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Abstract: Oil is an important energy commodity. The difficulties of forecasting oil prices stem from
the nonlinearity and non-stationarity of their dynamics. However, the oil prices are closely correlated
with global financial markets and economic conditions, which provides us with sufficient information
to predict them. Traditional models are linear and parametric, and are not very effective in predicting
oil prices. To address these problems, this study developed a new strategy. Deep (or hierarchical)
multiple kernel learning (DMKL) was used to predict the oil price time series. Traditional methods
from statistics and machine learning usually involve shallow models; however, they are unable to
fully represent complex, compositional, and hierarchical data features. This explains why traditional
methods fail to track oil price dynamics. This study aimed to solve this problem by combining
deep learning and multiple kernel machines using information from oil, gold, and currency markets.
DMKL is good at exploiting multiple information sources. It can effectively identify the relevant
information and simultaneously select an apposite data representation. The kernels of DMKL were
embedded in a directed acyclic graph (DAG), which is a deep model and efficient at representing
complex and compositional data features. This provided a solid foundation for extracting the key
features of oil price dynamics. By using real data for empirical testing, our new system robustly
outperformed traditional models and significantly reduced the forecasting errors.

Keywords: multiple kernel learning; deep representation; artificial intelligence; energy market;
machine learning; time series forecasting

1. Introduction

Crude oil is the world’s largest energy commodity and is actively traded internationally.
The welfare of oil-importing and oil-producing economies are heavily influenced by fluctuations
in oil prices, especially when they are unexpectedly large and persistent. As indicated by Abosedra
and Baghestani [1], “sharp increases in crude oil prices adversely influence economic growth and
accelerate inflation for oil importing economies. Large fall in crude oil prices will generate serious
budgetary deficit problems for oil exporting countries”. Accurate oil price forecasting is appealing and
important. Nevertheless, in modern time series analysis it is a very difficult task owing to its complex
dynamics. Many researchers have tried to develop models to maximize forecasting accuracy. However,
until now, they have not achieved a satisfactory level of performance from their models. The failure
of traditional approaches is derived from their model setting. The model forms adopted are usually
linear and parametric (Atsalakis and Valavanis [2,3], Fan and Li [4]), which are not flexible enough
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to track fast changing price dynamics. This study aims to solve this problem by developing a new
strategy that combines the advanced deep learning and multiple kernel methods.

Oil price forecasts are important for related business operations, and they have great influences
on many sectors of the economy. For example, these forecasts are used to determine airfares for airline
companies, planning capacity for utility companies, shipping fees in the logistics industry, and product
prices in the petrochemical industry. Referring to prior research (Bahrammirzaee [5], Fan and Li [4],
Krollner et al. [6]), time series forecasting techniques can be divided into the three groups: (1) statistical
or econometric models; (2) machine learning, artificial intelligence, and soft computing; (3) hybrid
models that combine the above two methods. The typical models include the auto-regressive moving
average (ARMA) (or the auto-regressive integrated moving average (ARIMA)) used in statistics, and
the generalized auto-regressive conditional heteroscedasticity (GARCH), which is used in econometrics.
Among ARMA and GARCH, there are many new ideas and improved models that have been developed
recently for oil price forecasting. For example, Gupta and Wohar [7] forecasted oil and stock returns
with a Qual VAR (Qualitative Vector Autoregressive) model. Gavriilidis et al. [8] examined whether
the inclusion of oil price shocks of different origin as exogenous variables in a wide set of GARCH-X
models improved their volatility forecasts. Herrera et al. [9] employed high-frequency intra-day
realized volatility data to evaluate the relative forecasting performances of various econometrics
models, such as the RiskMetrics, GARCH, asymmetric GARCH, fractional integrated GARCH, and
Markov switching GARCH models. Morana [10] developed a semiparametric approach for short-term
oil price forecasting. With respect to machine learning, artificial intelligence, and soft computing,
traditional models include neural networks, genetic algorithms, and fuzzy logics. There are also many
newly developed methods in this field. For example, Ding [11] developed a novel decompose-ensemble
methodology with the AIC-ANN (Akaike information criterion-artificial neural network) approach for
crude oil forecasting. Yu et al. [12] proposed a neural network ensemble learning paradigm based on
empirical mode decomposition (EMD) to forecast crude oil prices.

In the third group, many hybrid models integrate the strengths of both methods to enhance their
predictions. For example, Naderi et al. [13] developed a novel approach by using a meta-heuristic bat
algorithm to optimally combine four predictors including the least square support vector machine
(LSSVM), genetic programming (GP), ANN, and ARIMA in an integrated equation. Safari and
Davallou [14] proposed a hybrid combination of the exponential smoothing model (ESM), ARIMA,
and the nonlinear autoregressive (NAR) model in a state space model framework, in which the
time-varying weight of the proposed hybrid model was determined by Kalman-Filter. Li et al. [15]
proposed a method integrating ensemble empirical mode decomposition (EEMD), adaptive particle
swarm optimization (APSO), and relevance vector machine (RVM) to predict crude oil prices.
Wang et al. [16] used a linear ARIMA to correct the nonlinear metabolic grey model (NMGM)
forecasting residuals to improve forecasting accuracy in China’s foreign oil dependence. Xiao et al. [17]
developed a hybrid model based on a selective ensemble for energy consumption forecasting in China.
Drachal [18] tried to find the time-varying drivers of spot oil price in a dynamic model averaging
framework. Iranmanesh et al. [19] proposed a mid-term energy demand forecasting system by hybrid
neuro-fuzzy models.

Recently, support vector machines (SVMs, Vapnik [20]) have been developed to enhance
traditional neural networks. Kernel methods (Schoelkopf et al. [21]), the core of SVMs, have also
received a lot of attention. In general, artificial intelligence and similar approaches are nonlinear,
nonparametric, and adaptive in their model forms. They are flexible to track complex price dynamics,
and thus usually outperform statistical methods. Another weakness of statistical models is related to
their assumption that random variables follow a normal or other kind of distribution, which is limited
because real data is not stationary and their dynamics change with time. Time-varying coefficient
or distribution models in statistics are also insufficient, because their model settings are parametric.
The dimensionality of their function space is finite, limited, and not flexible enough to track fast
changing dynamics.
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Due to the rapid development of the Internet and information technology, global financial markets
are highly correlated. Oil is both an important energy commodity and a financial instrument that is
heavily traded in global markets. Upon reviewing the research in oil or financial price predictions
(Ding et al. [22], Iranmanesh et al. [19], Khashman and Nwulu [23], Liu et al. [24], Wang et al. [25],
Xie et al. [26], Yu et al. [12]), we can confirm that machine learning or artificial intelligence approaches
usually outperform statistical and econometric methods. However, there are still some weaknesses
associated with machine learning or artificial intelligence approaches. Previously, kernel methods
have been prolific, theoretical, and algorithmic machine learning frameworks. The success of kernel
methods depends on good data representation or kernel design, and this has resulted in a lot of
research that focuses on kernel design, which is adapted to specific data types. Conversely, there
are also several generic kernel-based algorithms for typical learning tasks. The strength of SVMs is
that they use structural risk to regularize model complexity, which leads to excellent generalization
properties in out-sample forecasting. The mathematical formulation of an SVM is ideal because its
objective function is convex with a unique solution. Consequently, the solution searching or parameter
optimization algorithms are easier than those in neural network (NN) models. The kernels are typically
hand-crafted and fixed in advance, and the roles of the kernel in an SVM can be divided into two parts:
(1) it defines the similarity between two examples, and (2) it simultaneously acts as a regularization for
the objective function.

Hand-tuning kernel parameters is difficult, as the appropriate sets of features need to be selected
and combined. On the other hand, traditional SVMs are based on a single kernel, whereas in real-life
applications data comes from multiple sources, and therefore, the representation by a single kernel is
not sufficient. The combination of multiple kernels is a good solution; however, determining the process
to combine them presents another problem. Lanckriet et al. [27] sought to address this problem and
proposed an idea to learn the multiple kernels from training data. Their solution was to learn the target
kernels as a linear combination of given basis or local kernels. Following Lanckriet et al. [27], various
multiple kernel learning (MKL) formulations and modifications have been proposed. The success of
MKL stems from the fact that using multiple kernels can enhance the interpretability of the decision
function, and thus improve performance (Lanckriet et al. [27]). However, the number of the basis
kernels that we need to consider is exponential in the dimension of the input space. Considering
this decomposition for MKL directly is intractable. To address the issue of selecting basis kernels
more efficiently, Bach [28,29] proposed a useful framework to design the MKL kernels. Owing to
the fact that data features of modern time series are complex, compositional, and hierarchical, using
the natural hierarchical (or deep) structure of the problem for the kernel design of MKL is a good
solution. The suggestion made by Bach [28,29] involves embedding the kernels in a directed acyclic
graph (DAG). The kernels embedded in a DAG form provide an excellent deep representation of the
data features. Another contribution from Bach [28,29] is the proposal to perform high-dimensional
kernel selection through a graph-adapted sparsity-inducing norm. Using the norm, the selection can
be completed in polynomial time in the number of selected kernels.

Recently, deep learning (DL, Bengio et al. [30], Schmidhuber [31]) or deep representations (DR)
have become very popular. As opposed to task-specific algorithms, DL aims to learn the data
representation. Consequently, DL is also known as deep structured learning or hierarchical learning.
In machine learning methods, DL has become the new trend in overcoming complex data mining
problems. As previously mentioned, kernel methods are usually shallow models that cannot fully
represent or capture complex, compositional, and hierarchical data features. This study aimed to
combine the strengths of DL (or DR) and MKL. The kernels used in this study were embedded in
a hierarchical directed acyclic graph, which is a deep representation form for real data. In the past
few years, DL has become very popular in many fields of computer science, and the most recognized
applications are in computer vision and natural language processing. With the advancement in
storage technology, there are considerable quantities of labeled data available for training a model.
This allowed us to learn large numbers of model parameters in DL without having to be concerned
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about overfitting. Another factor contributing to the success of DL is the rapid development of the
Graphics Processing Unit (GPU). The computing power of the GPU grows very fast, whereas traditional
complex DL model using CPU (Central Processing Unit) training requires weeks of computations.
The training can be completed in a day on a GPU (see, e.g., He et al. [32], Ioffe and Szegedy [33],
Krizhevsky et al. [34], Simonyan and Zisserman [35]). This study sought to bridge kernel methods and
deep representations and ideally achieve the best of both worlds.

The remainder of this paper is organized as follows: Section 2 reviews the weaknesses and
strengths of prior research, including the support vector regression (a type of SVMs), feedforward
neural network (FFNN), radial basis functions (RBF) neural network, general regression neural network
(GRNN), and DLs. Section 3 describes the proposed model. Section 4 introduces the real data we used
to test the model, and discusses the empirical results. Finally, Section 5 is the conclusion.

2. Weaknesses and Strengths of Prior Research

2.1. Support Vector Regression

Based on the structured risk minimization (SRM) principle, support vector regression (SVR)
seeks to minimize an upper bound of the generalization error, instead of the empirical error as in
other neural networks. The concept of SVR is to find suitable support vectors in the margin and
build the model according only to a subset of the training data. In the past, SVMs have achieved
great performance in various applications, yet in some cases it was not satisfactory. SVMs need to
overcome the following drawbacks: (1) Similar to NN models, the optimization algorithm needs
to tune a large number of model parameters. The general strategy is to employ genetic algorithms
(GA) or particle swarm optimization (PSO) algorithms to search for the best parameters (Huang and
Wang [36], Ren and Bai [37]). Despite the fact that the objective function of an SVM is convex and has
a unique solution, the parameter space is highly nonlinear and non-convex. Typical optimization (or
tuning) algorithms are not very effective for searching in the parameter space. Although searching for
optimal parameters by GA (or PSO) is an effective solution, this is time consuming and computationally
intensive. (2) In high-dimensional data, an SVM also cannot get rid of the curse of dimensionality
(Bellman [38]). For large-scale input data, the dimension of input space is very large, and the distribution
of data points becomes very sparse. This results in a sharp deterioration in the SVM’s performance.
(3) The representation of an SVM is not compact and concise, and it generally cannot produce sparse
models. For example, in a system of identification, Drezet and Harrison [39] demonstrated that the
model built by an SVM is not always parsimonious. (4) To make an SVM successful in many areas
of application, the choice of a good kernel and features is very important and relies heavily on data
processing experience.

2.2. Feedforward Neural Network

The notion of artificial neural networks was derived from biological neural networks. The neurons
process information through a non-linear sigmoid function, and consequently, NNs are effective at
non-linear data modeling. The strengths of NNs are in modeling complex relationships between inputs
and outputs and finding patterns in data. However, there are also certain weaknesses in NN models
including: (1) they depend on a large number of model parameters; (2) the solution space of NN is
not convex, and the optimization algorithm is often trapped into local minima in the training; (3) the
training of NN usually tends to be over-fitting, which results in a poor out-sample generalization; and
(4) traditional NNs are shallow models, and thus their representation is insufficient. These problems
are partially addressed by the technique of kernel methods or support vector machines.

2.3. Radial Basis Function and Generalized Regression Neural Networks

The radial basis function neural network (RBFNN) is in a special class of neural networks that
consists of an input layer, a hidden layer, and an output layer. The neurons in the hidden layer of an
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RBF contain Gaussian transfer functions whose settings makes the outputs inversely proportional to
the distance from the center of the neuron. The Generalized regression neural network (GRNN) is a
variation of the RBFNN. GRNNs represent an improved technique to the neural networks based on
nonparametric regression, and every training sample represents the mean to a radial basis neuron.
GRNN can be used for regression, prediction, and classification and can also be a good solution for
online dynamical systems. Similar to RBFNN, GRNN has the following advantages: (1) high accuracy
in the estimation because it uses Gaussian functions; (2) single-pass learning so backpropagation
would not be required; and (3) it can resist and handle noises in the inputs. However, there are still
some disadvantages in GRNN, for example, there is no optimal method to improve it, and its size
grows fast with the input dimension, which is computationally expensive.

2.4. Deep Learning

Deep learning is good at feature extractions and representations. It has achieved a remarkable
performance breakthrough in several fields (such as speech recognition, natural language processing,
and computer vision). In particular, convolutional neural network (CNN) architectures produce
state-of-the-art performance on a variety of image analysis tasks. Currently, the weakness of DL is that
most of DL research focused on dealing data with 1D, 2D, or 3D Euclidean spaces. However, most data
from energy or financial markets lies on high-dimensional non-Euclidean manifolds. Generalizing deep
learning methods to non-Euclidean structured data becomes very important. Applying differential
geometry to generalize DL is a good solution. The generalizing (or geometric) deep learning can thus
be applied to a variety of domains, such as network analysis, computational social science, computer
graphics, and so on. Another weakness of DL is that their computation is quite heavy. We need
multiple GPUs or cloud computing to accelerate the computation.

3. Deep (or Hierarchical) Multiple Kernel Learning

Kernel methods are popular learning frameworks and the basis of the approach can be stated
as follows: through non-linear transformations, we can transform the input space to a larger and
potentially infinite-dimensional feature space. Typically, the feature space is a reproducing kernel
Hilbert space (RKHS), which is a space of functions in which point evaluation is a continuous linear
functional. The advantage of RKHS is that it is more flexible and rich for feature representations than
original input space. Via representer theorems, with the kernel function and appropriate regularization
by Hilbertian norms, we can consider larger and potentially infinite-dimensional feature spaces without
computing the coordinates of data in that space, but rather by simply computing the inner products
between the images of all pairs of data in the feature space. This approach is called the “kernel trick”,
which is computationally cheaper than the explicit computation of the coordinates. This has led to
several studies on kernel design adapted to specific data types and generic kernel-based algorithms
for many learning tasks.

In practical applications, data comes from multiple sources. Classical kernel machines are based
on a single kernel, which is not capable of representing complex data sources. Consequently, it is more
desirable to construct learning machines based on combinations of multiple kernels. The approach
suggested by Bach [28,29] proposed a large feature space that is the concatenation of smaller feature
spaces, and for real-life application, considered a positive definite kernel that can be expressed as a
large sum of positive definite basis or local kernels. After the construction, we can apply multiple
kernel learning to select among these kernels. However, directly applying multiple kernel learning in
this decomposition is intractable because the number of these smaller kernels increases exponentially
in the dimension of the input space. In order to overcome the difficulty in basis kernel selections,
Bach [28,29] made an arrangement so that these small kernels could be embedded in a DAG, which
happens to be a hierarchical structure that is effective at deep representations.

The following description of DMKL follows Bach [28,29]. For the problem to consider predicting
a random variable Y from a random variable X, we defined X and Y to be spaces of X and Y. Given n
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observations (xi, yi), i = 1, . . . , n, the empirical risk in the estimation of a function f from X to R can
be defined as 1

n ∑n
i=1 l(yi, f (xi)), where l is a loss function.

Graph-Structured Positive Definite Kernels

To construct a larger kernel, k : X × X → R, we assumed that this positive definite kernel is
the sum, over an index set V, of basis kernels kv, v ∈ V; namely, for all x, x′, we have k(x, x′) =

∑v∈V kv(x, x′). For each v ∈ V , let’s denote Fv and φv as the feature space and feature map of kv,
i.e., kv(x, x′) = (φv(x), φv(x′)), respectively. Consequently, the larger feature map φ(x) and larger
feature space F of k can be expressed as the concatenation of the feature maps φv(x) for each kernel
kv, i.e, F = ∏v∈V Fv and φ(x) = (φv(x))v∈V . The learning algorithm of MKL tried to find for a
certain β ∈ F to form a predictor function f (x) = 〈β, φ(x)〉, which is equivalent to find jointly for
βv ∈ Fv, ∀ v ∈ V, and f (x) = ∑v∈V〈βv, φv(x)〉.

The goal of this research was to perform kernel selection among the kernels kv, v ∈ V. In order
to accelerate the searching, we only considered specific subsets of V. We limited the basis kernels to
be embedded in a graph, and as described by Bach [28], “instead of considering all possible subsets
of active (relevant) vertices, we are only interested in estimating correctly the hull of these relevant
vertices”.

We assumed that the input space X can be factorized into p-components X = X1 × · · · × Xp,
and that there are p sequences of length q + 1 of kernels kij(xi, x′i), i ∈ {1, . . . , p}, j ∈ {0, . . . , q}, such
that the larger kernel k(x, x′) = ∑

q
j1,...,jp=0 ∏

p
i=1 kiji (xi, x′i) = ∏

p
i=1(∑

q
ji=0 kiji (xi, x′i)). Thus we had a

sum of (q + 1)p kernels, that could be computed efficiently as a product of p sums. In this scenario,
the products of kernels was equivalent to interactions between certain variables. The basis kernels
embedding in a DAG implies that an interaction will be selected only after all sub-interactions are
already selected. The framework of DAGs are particularly suited to deep feature representations and
non-linear variable selection, and especially for the polynomial and Gaussian kernels.

In considering the linear kernel, kij(xi, x′i) = Cq
j 〈xi, x′i〉j, where 〈, 〉 stands for inner product; the

full kernel is then equal to k(x, x′) = ∏
p
i=1 ∑

q
j=0 Cq

j 〈xi, x′i〉j = ∏
p
i=1(1 + xix′i)

q. Please note that this
is not exactly the usual polynomial kernel. Typical polynomial kernels, k(x, x′) = (1 + xx′)q, are
multivariate polynomials of total degree less than q. Another example is the product of the Gaussian

kernel, ∑J⊂{1,...,p}∏i∈J e−b(xi−x′i)
2
= ∑J⊂{1,...,p} e−b||xJ−x′J ||2 , which is also known as all-subset Gaussian

kernel. ANOVA (analysis of variance) kernel is also famous in research. It is shown as follows:

K(x, y) =
d

∏
i=1

(1 + k(xi, yi)) = 1 +
d

∑
i=1

k(xi, yi) + ∑
i<j

k(xi, yi)k(xj, yj) + . . .

+
d

∏
i=1

k(xi, yi).

The optimal hierarchical multiple kernel learning could be formulated as the following
minimization problem:

min
β

1
n

n

∑
i=1

l(yi, ∑
v
〈βv, φv(xi)〉) +

λ

2
(∑

v
dv||βD(v)||)2, (1)

where ∑v dv||βD(v)|| = ∑v dv(∑w∈D(v) ||βw||2)1/2 is the structured block l1-norm; dv are positive
weights and D(v) is the descendant set of v (Since we are only interested in the hull of the selected
elements βv ∈ Fv, the hull of a set I is characterized by the set of v, such that D(v) ⊂ Ic, i.e., hull(I)
= {v ∈ V, D(v) ⊂ Ic}c. In our context, we are hence looking at selecting vertices v ∈ V for which
βD(v) = (βw)w∈D(v) = 0.). Penalizing by such a norm will indeed impose that some of the vectors
βD(v) ∈ ∏w∈D(v) Fw are exactly zero, thereby leading to sparse solutions.
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4. Experimental Results and Analysis

4.1. Data Sets Used for The Research

In modern society, our economy heavily depends on the energy sector. Investors all over the
world pay attention to oil prices, which are one of the most important global economic variables.
Energy markets are closely correlated with financial markets and are therefore economically linked.
In determining which variables to include in our study, gold and oil are two kinds of commodities to
hedge against inflation. In addition, since both gold and oil are globally traded in U.S. dollars, the
currency markets should also be considered. Typically, the U.S. dollar is more sensitive to oil than
gold. Consequently, this study proposed to consider the possible economic and financial linkages
between the oil, gold, and currency markets. The markets for oil and gold have been extensively
studied; however, in this analysis, we attempt to bring together these three markets and use recent
methodologies to uncover the emerging relationships.

The testing data used in this study include five major crude oil spot prices: West Texas
Intermediate (WTI), Brent, Forties, Dubai, and Oman. Brent and Forties are the reference for crude oil
in the North Sea, WTI is the reference for the America, and Dubai and Oman are the references for
the Middle East. This study aimed to forecast these crude oil spot prices, while taking the economic
and financial linkages among oil, gold, currency markets into account. This analysis included the gold
prices (New York), and the exchange rate between the U.S. dollar (USD) and the Taiwanese dollar
(TWD) to enhance the predictions. In total, we had 5 crude oil spot prices (WTI, Brent, Forties, Dubai,
and Oman), 2 financial prices (the gold prices and the U.S. exchange rate), and for every variable
we considered 2 time lags. Consequently, there were 14 ((5 + 2) × 2 = 14) input time series in our
model. The data covered the period from 1 May 2009 to 31 December 2010, and comprised of 435 daily
observations. The descriptive statistics of each variable are provided in Table 1.

Table 1. Descriptive statistics of each variable.

Brent WTI Dubai Oman Forties Gold US/TWD

mean 74.07 74.00 72.58 72.88 73.63 937.56 32.59
min 45.97 45.82 44.19 46.34 45.32 704.90 31.04
max 94.55 91.48 91.28 91.71 93.72 1217.40 35.17
standard deviation 9.78 9.35 9.44 9.13 9.71 109.15 0.80
median 75.67 75.20 74.17 73.62 75.10 926.90 32.35
skewness −0.71 −0.94 −0.97 −0.92 −0.73 0.29 1.01
kurtosis 3.57 3.80 4.13 4.14 3.57 2.66 3.77

Table 2 shows the p-value of the unit root test on every time series. We tested for a unit root
against a trend-stationary alternative, augmenting the model with 0, 1, and 2 lagged difference terms.
Under 1%, 5%, and 10% significance level, the results indicated that these tests failed to reject the null
hypothesis of a unit root against the autoregressive alternative, regardless of lagged 0, 1, or 2 difference
terms; namely, these time series are not stationary.

Table 2. The p-values of unit root tests.

0 1 2

Brent 0.1527 0.1426 0.1248
WTI 0.1980 0.1385 0.1490
Dubai 0.1496 0.1644 0.1595
Oman 0.1707 0.2160 0.1832
Forties 0.1406 0.1389 0.1219
Gold 0.2835 0.1887 0.2114
US/TWD 0.4931 0.4318 0.5146
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Market information is generated instantly every day, and therefore considering one-step-ahead
forecasting is enough in constructing a forecasting system. We needed to adaptively adjust the model
for the following day’s predictions. Moreover, in online applications, one-step-ahead forecasting
can also prevent cumulative errors from the previous period, which is important in out-of-sample
forecasting. This study used 300 data points before the day of prediction to serve as the training data.
The DMKL model was trained in a batch manner, and the window of the training data set slides with
the current prediction. Other models are trained in a similar manner, and the remaining 135 daily oil
prices served as the testing data to evaluate the performance of all prediction models. Two lagged
prices (Pt−1, Pt−2, two time lags) of each asset served as the explanatory or input variables for the
predictions. The flow diagram of the proposed system is shown in Figure 1.

WTI

Brent

Forties

Dubai

Oman

Gold

US/TWD

Delay

Delay

Delay

Delay

Delay

Delay

Delay

Directed 
Acyclic Graph 

(DAG)

Deep
Multiple Kernel 

Learning

Output

Figure 1. Flow diagram of the proposed system.

4.2. Model Settings and Performance Measurements

Traditionally, researchers use the mean square error (MSE), root mean squared error (RMSE), mean
absolute error (MAE), and the mean absolute percent error (MAPE) to measure the performance of a
model. Different indices emphasize distinct parts of errors, and are suitable for different applications.
This study compared the DMKL model with traditional predictors. These predictors include the
auto-regressive integrated moving average (ARIMA), the feed-forward neural network (FFNN), and
the generalized regression neural network (GRNN). This study adopted a general ARIMA(1, 1, 1)
model for its general good performance; specifically the order of the autoregressive part, the degree of
differencing, and the order of the moving-average part were all set to one. The FFNN and GRNN are
shallow network models with two layers. There are five sigmoid neurons in the first layer of FFNN,
and the initial spread of radial basis functions of GRNN was set to 1. The basis kernels used in the DAG
of DMKL were the union of ANOVA kernels with full interaction. Since we had 14 input variables
(7 original variables, each with two time lags), from the first order linear part (k(xi, yi)), second order
interaction (k(xi, yi)k(xj, yj)), third interaction (∏3

i=1 k(xi, yi)),. . . , to full interaction (∏14
i=1 k(xi, yi))

and then outputs, there were 15 (7× 2 + 1 = 15) layers with hundreds of kernels organized by the
DAG. The basis kernels are

⋃{
k(xi, yi), k(xi, yi)k(xj, yj), ∏3

i=1 k(xi, yi), . . . , ∏14
i=1 k(xi, yi)

}
. If we were

to include more input variables and more time lags, the depth of the DAG network would increase in
proportion to the input dimension.

4.3. Performance Comparison

Tables 3–6 list the results of the four models. Figures 2–6 detail the empirical results of the
proposed model including: the actual oil prices, predicted values, and model residuals. These figures



Energies 2018, 11, 3029 9 of 16

display the forecasting capabilities of the DMKL models and demonstrate that the proposed model
can instantaneously track price fluctuations. As shown by the four tables, DMKL performed the
best. FFNN was the second, ARIMA the third, and GRNN performed the worst. The DMKL model
significantly outperformed the others and it substantially reduced the forecasting errors. The FFNN,
ARIMA and GRNN are all shallow models. They cannot compete with DMKL.

Table 3. Performance of the DMKL model on major oil prices.

WTI Brent Forties Dubai Oman

RMSE 1.4934 1.4021 1.4677 1.5039 1.0440
MSE 2.2303 1.9658 2.1541 2.2616 1.0899
MAE 1.1966 1.1261 1.1840 1.2151 0.8391
MAPE 0.0150 0.0139 0.0148 0.0155 0.0107

Table 4. Performance of the ARIMA model on major oil prices.

WTI Brent Forties Dubai Oman

RMSE 4.1014 4.147 4.9432 3.9687 3.9804
MSE 16.8219 17.1979 24.4353 15.7504 15.8436
MAE 3.464 3.1505 3.8171 3.4091 3.3208
MAPE 0.0425 0.0373 0.0453 0.0445 0.0431

Table 5. Performance of the GRNN model on major oil prices.

WTI Brent Forties Dubai Oman

RMSE 4.7763 5.1177 5.0444 5.1320 5.6525
MSE 22.8131 26.1906 25.4463 26.3375 31.9504
MAE 3.9415 4.1265 4.0792 4.2214 4.6962
MAPE 0.0479 0.0487 0.0487 0.0519 0.0582

Table 6. Performance of the FFNN model on major oil prices.

WTI Brent Forties Dubai Oman

RMSE 2.2592 1.7016 2.1841 2.0506 2.2834
MSE 5.1041 2.8953 4.7703 4.2050 5.2140
MAE 1.8509 1.4178 1.7825 1.5793 1.9936
MAPE 0.0229 0.0175 0.0216 0.0195 0.0262
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Figure 2. The proposed model forecasts on WTI crude oil prices.
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Figure 3. The proposed model forecasts on Brent crude oil prices.
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Figure 4. The proposed model forecasts on Forties crude oil prices.
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Figure 5. The proposed model forecasts on Dubai crude oil prices.
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Figure 6. The proposed model forecasts on Oman crude oil prices.

Performance Comparison Using Theil’s U

Theil’s U coefficient indicates how well a forecasting model performs compared with naive
no-change extrapolation. It is different from the MSE, RMSE, MAE, and MAPE indices that emphasize
only the forecasting errors. As indicated in Theil [40], “Theil’s U will equal 1 if a forecasting technique is
essentially no better than using a naive forecast. Theil’s U values less than 1 indicate that a technique is
better than using a naive forecast. Hence, a value equal to zero indicates a perfect fit, and consequently,
a better model gives a U value close to zero.” The Theil’s U value can be divided into three components
including the bias, variance, and covariance. As the names suggest, the bias part accounts for the
bias between actual and predicted values, the variance part represents the inequality accounted for by
higher/lower variance in the simulated series, and the covariance part is the residual. Table 7 displays
the model performance measured by Theil’s U index.

As shown in Table 7, DMKL was approximately one order better than FFNN, ARIMA, and GRNN
based on the Theil’s U index. Figure 7 plots the results of Table 7. Table 8 provides the average error of each
model. Figures 8–12 displays the details of Table 8. As shown in Table 8, according to the performance
ranking measured by average errors, DMKL was the best, followed by FFNN, then by ARIMA, and lastly
the GRNN. The average RMSE, MAE, and MAPE errors of DMKL were approximately 1

4 than those of
the GRNN, and the reduction was even greater for the MSE.

Table 7. Performance comparison of the Theil’s U index.

WTI Brent Forties Dubai Oman

DMKL 0.0093 0.0086 0.0091 0.0095 0.0067
FFNN 0.0141 0.0104 0.0136 0.0130 0.0144
GRNN 0.0302 0.0319 0.0317 0.0330 0.0366
ARIMA 0.0259 0.0257 0.0311 0.0248 0.0252

Table 8. Average error of each model.

DMKL FFNN GRNN ARIMA

RMSE 1.38222 2.09578 5.14458 4.22814
MSE 1.94034 4.43774 26.54758 18.00982
MAE 1.11218 1.72482 4.21296 3.43230
MAPE 0.01398 0.02154 0.05108 0.04254
Theil’s U 0.00864 0.01310 0.03268 0.02654
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Figure 9. Performance comparison of the average MSE index.
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Figure 10. Performance comparison of the average MAE index.
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Figure 11. Performance comparison of the average MAPE index.
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5. Conclusions

This study focused on developing advanced techniques in oil price forecasting, which is one basis
for implementing an effecting hedging or trading strategy. The success of the proposed forecasting
model was derived from the combination of multiple kernel machines and deep kernel representation.
Deep kernel representation provides a solid foundation for extracting the key features of oil price
dynamics. The kernels embedded in a directed acyclic graph provides a deep model that is good at
representing complex, compositional, and hierarchical data features. This study used a deep multiple
kernel learning for oil price forecasting that eliminated the drawbacks of traditional neural network
and support vector machine models. DMKL is successful at high-dimensional data representation
and performing non-linear variable selection. By using DMKL, we can both select which variables
should enter and the corresponding degrees of interaction complexity. This study applied five major
crude oil prices for testing. Empirical results showed that our model was robust, and it systematically
outperformed traditional neural networks and regression models. The new model significantly reduced
the forecasting errors.

This study developed a highly effective framework for energy commodity price forecasting.
The proposed model combines the strengths of kernel methods and deep learning. It can achieve better
performance easily. The strength of kernel methods is that they can learn a complex decision boundary
with only a few parameters by projecting the data onto a potentially infinite-dimensional reproducing
kernel Hilbert space. On the basis of kernel methods and deep learning, the proposed model works
by combining multiple kernels within each layer to increase the richness of representations, and by
stacking many layers to process a signal in an increasingly abstract manner. Oil price dynamics are
complex, nonlinear, and non-stationary. Traditional models tends to be linear, parametric, and shallow,
which are not suitable for oil price forecasting. Extracting data features in an abstract manner using a
directed acyclic graph (as in our study) is a good strategy to handle complex oil price dynamics.

In summary, the effective framework of this study is also suitable for applications in other forecasting
problems. With the leverage of cloud computing, or multiple GPUs on the CUDA (Compute Unified
Device Architecture) platform, the system can be applied to online forecasting. Energy commodity
investors can also apply the proposed system to effectively hedge their risk in global investments.

Implications and Limitations of This Study, and Suggestions for Future Research

Oil is an important energy commodity, and its price is influenced by many factors, which makes
capturing its dynamics quite challenging and leads to difficulties in forecasting. However, with the
advances in electronic transactions, vast amounts of financial market data can been collected in real
time. Owing to the real time information flow, global markets are closely correlated with instant
interactions, especially in the oil and financial markets. This study used information from oil, gold,
and currency markets to serve as multiple inputs for our forecasting system. Considering more real
time information from global markets is not difficult for future research. However, the computational
loading is heavy. Implementing the algorithm in an IC (Interrgrated Circuit) chip is a good solution to
achieve the real time response.

There are certain limitations in the study, which may in turn provide fruitful avenues for future
studies. First, the DMKL model working in time domains may be not very effective at capturing oil
price dynamics. Transforming to a good feature space, such as wavelet domain, could enhance the
prediction. However, this would have required more computations, and the loading would be heavier
for our algorithm. Second, for simplicity and reducing computation loading, this study employed a
global model. The weakness of global models is that they cannot fit each dynamic region very well.
However, their strength is that they are easy to implement and are suitable for online applications.
Third, this study used data sets of oil, gold, and currency markets only. There are other factors
that are also influential in oil prices, such as the supply, demand, GDP, consumer price levels, and
commodities markets, and future studies may consider these variables. Fourth, trading is also an
important issue for future research. There are many strategies to trading, which poses several issues
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in finance, for example, price trading, volatility trading, paired trading, and hedge trading, which
were beyond the scope of this study. Further investigation is required to determine how to effectively
use the forecasting power of this study for trading requirements. Finally, market data that can be
collected becomes very large. Complex high-dimensional data tends to obscure the essential feature
of data. Identifying intrinsic characteristics and structure of high-dimensional data is important for
various fields of research, not limited to the oil price forecasting. Due to the curse of dimensionality,
considering sparse modeling (coding) or dimensionality reductions (such as manifold learning) for
high-dimensional data will be very important in performance improvements.
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