. In this study, 
the input data for PV generation forecasting are temperature, solar irradiance, and present day 
generation curve. The most important part of data is present day generation curve, because the first 
two inputs can be same in different parts of the year and instead of global, ANFIS may provide local 
solution. Combination of the mentioned three information is unique for any PV system. The second 
part of input data is the quality of information. Based on [18,28], there is available daily temperature 
and sun irradiance but the resolution of these information should be discussed. For the present day 
generation curve, one info per day is enough for temperature and irradiance just for 15–min 
resolution. By using this method, the generalization of input data is avoided and therefore, mapping 
of input to output data is still achievable. The 15–min resolution is based on smart meter recording 
upon which DSO charges customers to draw power peak. For the second input, the measurement 
unit is kWh/m2/day. Based on the amount of the power radiated from sun, the PV is generating 
equivalent electricity power. This information is directly correlated if the PV module is stationary 
and with fixed latitude and array tilt. The sun irradiation is calculated based on Equations (7)–(10): 

( ) ( )
( ) ( )

1
sin sin112 cos

15 cos coso
Sunrise

φ δ
φ δ

−
  −

= −       
 (7) 

Figure 7. Flowchart of the proposed algorithm.

In this paper, the ANFIS is used for forecasting of day-ahead PV power generation. On account
of its flexibility and processing speed, the ANFIS method has been widely used as a method of
forecasting [18,28]. The first stage of the algorithm is defining input and output datasets. In this
study, the input data for PV generation forecasting are temperature, solar irradiance, and present day
generation curve. The most important part of data is present day generation curve, because the first
two inputs can be same in different parts of the year and instead of global, ANFIS may provide local
solution. Combination of the mentioned three information is unique for any PV system. The second
part of input data is the quality of information. Based on [18,28], there is available daily temperature
and sun irradiance but the resolution of these information should be discussed. For the present day
generation curve, one info per day is enough for temperature and irradiance just for 15–min resolution.
By using this method, the generalization of input data is avoided and therefore, mapping of input
to output data is still achievable. The 15–min resolution is based on smart meter recording upon
which DSO charges customers to draw power peak. For the second input, the measurement unit is
kWh/m2/day. Based on the amount of the power radiated from sun, the PV is generating equivalent
electricity power. This information is directly correlated if the PV module is stationary and with fixed
latitude and array tilt. The sun irradiation is calculated based on Equations (7)–(10):

Sunrise = 12− 1
15◦

(
cos
(
− sin(φ) sin(δ)
cos(φ) cos(δ)

))−1
(7)
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Sunset = 12 +
1

15◦

(
cos
(
− sin(φ) sin(δ)
cos(φ) cos(δ)

))−1
(8)

ID = 1.353× 0.7(AM0.678) (9)

AM = 1/cos(θ) (10)

where ϕ, δ are geographical altitude and longitude angles, ID is direct component of sun irradiance,
AM is air mass, and θ is PV position angle respect to sun. Due (7)–(10) is calculated how much sunny
hours each day PV system have for power generation and therefore BESS recharge with customer
consumption. Based on sunrise and sunset, forecasting energy generation is much more accurate
acquired from ANFIS.

Considering the linear relationship between temperature, sun irradiance, and daily generation
given in (5), the probabilistic curve forecasting method is capable of adapting the input data to
output samples [28]. The PV generation curve in 15-min resolution is acquired from data collecting
software installed for supervision (Figure 6). The energy consumption forecasting is solely based
on temperature and the present day customer’s consumption. The forecasting is left for ANFIS and
according to our previous experiences, these inputs are temperature, and present day consumption
curve. The present day consumption is acquired from smart meter installed between customer and
DN (Figure 1). Based on the customer’s agreement with DSO, the data access is available in 15-min
resolution. The basic idea behind Step 3 is to convert the predicted peak load power curve from kW
into kWh based on readout resolution and peak load point. The readout resolution is referenced to
input data of peak load forecasting block, and its source is the smart meter between DN and customer
(Figure 1). Based on the forecast load peak, the graphical representation for calculation of customer’s
peak energy is shown in Figure 8.
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Figure 8. Calculation of customer’s energy around load peak by adding energy left and right from
load peak location.

Also, we have:
Ecustomer,peak = ∑peak

0 Epeak + ∑96
peak Epeak+k; n < k (11)

Epeak−n = Epeak−n × 1/4 (12)

Epeak+k = Epeak+k × 1/4 (13)

Equation (11) models the process Step 3 with time resolution of 15-min and (12) and (13) give the
energy calculation based on peak load at the given time. The proposed strategy operates with two
separate measured values from the smart meter: 15-min peak and 15-min energy. Converting peak
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demand to energy demand, from kW to kWh, is done by dividing kW with 4 to get kWh for that 15-min
period. The steps n and k are 15-min step left and right from peak location on timeline. One iteration is
(11) for every n − 1, k + 1 and each iteration is subjected to this question that is the Cb equal to Ecustomer,
peak? If yes, then the boundaries of switching sequence changes are given as Ppeak−n, and Ppeak+k.
Basically, as soon as the smart meter records Ppeak−n, the IED closes the switch between PV+BESS and
customer and opens the switch between DN and customer. This switch state gives no power and
energy to the smart meter to record because entire consumption is loaded on BESS. In this situation,
the PV is still working as recharging source for BESS, the SoC is at the calculated state, and the BESS is
energy source until the IED changes the switching state back at Ppeak+k. even if SoC > 0%. So, the BESS
is not fully discharged and load peak is not recorded by DSO smart meter. Ppeak−n, and Ppeak+k are two
MFs to FLC in role of IEDs. Using FL, as switching driving method, it may initiate switching at local
load peak and not at global during real time recording. As can be observed from Figure 9, there is a
noticeable trend for localized peaks and for global peaks. Many local peaks happen during the day,
but the global maximum is around samples 30–50 along with 70–85. This makes one more input to
FLC switching algorithm with two membership functions (MFs). The input of the sample number is
usable if and only if the FLC knows which season of the year currently is: winter, spring, summer,
or autumn. The need for these information comes from different possible global maxima (Figure 8).
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The global maximum location is located in the first MF for winter and summer, and the second
MF for spring and autumn. This issue makes one additional input for FL switching algorithm with
two MFs: one for winter and summer, and the second one for spring and autumn. The input values are
left for forecasting the specific day load curve and therefore training of FLC. The fuzzy sets are defined
by MF and rules so that the crisp values are processed into fuzzy values and then deffuzified. In this
paper, triangular and trapezoid MFs are exploited. If there is a huge error in the output, is Gaussian,
triangular or trapezoid MFs can be used. In this application, the output error is in acceptable range.
The FLC have three inputs and one output whose MFs are defined as follows:

µA(X) =


0 x ≤ a
x−a
m−a a < x ≤ m
b−x
b−m m < x ≤ b

0 x ≥ b

(14)
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µA(X) =


0 (x < a)or(x > d)
x−a
b−a a ≤ x ≤ b

1 b ≤ x ≤ c
d−x
d−c c ≤ x ≤ d

(15)

where a, b, c, d, and m are constant parameters of MFs. The boundaries of MF are given in the creating
and training process of FLC. Initializing of rules is performed by optimizing the rule parameters such
as boundaries location and number of MFs using expert knowledge. The output boundaries from
ANFIS forecasted values have huge impact on timely switching through MFs. The boundaries are
defined by constant parameters of (14)–(15) and thus, it is crucial to have a valid forecasted curve.
The defuzzification is done by using centroid method to cover all possible area solutions, which is
defined by:

y =
r

∑
1

µjSj/
r

∑
1

µj (16)

where µj, Sj are fuzzy output set and disposition of output function

4. ANFIS Forecasting Application

4.1. Case 1: Daily Power Demand Curve

The required data for power prediction modeling is acquired from smart meter by recording daily
samples with 15-min resolution for a three years’ period. In this paper, the ANFIS forecasting system
has 2 inputs and 1 output. The inputs are measured power demand from smart meter with 15-min
resolution and one daily value for temperature. For training purposes, the samples are taken for last
3 years at the same measurement place and for the same customer. In three years, the smart meter
has recorded 105 120 samples of power demand with 15-min resolution. The training datasets consist
of 100,000 and testing dataset of 5120 samples, respectively. The average error through 2 training
epochs is around 1.39%. Three rules have been created and the defuzzification method is weighted as
average based on the Sugeno-type model. The training parameters of ANFIS are provided in Table 2.
Figures 10 and 11 shows the training results. By using the proposed ANFIS-based scheme, the system
output shows smaller power demand than actual measured values. So, there will be some deviations
in calculating needed energy for peak load.

For the training process of ANFIS is used bigger set of data for precision purposes. A data set
including 5120 samples is used just to check overall error of trained ANFIS system. Particular values
are based on 15 min readout from AMR/AMM system from the smart meters of the discussed customer.
Data are taken from one date to another achieving 1000 data writings, and from there second data set
for testing. Results with changing training and testing data sets are not considered in paper due to
space limitations, but it affects overall error results significantly. If training data set covers one year of
measurement (345.60 samples) ANFIS system is accurate enough to recognize sections, as presented
in Figure 9 in manuscript. Error results are significantly worse if the training data set is smaller than
one year.

Table 2. The Parameters of trained ANFISs.

Parameter Value (Case 1) Value (Case 2)

Number of nodes 23 38
Number of linear parameters 9 16

Number of nonlinear parameters 12 24
Number of training data pairs 2784 2784

Number of fuzzy rules 3 4
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4.2. Case 2: Daily PV Plant Energy Generation

In this case, as mentioned above, the acquired data for PV generation have been gathered from
smart meter between DN and PV. The ANFIS has three inputs and one output. The inputs are measured
generated power from smart meter with 15-min resolution, daily sun irradiance, and daily temperature.
The output is the next day daily power demand. For training purposes, these samples are obtained
from the last one year at same measurement place for same PV plant without changing installation
configuration. In one year, the available dataset includes 35,040 samples of power demand with 15-min
resolution. The inputs for training consists of 30,000 samples, and 5040 samples have been used for
testing. The average error through two training epochs is around 1.1%. The defuzzification method is
weighted as average based on the Sugeno decision type. Based on the results, the calculated energy
amount that is required for peak load is smaller than measured generated energy (Figure 12).
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4.3. Fuzzy Logic Controller

To control the switches, the IED is governed by FL-based algorithm which is trained according to
the ANFIS output data. The FLC training data are obtained from load and generation, forecasted by
ANFIS, the sample ordinal number from clock and the season from digital calendar.

The decision type is Mamdani and based on output MF, there is a small chance for output to be
uncertain in term of switching sequences 1 or 2 which result in minimal amount of space for error,
not switching when needed. The structure of the proposed FLC is illustrated in Figure 13. The input
parameters for FLC are obtained by online measurement system so that the values taken by the devices
are explained in Section 6. The FLC training is done in an offline procedure based on the outputs from
ANFIS 1 and AFNIS 2 explained in Section 4.1, and therefore, the switching is planned as day-ahead.Energies 2018, 11, x FOR PEER REVIEW  13 of 25 
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5. Simulation Results

In this section, to show the effectiveness of the proposed peak power shaving/curtailment
method, the study system shown in Figure 1 (whose parameters are presented in Table 3) is modeled in
MATLAB/Simulink environment for offline digital time-domain software simulations where different
scenarios are considered. The FLC is a real-time component of the proposed solution according to
operation on site and the ANFIS is conducted on measured data after the time period of one day.
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Table 3. Parameters of the study system.

Unit Value

PV generated energy [kW] 48.80
Cb/Ecustomer,peak [kW] 48.81

Ppeak−n [kW] 5.37
Ppeak+k [kW] 3.26
Ppeak [kW] 5.56

5.1. Case Study

As illustrated in Figure 1, the simulated system includes three parts: PV+BESS, customer, and
DN. The generation capacity of PV plant is 10 kWp, customer have minimum 10 kW power demand,
and the BESS has CP = 54 kWh. Simulation time is 10 s by steps of 0.1 s, to simulate the system in 96
samples. When simulation starts, the sun irradiation and temperature are guiding the PV to generate
electrical energy independent to BESS or DN. The BESS is set to SoC = 1% and thus, the starting point
for the energy needed for peak load is equal to the forecasted amount of generated energy. A variable
load is simulated and set to follow the measured load curve from Figure 9 and the boundaries are set
according to Table 4. The required boundaries for FLC training are gathered by analyzing Figure 14.
The data presented in Table 4 and the forecasted power demand from Figure 14 are taken to create the
FLC algorithm and then it will be uploaded to IED (Figures 1 and 13). After running simulations using
real measured data, the obtained results are presented in Figure 15 and Table 4.

Table 4. Calculated values and boundaries for FLC training according to Figure 14.

Unit Data
Set Value

Peak [kW]
Before 7.00
After 5.00

Energy [kWh] Before 337.83
After 219.33

Generated energy [kWh] After 59.14

Battery Bank SoC [%] After 45.15
Cp [kWh] After 29.62

Energies 2018, 11, x FOR PEER REVIEW  14 of 25 

 

Table 4. Calculated values and boundaries for FLC training according to Figure 14. 

Unit Data Set Value 

Peak [kW] 
Before 7.00 
After 5.00 

Energy [kWh] 
Before 337.83 
After 219.33 

Generated energy [kWh] After 59.14 

Battery Bank SoC [%] After 45.15 
Cp [kWh] After 29.62 

Table 4 presents a clear insight about effectiveness of the proposed method for load peak 
reduction. Saving in power and energy are 2 kW and 118.50 kWh, respectively. Considering the scale 
of the modeled study system, this is a huge saving according to leased power. Simulation started 
with SoC = 1% for BESS, and thereafter, PV generates almost 60 kWh. Therefore, the SoC of BESS after 
peak reduction is 45.15% (24.38 kWh). This brings the entire model to new refreshed start position 
for the next day round with more capacity to count on. Figure 16 shows the steady SoC curve from 
BESS in the switching moment, compared to the BESS current flow and DN voltage. 

 
Figure 14. Designed case study for defining boundaries and energy for load peak. 

 
Figure 15. Obtained results from the smart meter after applying the proposed solution. 
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Table 4 presents a clear insight about effectiveness of the proposed method for load peak reduction.
Saving in power and energy are 2 kW and 118.50 kWh, respectively. Considering the scale of the
modeled study system, this is a huge saving according to leased power. Simulation started with SoC
= 1% for BESS, and thereafter, PV generates almost 60 kWh. Therefore, the SoC of BESS after peak
reduction is 45.15% (24.38 kWh). This brings the entire model to new refreshed start position for the
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next day round with more capacity to count on. Figure 16 shows the steady SoC curve from BESS in
the switching moment, compared to the BESS current flow and DN voltage.
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Based on the obtained simulation results, the BESS does not cause any threat from DSO for the
voltage quality of the customer. This is due to passive and fast involvement of batteries in the voltage
conditions of network-customer relationship. It also reveals that with right algorithm and dimensioned
PV plant, the BESS can provide reasonable solutions for the peak power shaving/curtailment problem
in particular cases.

5.2. Comparison with Other Reported Techniques

In this section, the simulation results for the proposed peak power curtailment method is
compared with two reported techniques [29,30]. To provide a fair comparison, all of the aggregated
curves are reduced to 24 h, time period (Figures 17 and 18). The forecasted curves are not compared
due to different obtained results between the proposed method and previously-reported techniques.
Also, Table 5 presents the comparative results and Figures 17 and 18 illustrate the comparison of all
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methods for the reduced power and SoC curves. When the proposed method is compared with [29,30],
we define an index to calculate the percentage of decrement in peak power that is defined as:

JP =
Pmax_old − Pmax_new

Pmax_old
(17)

where Pmax_old is maximum load without the proposed method applied on system, and Pmax_new is
maximum load using the proposed method applied on system. It can be obviously observed from the
presented results that the proposed method has better performance for peak power curtailment (more
than twice JP index) in contrast with the reported techniques [30,31]. This superiority and inherent
benefit is a consequence of using different technologies in one purpose and moreover, and taking
the advantage of combining of ANFIS, FL, RERs and BESS in a new hybrid configuration. However,
the optimization/optimal sizing of the system components is still an interesting field of investigation
for researchers [27].Energies 2018, 11, x FOR PEER REVIEW  16 of 25 
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6. Experimental Results

The proposed method has been experimentally tested on a real-life practical PV power plant
(Figure 19) with added BESS whose parameters are presented in Tables 5 and 6. The PV plant consists
of two PV strings that each have 10 panels connected with two separate maximum power point
tracking (MPPT) inputs on inverters. The total number of PV panels is 40 which generates about 10 kW
output power. An electrical cabinet is located under roof of the house visible from outside, where the
inverters are also visibly located. The smart meter between the PV and DN is located near the house
entrance, one floor down from the inverter position. In the cabinet, in addition to the smart meter, a
line breaker is included that is suitable for remote control. Originally, the BESS has not been included
in the installation of the PV plant. Thus, for experiment purposes, it is required to install ESS, two
switches and IED (Figure 20). The Installation has been done between upper floor where the electrical
cabinet and inverter have been installed, and down floor where the smart meter and line breaker have
been included. The described disposition of components and PV plant are depicted in Figure 19.
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Table 5. Comparative results.

Method Time Result

JP SoC [%]
Ref. [30]

24 h
0.09 0.0

Ref. [31] 0.08 0.1
This method 0.28 45.15

Table 6. Inverter and PV panel technical data.

Input Data

Inverter Model Fronius Symo 12.5-3-M
Max. array short circuit current (MPP1/MPP2) 40.5 A/24.8 A

Min. input voltage (Udc,min) 200 V
Nominal input voltage (Udc,r) 600 V
Max. input voltage (Udc,max) 1.000 V

MPP voltage range at P nom (Umpp,min − Umpp,max) 320–800 V
Usable MPP voltage range 200–800 V

Number MPP trackers 2
Number of DC connections 3 + 3

Output Data

AC nominal output (Pac,r) 12,500 W
Max. output power 12,500 VA

Max. output current (Iac,max) 20 A
Min. output voltage (Uac,min) 260/150 V
Max. output voltage (Uac,max) 485/280 V

Frequency (fr) 50 Hz/60 Hz
Frequency range (fmin − fmax) 45–65◦Hz

Power factor (cos(ϕac,r)) 0–1 ind./cap.

PV Panel

Model REC250PE-(US) BLK
STC Rating [W] 250.0
PTC Rating[W] 227.4

Open Circuit Voltage (V) 37.4
Short Circuit Current (A) 8,86

Power Tolerance 0/+5%
Weight (lbs) 39.1
Length (in) 65.55
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Details of the additional equipment acquired and installed are as follows:

(1) BESS–APC SMART Uninterruptable Power Supply (UPS) DP 1000 (used for energy storage
function): with 10 kW output power (Figure 18e). The available UPS had already installed
DC/AC inverter. So, there was no need for additional equipment regarding battery management.
UPS was made in year 2004 but the batteries were not saturated due to firm housing and storing.

(2) Line breakers–2xHAGER H3 160 (used for remote switching): The mentioned line breaker is
under IEC 60947-2 standard for monitoring and secondary auxiliary for control (Figure 18f).

(3) IDE (Laptop HP 250 G6): For FLC role base and ANFIS forecasting system, Arduino UNO R3,
current sensor, voltage sensor, ENC28J60 network module, ZYXEL 300 mbps Wi-Fi router for
data acquisition, and line breaker remote controller (Figure 19).
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For FLC design and ANFIS training, MATLAB 2017a software has been used and all decision
calculations and Java programming/application has been developed in Eclipse LUNA 4.4.2.
Java application, and laptop Wi-Fi has been used for listening IP address where Arduino UNO
R3 was placing measured data. All mentioned components are installed according to single line
diagram presented in Figure 21.
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The experiment has been run on 21 August 2017. According to the procedure presented in
Section 5 where is similar case study is examined, all needed preparations have been done in the
laboratory, including parameterization of IDE (communication, Arduino-line breaker, program loading
into Arduino motherboard, Wi-Fi communication setup, ANFIS-based forecasted load and PV power
generation for next day, and FLC setup according to forecasted data). After laboratory work, the setup
has begun on field before starting on 21 August 2017, so, the input signals from current and voltage
transformers (CT and VT) can be taken into consideration to control the line breaker. At the start of
21 August 2017, Arduino has started collecting data giving information to FLC that has been previously
modelled in laptop via Wi-Fi, and gathering output data from FLC via Wi-Fi. Arduino controls the line
breakers according to the signals given from FLC and the proposed method is realized. The forecasted
results for experiment day are illustrated in Figure 22. From Figure 22, it can be clearly concluded
that the generated power will not be sufficient for recharging the BESS after peak curtailment, if the
BESS takes the entire energy demand on itself. So, some optimizations shall be done before conducting
the experiment. For this experiment, the SoC of the BESS is 100% and the power generation should
be enough for recharging part of the spent energy from BESS. The goal is to curtail the load peak,
but not discharging the BESS to SoC = 0%. Instead, it is curtailing the peak load with equal energy to
generated one. In this case, the SoC will be close to 99% at the end of day. The experimental results are
provided in Table 7 and Figure 23. It can be observed from Table 7 that the PV generated energy has
completely recharged the BESS and even more energy is injected into DN. The customers’ maximum
power demand is under maximum battery capacity and therefore, the BESS is able to take load on
itself releasing load from DN. Thus, the smart meter didn’t record the load higher than 6.16 kW. There
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is more place for more detailed optimization of FLC for the sake of spending entire PV generated
energy on consumer’s load demand, instead of injecting it to DN. Anyway, the proposed method has
proven to effectively manage the available stored energy for peak load curtailment in combination
with PV plant.
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Table 7. Experimental results.

Unit Data Set Value

Peak [kW]
Consumer 9.33

Smart Meter 6.16

Energy [kWh] Consumer 102.33
Smart Meter 66.00

Generated energy [kWh] After exper. 54.42

BESS
SoC [%] After exper. 100.00

Cp [kWh] After exper. 10.00
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Arduino Uno.

Table 8 presents the readout from the smart meter and customer measured consumption.
Monitoring was conducted for 24 h on 21 August 2017 using the proposed method described in
the previous sections. Overall results are summarized in Table 7. Collected data shows improvement
in reduced engaged power in the sampled 24 h. Continuation of this peak curtailment setup is
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conditioned by constant calculation of sunlight and generated energy, SoC of BESS, and customer
maximum power demand. These calculations are time consuming and computationally expensive.
The sole purpose is to prove the proposed method’s efficiency and that is achieved.

Table 8. Readout from the smart meter after the method application at the customer. Used for decimals.

Sample No. Measured

Date Customer Smart Meter

1 21 August 2017 0:00 2.50 2.50
2 21 August 2017 0:15 2.67 2.67
3 21 August 2017 0:30 2.00 2.00
4 21 August 2017 0:45 2.17 2.17
5 21 August 2017 1:00 1.83 1.83
6 21 August 2017 1:15 1.67 1.67
7 21 August 2017 1:30 1.67 1.67
8 21 August 2017 1:45 1.83 1.83
9 21 August 2017 2:00 1.50 1.50
10 21 August 2017 2:15 1.67 1.67
11 21 August 2017 2:30 2.00 2.00
12 21 August 2017 2:45 1.67 1.67
13 21 August 2017 3:00 1.67 1.67
14 21 August 2017 3:15 1.50 1.50
15 21 August 2017 3:30 1.50 1.50
16 21 August 2017 3:45 1.50 1.50
17 21 August 2017 4:00 1.50 1.50
18 21 August 2017 4:15 1.33 1.33
19 21 August 2017 4:30 1.50 1.50
20 21 August 2017 4:45 1.50 1.50
21 21 August 2017 5:00 1.33 1.33
22 21 August 2017 5:15 1.50 1.50
23 21 August 2017 5:30 1.50 1.50
24 21 August 2017 5:45 1.33 1.33
25 21 August 2017 6:00 1.33 1.33
26 21 August 2017 6:15 1.50 1.50
27 21 August 2017 6:30 1.50 1.50
28 21 August 2017 6:45 1.50 1.50
29 21 August 2017 7:00 1.83 1.83
30 21 August 2017 7:15 1.67 1.67
31 21 August 2017 7:30 3.33 3.33
32 21 August 2017 7:45 4.50 4.50
33 21 August 2017 8:00 4.50 4.50
34 21 August 2017 8:15 4.33 4.33
35 21 August 2017 8:30 5.33 0.00
36 21 August 2017 8:45 6.17 0.00
37 21 August 2017 9:00 6.33 0.00
38 21 August 2017 9:15 6.67 0.00
39 21 August 2017 9:30 6.00 0.00
40 21 August 2017 9:45 4.83 4.83
41 21 August 2017 10:00 3.67 3.67
42 21 August 2017 10:15 3.33 3.33
43 21 August 2017 10:30 2.50 2.50
44 21 August 2017 10:45 5.50 0.00
45 21 August 2017 11:00 6.17 0.00
46 21 August 2017 11:15 7.00 0.00
47 21 August 2017 11:30 6.67 0.00
48 21 August 2017 11:45 6.33 0.00
49 21 August 2017 12:00 6.17 0.00
50 21 August 2017 12:15 5.17 0.00
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Table 8. Cont.

51 21 August 2017 12:30 5.83 0.00
52 21 August 2017 12:45 5.17 0.00
53 21 August 2017 13:00 3.50 3.50
54 21 August 2017 13:15 3.33 3.33
55 21 August 2017 13:30 3.00 3.00
56 21 August 2017 13:45 3.83 3.83
57 21 August 2017 14:00 5.83 0.00
58 21 August 2017 14:15 4.83 4.83
59 21 August 2017 14:30 4.50 4.50
60 21 August 2017 14:45 4.83 4.83
61 21 August 2017 15:00 5.00 0.00
62 21 August 2017 15:15 5.00 0.00
63 21 August 2017 15:30 5.17 0.00
64 21 August 2017 15:45 5.17 0.00
65 21 August 2017 16:00 4.17 4.17
66 21 August 2017 16:15 4.67 4.67
67 21 August 2017 16:30 5.00 5.00
68 21 August 2017 16:45 4.00 4.00
69 21 August 2017 17:00 4.00 0.00
70 21 August 2017 17:15 3.83 0.00
71 21 August 2017 17:30 4.50 4.50
72 21 August 2017 17:45 4.00 4.00
73 21 August 2017 18:00 2.67 2.67
74 21 August 2017 18:15 3.33 3.33
75 21 August 2017 18:30 3.17 3.17
76 21 August 2017 18:45 3.33 3.33
77 21 August 2017 19:00 3.50 3.50
78 21 August 2017 19:15 3.00 3.00
79 21 August 2017 19:30 4.50 4.50
80 21 August 2017 19:45 4.17 4.17
81 21 August 2017 20:00 3.67 3.67
82 21 August 2017 20:15 4.17 4.17
83 21 August 2017 20:30 3.67 3.67
84 21 August 2017 20:45 3.33 3.33
85 21 August 2017 21:00 2.83 2.83
86 21 August 2017 21:15 3.33 3.33
87 21 August 2017 21:30 3.50 3.50
88 21 August 2017 21:45 4.17 4.17
89 21 August 2017 22:00 4.67 4.67
90 21 August 2017 22:15 3.67 3.67
91 21 August 2017 22:30 3.50 3.50
92 21 August 2017 22:45 3.33 3.33
93 21 August 2017 23:00 2.50 2.50
94 21 August 2017 23:15 2.50 2.50
95 21 August 2017 23:30 2.33 2.33
96 21 August 2017 23:45 2.67 2.67
97 22 August 2017 0:00 2.50 2.50

7. Conclusions

The interest in power peak management is always a popular topic and smart grid standards
obligate power peak shaving/curtailment. The practicality of the optimization methods for forecasting
and controlling DN is rapidly growing which brings its wide application. In this paper, we have
proposed a new method based on ANFIS and fuzzy logic for power peak curtailment and smart
power management using DERs/RERs and BESS. Simulation results revealed that the combination
of different components offers a better solution. However, hybrid solutions have some limitations in
the form of retraining ability, specific information requirements, and expert knowledge needed for its
maintenance. The presented model was designed to easily extend to any type of DER/RER and BESS,
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customer or DN. It was observed that ANFIS and FLC are flexible components and easily adaptable to
any new configuration situation. Also, by analyzing the results, comparing the proposed method with
previously reported techniques, and performing experimental tests on a real-life practical distribution
system, we conclude that the proposed method is effective and optimal for power peak curtailment.
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