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Abstract: The failure of wind turbines is a multi-faceted problem and its monetary impact is often
unpredictable. In this study, we present a novel application of survival analysis on wind turbine
reliability, including accounting for previous failures and the history of scheduled maintenance.
We investigated the operational, climatic and geographical factors that affect wind turbine failure
and modeled the risk rate of wind turbine failure based on data from 109 turbines in Germany
operating for a period of 19 years. Our analysis showed that adequately scheduled maintenance
can increase the survival of wind turbine systems and electric subsystems up to 2.8 and 3.8 times,
respectively, compared to the systems without scheduled maintenance. Geared-drive wind turbines
and their electrical systems were observed to have 1.2- and 1.4- times higher survival, respectively,
compared to direct-drive turbines and their electrical systems. It was also found that the survival of
frequently-failing wind turbine components, such as switches, was worse in geared-drive than in
direct-drive wind turbines. We show that survival analysis is a useful tool to guide the reduction of
the operating and maintenance costs of wind turbines.
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1. Introduction

Wind energy is being deployed increasingly and its global capacity has doubled over the last six
years [1]. Although the availability of wind turbines has reached 98% level in European wind farms [2],
improvements of reliability are still needed. The problem is two-fold, one is the high operation and
maintenance (O&M) cost, the other is the lost energy production. Wind turbines are monitored during
scheduled maintenances and/or by condition monitoring systems to sustain uninterrupted energy
production and to avoid high O&M costs. The scheduled maintenance included visual inspection,
non-destructive testing methods such as ultrasound and acoustic emissions, and oil level testing
and vibration analysis, while condition monitoring systems consist of pressure, heat and vibration
sensors [3,4]. Wind farm operators need to develop either new techniques or new decision support
tools for their O&M strategies in order to reach the goal of maximizing energy production while
minimizing O&M costs.

The failure of wind turbines is due to multiple factors and often also due to unpredicted problems
that deserve further analysis [5]. Our aim is to the investigate factors that impact on wind turbine
survival and inform the actions that need to be taken to reduce the potential for failures. It is expected
that proactive maintenance would decrease failure rates and the associated magnitude of consequences
in wind turbines, but this has not previously been quantified. Furthermore, being prepared to respond
to failures with readily available spare parts decreases downtime, thus increasing the availability of
wind turbines. Hence, spare parts management can be organized in an optimum way and downtime
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can be reduced significantly by means of reliability predictions for wind turbines, as applied in other
industries [6].

In this study, we investigate the potential factors affecting wind turbine failure and model the
hazard rate of wind turbine failure using survival analysis, considering operational, climatic and
geographic factors.

2. Literature Review

There are several studies determining the potential causes and failure mechanisms of wind
turbine failures. Tavner et al. [7] investigated the impact of wind speed on wind turbine reliability
and subassemblies of wind turbines in Denmark, and concluded, by using cross-correlation analysis,
that the generator, yaw control, mechanical brake and hydraulic systems are more prone to being
affected by weather than other subassemblies. Leite et al. [8] used the Markov process to model
wind speed characteristics, turbine failure and repair rates and types of turbine, and evaluated the
availability factor for Brazil. Hau et al. [9] discussed the main causes and most commonly affected
components in wind turbines and mentioned that proximity to the sea increases the possibility of
corrosion and eventually failure of a wind turbine. Faulstich et al. [10] investigated different factors,
considering their impact on the failure rates of wind turbines using a reliability ranking method.
It was shown that wind turbines located close to seawater and in highlands, with high wind speeds,
suffer high failure rates [10]. Fischer et al. [11] proposed reliability-centered maintenance for the
wind turbine components that were the main drivers of unavailability when components such as the
gearbox, generator, electrical system, and hydraulic system failed. They concluded that vibration is
the main cause of the mechanical failure of these wind turbine components. Tavner [12] investigated
the impact of weather conditions on off-shore wind turbine operations. He concluded that high wind
speed, turbulence and wind gusts lower the reliability of the wind turbine blade, pitch and mechanical
drive train, whereas temperature and humidity affected the electrical rather than the mechanical
components. Wilson and McMillan [13] produced failure probabilities for offshore wind turbines using
onshore reliability data and offshore weather data and applying Markov chains and Monte Carlo
simulation. It was concluded that temperature and humidity have a lower impact than wind speed
on offshore wind turbine failures [13]. Stafell and Green [14] used actual and theoretical load data
for 282 wind farms in the UK and examined whether the turbine age had an impact on the failure
rates. They concluded that aging increases either the failure rate or downtime or both, since there
was a significant power reduction with age. Perez et al. [15] compared the failure rates and downtime
values based on different turbine types and aspects and reported that direct-drive turbines have the
highest sum of failure rates than geared-drive wind turbines. Reder et al. [16] proposed a framework
to analyze supervisory control and data acquisition (SCADA) data using a priori rule mining and
k-means clustering techniques and determined the effects of weather conditions on wind turbine
failures. They found that winter is the season in which failure frequencies increase, whereas wind
speed did not impact the occurrence of failure.

Slimacek and Lindqvist [17] analyzed the reliability of wind turbines using a Poisson process and
survival analysis, consider different factors such as the type of turbine, size of the turbine, harshness of
the environment, installation date and seasonal effects, applied to the WMEP (Scientific Measurement
and Evaluation Program) database. They concluded that turbine reliability has improved over the
years and external factors such as lighting, icing and high wind increased the failure rate by 1.7 times.
Mazidi et al. [18] proposed a hybrid methodology based on neural networks and a proportional hazard
model (PHM) for the maintenance management of wind turbines. They used SCADA data to develop
a model using PHM to determine the stress conditions of wind turbines. However, they did not
consider external factors due the data constraints. Carlos et al. [19] applied Monte Carlo simulations
for maintenance optimization purposes using a generic failure database and wind speed data from a
Spanish database. They concluded that the optimum scheduled maintenance interval should be 113
days instead of the general industrial application of 180 days. Andrawus [20] proposed an optimal



Energies 2018, 11, 3034 3 of 20

scheduled maintenance interval of 30 days for a 26 × 600-kW wind farm, whereas Kerres et al. [21]
found that corrective maintenance that is carried out after a failure is a better option for a V44–600
kW turbine.

The cited studies investigate the reliability of wind turbines and generally use the average failure
rate per turbine as a metric for the reliability of wind turbines. However, in all these studies the survey
period ended before the wind turbines came to their end-of-life [7,8,10,11]; this type of data is called
censored data. Therefore, survival analysis that accounts for the censorship is a better fit to evaluate
the reliability of wind turbines and assess the factors that affect the failure of wind turbines. Also,
to the authors’ knowledge, to date no study has applied survival analysis to model the hazard rates in
order to determine the variable impact of factors such as wind speed, turbine age, distance to seawater
and elevational location on wind turbine reliability, although these variables are mentioned in the
different studies discussed above. Furthermore, we did not find any published studies quantifying
hazard rates through the use of survival analysis based on the scheduled maintenance and history of
failure of wind turbines.

Survival analysis has been successfully used to determine the factors impacting on the reliability of
mechanical and civil infrastructure systems [6,22]. The International Energy Agency (IEA) recommends
applying survival analysis to investigate wind turbine reliability in order to develop optimum
maintenance strategies [23]. Our study shows a first-time application of survival analysis, including
new potential-risk-related variables such as the number of previous failures and the history of
scheduled maintenance. The results can guide maintenance optimization and spare parts management.

3. Methodology

We investigated the survival of wind turbines, subsystems and parts of a subsystem through
a combination of three methodologies. Firstly, we applied survival analysis to wind turbines from
a systems perspective using selected factors (e.g., climatic regions, elevational location, distance to
coast, mean annual wind speed, turbine age, turbine type, number of previous failures and scheduled
maintenance history); secondly, we investigated the factors affecting only a critical subsystem; and
lastly, we applied survival analysis to frequently failing non-repairable components in order to
determine the factors that impact the survival of wind turbine components.

3.1. Survival Analysis

Survival analysis is a statistical technique that analyzes time-to-event data. In this study, survival
analysis was utilized to investigate the time-to-failure of wind turbines as a system, a critical subsystem
of wind turbines, and parts of a critical subsystem.

Survival analysis has the advantage over regular regression methods of dealing with censorship
when there is no information regarding the exact time that a failure occurred.

The survival function demonstrates the probability of a turbine surviving beyond time t. The
basic equations to define the survival analysis are presented in Equations (1)–(5) [22]:

F(T) =
∫ T

0
f (x)dx (1)

S(t) =
∫ ∞

T
f (x)dx = 1 − F(T) (2)

S(t) = exp[−
∫ T

0
h(x)dx] = exp[−H(T)] (3)

h(T) = f(T)/S(T) (4)

H(T) =
∫ ∞

T
h(x)dx = − ln[S(T)] (5)
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where T is the time to failure, f (x) is the probability density function of having a failure at time x, and
F(T) is the cumulative distribution function showing that a turbine survives until time T. Also, S(t) is
the survival function that denotes the probability of survival beyond time T, H(T) is the hazard rate
that represents the probability that a turbine at time T would fail during the next time interval, and
H(T) is the cumulative hazard function.

We identified the probability of failure of a wind turbine at a certain time using the Kaplan–Meier
estimator [24] and estimated the cumulative hazard using a Nelson–Aalen estimator [25], while
comparing the survival of separate groups of wind turbines by applying statistical tests such as a
log-rank test [26], which will be explained in the next sections.

3.1.1. Non-Parametric Survival Analyses: Kaplan–Meier and Nelson–Aalen Estimators

The Kaplan–Meier estimator is a non-parametric method that does not make assumptions for any
distribution. Equation (6) defines the Kaplan–Meier estimator [24]

Ŝ(t) = ∏
j:tj≤t

nj − dj

nj
(6)

where dj is the number of individuals that have an event at time tj where j = 1, . . . , k; mj is the number
of individuals censored in the interval [tj, tj + 1); and nj = (mj + dj)+ . . . + (mk + dk) is the number of
individuals at risk just prior to tj [24].

On the other hand, the Nelson–Aalen estimator is a non-parametric method to estimate and plot
the cumulative hazard function [25]

HNA(t) = ∑
ti≤t

di
ni

(7)

where di is the number of individuals that have an event at time ti and ni is the total individuals at risk
at time ti.

3.1.2. Log-Rank Test for the Significance of Survival

The log-rank test is used to test the null hypothesis that there is no statistically significant
difference between two groups in the probability of an event. The test statistic is the sum of (O −
E)2/E for each group where O is observed, and E is the expected number of events. The obtained test
statistical value is checked in a Chi-distribution table and the corresponding p-value represents the
probability of the event occurring by chance [23].

3.1.3. Semi-Parametric Survival Analysis: Cox Proportional Hazard Model

The Cox proportional hazard model (PHM), also known as the Cox model, includes a parametric
baseline hazard function along with a non-parametric hazard ratio. Cox PHM is [22]

h(t, z) = h0(t)ezB (8)

where h0(t) is the baseline function, z is the variable and B is the hazard coefficient for the variable.
The hazard ratio between the two groups (z1 and z2) in a factor can be estimated using Equation (9).

HR(t, z1, z0) = eB(z1−z2) (9)

In this study the main interests were to determine the differences in the survival of wind turbines based
on selected factors using the Kaplan–Meier and Nelson–Aalen estimators, and to estimate the hazard
ratios of the factors that impact wind turbine failures by applying Cox regression. The calculations and
plots for the Kaplan–Meier and Nelson–Aalen estimations and Cox regression were obtained using
the statistical software SPSS V.25 [27]. Proportional hazard assumptions were checked graphically by
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log-minus-log (survival) against survival time graphs. Cox PHM was applied until only significant
factors remained, with p-values less than 0.05. The results of the Cox regression are presented in tables
consisting following Cox regression parameters:

• Standard error (SE): the SE of the estimate shows the accuracy of the estimation for the
observed value.

• Wald statistic: The Wald statistic is the ratio of the regression coefficient B to SE. It is used to
evaluate the significance of the B coefficients of factors.

• Degrees of freedom: df represents the number of sub-factors that are compared against a factor.
For example, design type has two sub-factors, direct and geared, thus the df is 2 − 1 = 1.

• Significance level (sig.): The probability of the coefficient occurring by chance for a specific factor.
• Exp (B): The hazard ratio from the Cox regression is given as Exp (B).
• Confidence intervals (CI) of 95%: 95% upper and lower levels of coefficients resulting from

the regression.

4. Case Study Based on WMEP Data

In this study, the application of survival analysis to determine the factors of wind turbine
reliability was demonstrated by a case study of wind turbines in Germany. The survival analysis
involved the investigation of wind turbine failures recorded in the WMEP database, which covers
wind turbines operated in Germany between 1989 and 2008. Fraunhofer Institute for Wind Energy
and Energy System Technology (IWES, formerly ISET e.V.) carried out the “Wissenschaftliches Mess-
und Evaluierungsprogramm” (WMEP), a continuous monitoring project initiated and funded by the
German government (Faulstich, S.; Durstewitz, M.; Hahn, B.; Knorr, K.; Rohrig, K. Windenergy Report
Germany 2008: written within the research project Deutscher Windmonitor, 2009). In total, around
63,000 reports on maintenance and repair measures were collected and form one of the most significant
collections of reliability data. The events in the WMEP database include scheduled maintenance,
scheduled maintenance with replacement or repair, and unscheduled maintenance with a replacement
or repair. The WMEP survey collected O&M data from more than 1500 wind turbines, in this study
data from 575 of these were ready to be utilized, covering 6188 turbine years of operation and including
19,242 events involving a repair or replacement.

A participant turbine in this study was defined according to the chosen methodological approach;
these are shown in Figure 1. According to the systems and subsystems approach, a participant was
a wind turbine with a time interval from either the commissioning date or a start date of a failure to
either another start of a failure or the end of a survey. In some cases, in the failure data of systems and
subsystems, there were unscheduled maintenances that started before the previous failure was resolved.
Therefore, for the application of the survival analysis for non-repairable components, a participant was
defined as a wind turbine with a time interval between either the commissioning or the replacement
of a component and either the start of a failure of a component or the end of a survey. The wind
turbine participant types 1, 2, 3 and 4 shown in Figure 1 are considered for the systems and subsystems
approach, and participant types 1, 3, 5 and 6 were used for the component approach, in which censored
values were included in participant types 3, 4 and 6. It must be noted that unscheduled maintenance
and scheduled maintenance with a repair or replacement, which are regarded as failure in the WMEP
database, were combined for the survival analysis. Also, it is noted that no distinction was been made
between initial and repeated participants in the analysis.
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4.1. Survival Analysis Factors

Table 1 lists the factors that were considered to have the potential to affect the reliability of wind
turbines. The details of the selected factors are provided in the subsections that follow. Some of the
factors that may impact the survival of wind turbines—such as production year, turbulence intensity,
presence of an online condition monitoring system (CMS), distance to service station, grid quality and
energy yield in the analysis—were not taken into account due to data limitations.

Table 1. Factors considered in the survival analysis.

Geographical and Environmental Factors Operational Factors

1. Koppen–Geiger Climatic Regions:
Cfb, Dfb, Dfc

5. Turbine age (years):
0–3, 4–14

2. Elevational location:
High land (>100 m), Low land (≤100 m)

6. Turbine type:
Geared-drive, Direct-drive

3. Distance to coast:
Coastal (0–20 km), Inland (>20 km)

7. Number of previous failures (NOPF)
Varies

4. Mean annual wind speed (MAWS)High (>6.25
m/s), Low (≤6.25 m/s)

8. Scheduled maintenance history:
Yes, No

4.1.1. Koppen–Geiger Climatic Regions

Koppen–Geiger is a climate classification that has been cited by about 5000 studies in a variety of
disciplines [28]. The Koppen–Geiger climatic regions are determined based on annual precipitation and
temperature records along with seasonal temperature records; they are based on 12,396 precipitation
and 4844 temperature data stations worldwide and employ various temperature and precipitation
criteria [28]. In Germany, there are four Koppen–Geiger climatic regions, as can be seen in Figure 2.
These are:

• Cfa: Temperate—without dry season—hot summer
• Cfb: Temperate—without dry season—warm summer
• Dfb: Cold—without dry season—warm summer
• Dfc: Cold—without dry season—cold summer

The criteria for the classification of the climatic regions of interest are provided in Table 2 [28]. The
first criterion, which is denoted by a capital letter (e.g., C or D), is a climate classification based on the
average temperature of the hottest and coldest months. The second criterion is a classification based on
the annual precipitation level. The last criterion is based on the summer or winter temperature records.
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Table 2. Criteria for the climatic region classification for Germany.

1st 2nd 3rd Description Criteria *

C Temperate Thot ≥ 10 & 0 < Tcold < 18

s - Dry Summer Psdry < 40 & Psdry < Pwwet/3

w - Dry Winter Pwdry < Pswet/10

f - Without dry season Not (Cs) or (Cw)

a - Hot Summer Thot ≥ 22

b - Warm Summer Not (a) & Tmon10 ≥ 4

c - Cold Summer Not (a or b) & 1 ≤ Tmon10 < 4

D Cold Thot ≥ 10 & Tcold ≤ 0

s - Dry Summer Psdry < 40 & Psdry < Pwwet/3

w - Dry Winter Pwdry < Pswet/10

f - Without dry season Not (Ds) or (Dw)

a - Hot Summer Thot ≥ 22

b - Warm Summer Not (a) & Tmon10 ≥ 4

c - Cold Summer Not (a, b or d)

d - Very Cold Winter Not (a or b) & Tcold < −38

* Thot = temperature of the hottest month, Tcold = temperature of the coldest month, Tmon10 = number of months
where the temperature is above 10, Pdry = precipitation of the driest month, Psdry = precipitation of the driest month
in summer, Pwdry = precipitation of the driest month in winter, Pswet = precipitation of the wettest month in summer,
Pwwet = precipitation of the wettest month in winter.

Figure 2 shows the wind turbine locations in Germany in the WMEP database that we used in
this study. In the WMEP database there are 427 wind turbines and 4526 turbine years in the Cfb region,
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122 wind turbines and 1346 turbine years in the Dfb region, 25 wind turbines and 306 turbine years in
the Dfc region.

4.1.2. Elevational Location

The elevational locations where the wind turbines operate were divided in two categories, namely
low land (≤100 m) and high land (>100 m). It must be noted that wind turbines in Germany are not
installed at higher altitudes and that the maximum elevation of the turbines considered in this study
was 800 m.

4.1.3. Distance to Coast

The wind turbines were also divided in two categories based on their proximity to seawater.
Turbines with a distance to the coast lesser than or equal to 20 km were described as “coastal”, the rest
of the turbines were described as “inland”.

4.1.4. Mean Annual Wind Speed (MAWS)

The mean annual wind speeds at 50 m height for the wind turbine locations was gathered from
the Global Wind Atlas for every event [29]. The MAWS values were divided in two categories, namely
“low” (lower than 6.25 m/s) and “high” (greater than or equal to 6.25 m/s).

4.1.5. Turbine Age

The turbine age categorization was based on the operational years at the initial date of the
participant. For example, if the turbine commissioning date was the participant’s start date, then the age
of that turbine was considered to be 0, if a participant’s start date was 370 days after the commissioning
date of the turbine, then the age of the turbine was considered to be 1. The age category 0–3 years was
considered as “infant” and 4–14 years was considered “mature”.

4.1.6. Turbine Type

The participants were categorized based on their associated wind turbine design types as “geared”
or “direct-drive”. Table 3 lists the number of participants associated with each design type.

Table 3. Sample data used for survival analysis of the switch component.

Turbine
Model

Time to
Failure (days) Status Design

Type
Climatic
Regions

Turbine Age
(years)

Distance
to Coast

Elevational
Location MAWS

Model A 675 Failed Geared Cfb 0–3 Coastal Low High
Model A 2978 Censored Geared Cfb 0–3 Coastal Low High
Model A 1572 Failed Geared Cfb 0–3 Inland Low Low
Model B 3849 Censored Direct Dfb 0–3 Coastal Low Low

4.1.7. Number of Previous Failures (NOPF)

The NOPF for a participant considered the number of previous failures that had occurred for a
turbine or a subsystem, depending on the methodological approach. In the wind turbine full system
approach any error was accounted for in the NOPF, while in the subsystem approach only failures
in the relevant subsystem were considered in the NOPF. Furthermore, the category intervals varied
according to the approach. For the wind turbine system approach, the categorization was divided into
five: 0–10, 11–20, 21–30, 31–40, 41+. For the electrical subsystem it was divided into four, namely 0–2,
3–5, 6–8, 9+, since less data points were involved in the subsystem investigation than in the complete
systems approach. For the component approach, the categorization was divided into two: 0–1 and 2+.
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4.1.8. Scheduled Maintenance History

The history of scheduled maintenance categorization in Germany was formed considering the
presence of any reported scheduled maintenance without a repair or replacement during the survey
period of a participant. Turbines in the WMEP database have routinely scheduled maintenance,
as certain measures in wind turbines must follow specific industry standards, such as the IEC 61400-1.
However, due to the lack of information in the WMEP database regarding the completion of scheduled
maintenance, the scheduled maintenance historical record must be taken as the reporting of scheduled
maintenance rather than carrying out them. The IEC 61400-1 standard leads designers through the
whole life-cycle of a turbine, from design via operation and maintenance (O&M) to decommissioning.
With regard to O&M, the designer has to establish all requirements regarding how to handle special
wear parts, safety-related components, greasing, and so on, and also how and when to provide
service. A typical period for recurrent inspections has until now been three to six months, while
currently designers tend to prolong the period to twelve months, at least for offshore wind turbines.
The operator’s manual has to state all these requirements and is part of the documents given to
a certification body to prove the design assumptions and calculations alongside all accompanying
documents. All requirements in the technical documents and certificates will then become part of the
mandatory preconditions when the government in charge issues the building and operation permit.
Furthermore, the scheduled maintenance history is only considered a factor in system and subsystem
approaches. Due to the overwhelming number of participants with a scheduled maintenance history,
compared to those participants with no scheduled maintenance history between two component
failures, scheduled maintenance was not considered a factor in the component approach of our study.

Table 3 shows sample participants and the associated factors used for the component approach in
this study.

4.2. Selected Turbine Aspects

Table 4 shows the number of participants based on the methodological approaches discussed
above. The most commonly represented direct-drive and geared-drive turbine models, with a
500 kW power production capacity were selected. For the subsystem approach, the electrical
subsystem was investigated, as different studies have found it to be the most frequently failing
subsystem [2,10,30]. There were 39 geared-drive turbines, adding up to 432 operational years and 70
direct-drive turbines with a total of 733 operational years. Furthermore, fuses and switches, which
are the two most-frequently failing electrical subsystem components in the WMEP database, were
considered for the component survival investigation in this study.

Table 4. Number of wind turbine participants considered in this study.

Characteristics
Wind Turbine
System Study

Electrical Subsystem
Study

Component Study

Fuses Switches

Turbine type Geared Direct Geared Direct Geared Direct Geared Direct
Number of participants 1477 3334 269 704 47 123 157 126

5. Results

5.1. Wind Turbine System Approach

We used Nelson–Aalen cumulative hazard plots to visualize the differences in factors, since the
Kaplan–Meier survival probability graphs do not distinguish differences well when many data points
are involved. The most significant distinctions in the cumulative hazard functions in Figure 3 are
depicted in the design type and history of scheduled maintenance graphs in Figure 3a,d, respectively,
where there was no significant time-dependency in the distinction. On the other hand, the impact of
the climatic region, turbine age, distance to coast, elevational location, NOPF and MAWS, seemed
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to be time-dependent (as shown in Figure 3b,c,e–h). Thus no definitive conclusions could be drawn
related to these factors due to the violation of the Cox regression proportionality assumption. Table 5
summarizes the results of the log-rank tests where one can see that the numerical results support the
graphic representation of the design type and the impact of the history of scheduled maintenance on
the survival of the wind turbines. From these results, it is inferred that direct-drive wind turbines are
significantly more prone to failure than geared-drive wind turbines. A wind turbine that has a history
of scheduled maintenance has significantly higher survival than a wind turbine with no scheduled
maintenance history, as can be seen in Figure 3d. Moreover, the Cox regression modelling showed that
direct-drive turbines were found to be 25% riskier than geared-drive wind turbines, while scheduled
maintenance made a wind turbine 2.8 times safer, as can be seen in Table 6. The lower survival rate of
the direct-drive wind turbines can be attributed to its lower maturity compared to the geared-drive
wind turbines. The higher risk of failure of wind turbines with no scheduled maintenance history was
expected, since scheduled maintenance activities are carried out to improve the reliability of wind
turbines. On the other hand, the climatic regions shown in Figure 3b seem to not follow any pattern
in terms of cumulative hazards, whereas lower turbine ages seem to have a higher hazard rate that
diverges in time in Figure 3c. It can be seen in Figure 3e that coastal turbines had a slightly lower
hazard rate than inland turbines around the first 500 days of operation and that this was reversed after
that time; wind turbines at high elevations had a higher hazard rate than those at lower elevations
around the first 700 days, as shown in Figure 3f, this also reversed after that time. It can be inferred
from Figure 3g that the smaller the number of previous failures, the greater the likelihood that a turbine
will fail again after around 500 days. Also, as observed from Figure 3h, at least for the data considered,
MAWS was not a definitive parameter, enabling the conclusion that wind speed affects the survival of
a wind turbine as a system.

Energies 2018, 11, x FOR PEER REVIEW  10 of 19 

 

had a higher hazard rate than those at lower elevations around the first 700 days, as shown in Figure 
3f, this also reversed after that time. It can be inferred from Figure 3g that the smaller the number of 
previous failures, the greater the likelihood that a turbine will fail again after around 500 days. Also, 
as observed from Figure 3h, at least for the data considered, MAWS was not a definitive parameter, 
enabling the conclusion that wind speed affects the survival of a wind turbine as a system.  

Table 5. Log-rank test results for comparison of the effect of factors impacting on wind turbine 
system failures. 

Factors Groups 
Test Statistics 

Chi-Square Sig. 
Design type Direct vs. Geared 53.01 0.000 

Scheduled maintenance history No vs. Yes 991.01 0.000 

Table 6. Cox regression results for the factors that satisfy the proportionality assumption. 

Factors B SE Wald Df Sig. Exp (B) 
95.0% CI for Exp (B) 
Lower Upper 

Design type 0.22 0.035 39.3 1 0.000 1.25 1.16 1.34 
Scheduled (Y/N) 1.02 0.033 935.2 1 0.000 2.77 2.59 2.95 

 

  
(a) (b) 

 
(c) (d) 

Figure 3. Cont.



Energies 2018, 11, 3034 11 of 20

Energies 2018, 11, x FOR PEER REVIEW  11 of 19 

 

  
(e) (f) 

 
(g) (h) 

Figure 3. Nelson–Aalen cumulative hazard functions of wind turbines based on the operational, 
climatic and geographical factors. (a) Design type (b) Climatic regions (c) Turbine age (d) Scheduled 
maintenance history (e) Distance to coast (f) Elevational location (g) NOPF (h) MAWS. 

5.2. Survival Analysis of the Electrical Subsystem  

The survival of electrical subsystems based on the operational, climatic and geographic factors 
are depicted in Figure 4; notable differences are observed in the history of scheduled maintenance, 
wind turbine design type, distance to coast and elevational location of the wind turbines. The design 
type and history of scheduled maintenance have a consistent distinction independent of time, as 
shown in Figure 4a,d, respectively, while the climatic region, turbine age, distance to coast, 
elevational location and MAWS are time-dependent factors, as shown in Figure 4b,c,e–h, 
respectively. Table 7 summarizes the log-rank test results and indicate that there is a significant 
difference between participants with geared-drive and direct-drive wind turbines, as well as 
participants with no prior scheduled maintenance and turbines with prior scheduled maintenance. 
Furthermore, Table 8 provides the Cox regression results, showing that electrical systems in 
direct-drive wind turbines had a 42% higher risk of failure than those in geared-drive wind turbines, 
while electrical systems with no scheduled maintenance history had a risk of failure 3.8 times greater 
than electrical systems with a scheduled maintenance history. It can be inferred from Figure 4c that 
the impact of turbine age on the survival of electrical systems varies with time. Electrical systems in 
turbines that were 0–3 years old showed higher survival around their first 1460 days of operation 
(counting from the participant entry date) than turbines that were 4–14 years old; this subsequently 
reversed. Although electrical systems in wind turbines in coastal and high elevation locations seem 
to have lower survival, as can be seen in Figure 4e,f, the Cox regression results presented in Table 8 
indicate that these two parameters are not significant. NOPF and MAWS did not satisfy the 
proportionality criterion for Cox regression, since the survival of electrical systems based on these 
factors vary with time. Nevertheless, one can see from Figure 4g,h that a smaller number of previous 
failures and high MAWS increases the survival of electrical systems.  

Figure 3. Nelson–Aalen cumulative hazard functions of wind turbines based on the operational,
climatic and geographical factors. (a) Design type (b) Climatic regions (c) Turbine age (d) Scheduled
maintenance history (e) Distance to coast (f) Elevational location (g) NOPF (h) MAWS.

Table 5. Log-rank test results for comparison of the effect of factors impacting on wind turbine
system failures.

Factors Groups
Test Statistics

Chi-Square Sig.

Design type Direct vs. Geared 53.01 0.000
Scheduled maintenance history No vs. Yes 991.01 0.000

Table 6. Cox regression results for the factors that satisfy the proportionality assumption.

Factors B SE Wald Df Sig. Exp (B)
95.0% CI for Exp (B)

Lower Upper

Design type 0.22 0.035 39.3 1 0.000 1.25 1.16 1.34
Scheduled (Y/N) 1.02 0.033 935.2 1 0.000 2.77 2.59 2.95

5.2. Survival Analysis of the Electrical Subsystem

The survival of electrical subsystems based on the operational, climatic and geographic factors
are depicted in Figure 4; notable differences are observed in the history of scheduled maintenance,
wind turbine design type, distance to coast and elevational location of the wind turbines. The design
type and history of scheduled maintenance have a consistent distinction independent of time, as
shown in Figure 4a,d, respectively, while the climatic region, turbine age, distance to coast, elevational
location and MAWS are time-dependent factors, as shown in Figure 4b,c,e–h, respectively. Table 7
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summarizes the log-rank test results and indicate that there is a significant difference between
participants with geared-drive and direct-drive wind turbines, as well as participants with no prior
scheduled maintenance and turbines with prior scheduled maintenance. Furthermore, Table 8 provides
the Cox regression results, showing that electrical systems in direct-drive wind turbines had a 42%
higher risk of failure than those in geared-drive wind turbines, while electrical systems with no
scheduled maintenance history had a risk of failure 3.8 times greater than electrical systems with a
scheduled maintenance history. It can be inferred from Figure 4c that the impact of turbine age on
the survival of electrical systems varies with time. Electrical systems in turbines that were 0–3 years
old showed higher survival around their first 1460 days of operation (counting from the participant
entry date) than turbines that were 4–14 years old; this subsequently reversed. Although electrical
systems in wind turbines in coastal and high elevation locations seem to have lower survival, as can be
seen in Figure 4e,f, the Cox regression results presented in Table 8 indicate that these two parameters
are not significant. NOPF and MAWS did not satisfy the proportionality criterion for Cox regression,
since the survival of electrical systems based on these factors vary with time. Nevertheless, one can
see from Figure 4g,h that a smaller number of previous failures and high MAWS increases the survival
of electrical systems.
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Table 7. Log-rank test results for the comparison of the factors impacting on electrical subsystem
failures.

Factors Groups
Test Statistics

Chi-Square Sig.

Design type Direct vs. Geared 22.77 0.000
Scheduled maintenance history No vs. Yes 351.76 0.000

Table 8. Cox regression results for electrical system failures.

Factors B SE Wald df Sig. Exp (B)
95.0% CI for Exp (B)

Lower Upper

Design type 0.35 0.080 18.99 1 0.000 1.42 1.21 1.66
Scheduled (Y/N) 1.34 0.075 319.29 1 0.000 3.81 3.30 4.42

Elevational location 0.06 0.077 0.68 1 0.408 1.07 0.916 1.24
Distance to coast 0.04 0.087 0.20 1 0.652 1.04 0.88 1.23

5.3. Survival Analysis for Components of the Electrical Subsystems

Fuses and switches were selected for survival analysis of the electric subsystems of wind
turbines, since both components have the highest frequency of failure, as well as being non-repairable
components. Fuses provide overcurrent protection, while switches start and stop electrical circuits in a
wind turbine [31,32]. They are both discarded after a malfunction since they lose their functionality.
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Therefore, it is assumed that NOPF and scheduled maintenance would not have an impact on the
survival of fuses and switches, for this reason, these factors were not included in the survival analysis.

5.3.1. Survival Analysis for Fuses

Figure 5a,c depict the dependence of survival on the design type and age of wind turbines.
The Cox regression results presented in Table 9 show that design type and turbine age are significant
factors impacting fuse failure in wind turbines. Fuses in direct-drive wind turbines have a three
times higher risk of failure than fuses in geared-drive wind turbines. Since fuse failures occur due to
overcurrent, it might be claimed that direct-drive wind turbines might have overcurrent problems more
often than geared-drive design turbines. Furthermore, fuses in wind turbines at 4–14 years of operation
are 60% more prone to failure than turbines in their first three years of operation, as can be inferred
from Table 9. On the other hand, as shown in Figure 5b, the climatic regions did not seem to affect fuse
survival, while the distance to the coast, elevational location and MAWS did show some difference,
as can be seen in Figure 5d–f, respectively. However, the p-values for the representation of significance
in the Cox regression showed that the climatic region, distance to the coast, MAWS, elevational location
and NOPF were not significant factors, with p-values of 0.883, 0.820, 0.802, 0.479 and 0.173, respectively.
Thus, these factors were not included in our hazard rate modeling. The proportionality assumption
was verified with tests for the design type and turbine age factors.
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Table 9. Cox regression results for fuses.

Factors B SE Wald Df Sig. Exp (B)
95.0% CI for Exp (B)

Lower Upper

Design type 1.13 0.381 8.73 1 0.003 3.09 1.46 6.52
Turbine age −0.95 0.329 8.35 1 0.004 0.39 0.203 0.74

The hazard rate for the survival of fuses can be written as in the following:

HR = exp[(1.13 direct) + (−0.95 early age)] (10)

5.3.2. Survival Analysis for Switches

The Kaplan–Meier survival functions of switches in wind turbines are depicted in Figure 6.
Obvious distinctions can be observed in design type, distance to the coast, elevational location and
MAWS factors, as shown in Figure 6a,d–f, respectively. However, the Cox regression results show that
the design type, distance to the coast and MAWS were the factors that have a significant impact on the
failure of switches in wind turbines, as can be seen in Table 10. Switches in direct-drive wind turbines
have a 66% increased rate of survival compared to the those in geared-drive wind turbines. This may
be explained by differences in the material quality or drive design between the two different turbine
models. The survival functions of the switches in wind turbines based on their distance to the coast is
demonstrated in Figure 6c. The switches in wind turbines that are within 20 km of the coast have a
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39% increased rate of survival compared to those located farther from the coast. This can be attributed
to more consistent wind speed regimes in coastal regions compared to inland regions. In the coastal
regions, switches deal with fewer start–stop cycles, which improves their survival. Similarly, turbines
located in regions with high MAWS have a 35% increased rate of survival, as can be seen in Table 10.
This can be attributed to the more consistent spinning of wind turbines, which reduces the failure rates
of switches. Conversely, turbine age, elevational location, NOPF and climatic regions were determined
to be not significant with p-values of 0.883, 0.554, 0.520 and 0.088, respectively, and were not included
in our hazard rate model. The proportionality assumption was tested, and it was found to be valid
with significant factors of p-values less than 0.05.Energies 2018, 11, x FOR PEER REVIEW  16 of 19 
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Table 10. Cox regression results for switches.

Factors B SE Wald df Sig. Exp (B)
95.0% CI for Exp (B)

Lower Upper

Design type −1.08 0.167 41.48 1 0.000 0.34 0.25 0.47
Distance to coast −0.50 0.177 8.04 1 0.005 0.61 0.43 0.86

MAWS −0.43 0.178 5.89 1 0.015 0.65 0.46 0.92

The hazard rate for the survival of switches can be written as in the following:

HR = exp[(−1.08 direct) + (−0.50 coastal)+ (−0.43 high MAWS)] (11)

6. Conclusions

Survival analysis was carried out considering two novel indicators of the survival of wind turbines,
namely the number of previous failures and the history of scheduled maintenance. We identified
several risk factors with a definitive impact on the reliability of wind turbines, their electrical
subsystems and components of the electrical subsystem using survival analysis. Our results are
summarized below:

• Geared-drive wind turbines and their electrical systems were observed to have 1.3- and 1.4- times
higher survival rates, respectively, compared to direct-drive wind turbines and their electrical
systems. This distinction in survival was also true for fuses, while switches showed the exact
opposite trend—switches in direct-drive turbines were less likely to fail compared to switches in
geared-drive wind turbines. The geared-drive type of wind turbines might improve the survival
of certain components while reducing the survival of other components. For example, the survival
of fuses was two times higher in direct-drive turbines than in geared-drive turbines, whereas the
survival of switches was reduced by 66%.

• Although the survival probability graphs show some differences between the climatic regions,
these were not significant to the survival of wind turbines, the electrical subsystem and
components of the electrical systems. However, this significance is related to the number of
data points and the relative number of data points among the factors as well as the investigated
subsystems and components. The lack of expected significance for the climatic regions in this
study may be attributed to data scarcity, specifically for the Dfc region with a cold climate in
the summer.
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• The impact of turbine age on the survival of turbine systems and electrical subsystems varied
with time. However, fuses had a 60% lower survival in the “mature” age group (4–14 years) than
in their early years.

• Scheduled maintenance reporting significantly improved the survival of wind turbines; our data
and analysis showed a 2.8- and 3.8-times improvement in survival for wind turbines as a system
and for the electrical subsystems, respectively. In other words, at any time there was 2.8 times
higher probability of survival for a wind turbine and a 3.8 times higher probability of survival for
an electrical subsystem with a history of scheduled maintenance than one without such a history.

• Distance to the coast was not found to be a significant reliability factor for wind turbine systems
and electrical subsystems. However, the shorter distance to the coast increased the survival of
switches by 39%. A potential explanation for this is that wind patterns in coastal regions fluctuate
less than ones on land.

• Elevational location was found not to be a significant factor for the survival of turbine systems,
electrical subsystems and fuse and switch components. It must be noted that the maximum
elevation of the considered turbines in this study was 800 m.

• Although the hazard rate cannot be quantified due to the violation of proportionality, it was
found that a high number of previous failures (NOPF) reduced the survival of wind turbines as a
system and of the electrical systems compared to low NOPF. It was also found that a high NOPF
showed a lower survival rate for wind turbine components, however in order to determine the
significance more data are required.

• MAWS was not shown to be a significantly reliable factor for wind turbine systems and electrical
subsystems. However, higher MAWS increased the survival of switches by 35%, which can be
attributed to more consistent wind patterns.

It must be noted that the WMEP data on which this study was based only covered part of a
turbine’s life, with the longest period of recording being 14 years from the start of recorded operations.
In future studies, the complete life of turbines should be considered in order to obtain more concrete
findings. Also, survival analysis can be applied to improve the survival of expensive wind turbine
components such as blades, gearboxes and generators, subject to data availability.
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