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Abstract: In a smart grid, many transformers are equipped for both power transmission and
conversion. Because a stable operation of transformers is essential to maintain grid security, studying
the fault diagnosis method of transformers can improve both fault detection and fault prevention.
In this paper, a data-driven method, which uses a combination of Principal Component Analysis
(PCA), Particle Swarm Optimization (PSO), and Support Vector Machines (SVM) to enable a better
fault diagnosis of transformers, is proposed and investigated. PCA is used to reduce the dimension of
transformer fault state data, and an improved PSO algorithm is used to obtain the optimal parameters
for the SVM model. SVM, which is optimized using PSO, is used for the transformer-fault diagnosis.
The diagnostic-results of the actual transformers confirm that the new method is effective. We also
verified the importance of data richness with respect to the accuracy of the transformer-fault diagnosis.

Keywords: smart grid; transformer-fault diagnosis; principal component analysis; particle swarm
optimization; support vector machine

1. Introduction

Several advanced technologies can be used to monitor power-equipment, and the large amount
of status data of used equipment helps make the power grid “smarter”. Power transformers are
expensive and important components of the smart grid, and hub devices for power transformation
and transmission [1–4]. Because various faults, such as discharge and overheating, can occur during
the operation of transformers, many characteristics corresponding to the faults can be affected like
dissolved gases (H2, CH4, C2H6, C2H4, C2H2, CO, etc.), organic compounds (methanol, ethanol and
2-furfural), as well as the current and power of the transformers [5]. The dissolved gas analysis
(DGA) is a common tool for monitoring and identifying transformer’s faults. IEEE C57.104. and
IEC 60599 provide different methods such as key gases, Doernenburg Ratio, Rogers, three basic gas
ratio, Duval triangle, and so on. However, due to the complexity of the working environment and
the process structure of the transformers, these methods are not enough to make a right judgement
and cannot judge fault fuzzy boundary. According to [6], their accuracy rates are about in 60%,
which means the ratio methods cannot account for the diagnostic criteria completely [7]. In addition,
the concentrations of cellulose chemical markers in oil, such as methanol, ethanol and 2-furfural,
are used as a determination mark for diagnosing transformer insulation failure, which still present
many challenges for an accurate interpretation in real transformers [8].

To improve the accuracy of fault diagnosis, artificial intelligence and machine learning algorithm
were added to the field of transformer-fault diagnosis (TFD), including fuzzy sets [9], artificial neural
networks (ANN) [10], artificial immune networks [11], probabilistic neural networks [12], rough
sets [13], and support vector machines (SVM) [14]. These algorithms provide ways to develop new
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TFD technologies. However, these algorithms have some disadvantages. For example, it is difficult to
determine the selection of parameters of fuzzy sets, artificial immune networks and probabilistic neural
networks, ANNs are easier to fall into local minimum, and the fault-tolerant ability and generalization
ability of rough set are weak.

SVM is usually used as a classification tool. From early 2-category techniques, multi-class SVM
have been developed and are more suitable for TFD. The accuracy of multi-class SVM is determined
by the parameters of its kernel function and penalty factor. In order to improve the efficiency of SVM
in processing large amounts of input fault data, principal component analysis (PCA) will be used.
Moreover, to reduce the influence of human experience and subjective judgment on these parameters,
a new Particle Swarm Optimization (PSO) is borrowed to search the optimized parameters. This way,
the most suitable SVM parameters within the effective input data reflecting the transformer’s fault
will be found. SVM integrated with PCA and PSO can improves the speed and accuracy of TFD
considerably. This paper is organized as follows. Section 2 introduces the complete TFD procedure
implemented by improved SVM; In Section 3, we compare the accuracy of transformer-fault diagnosis
using different methods. We then verify the effectiveness of the proposed method, and analyze the
effect of data richness on the accuracy of the fault diagnosis. Section 4 summarizes all results.

2. TFD Model Based on SVM Integrated with PCA and PSO

TFD model based on SVM integrated with PCA and PSO is shown in Figure 1. It includes two
main parts. One is that a set of transformer fault data (Data set) such as the densities of the dissolved
gases is preprocessed by PCA. The other is that the parameters of SVM model are searched and
optimized by PSO.
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Figure 1. Transformer-fault diagnosis (TFD) model based on support vector machines (SVM) integrated
with principal component analysis (PCA) and particle swarm optimization (PSO).

2.1. Data Set Preprocessed by PCA

TFD is a complicated task. In order to improve the operating efficiency of the SVM when there are
many transformer fault data, the data needs to be pre-processed before they are used to train the SVM
model. PCA aims to reduce the dimensions of fault data and replaces them with fewer uncorrelated
and unoverlapped data (called principal components). The number of principal components is selected
by variance contribution rate indicating how much information is included.
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Suppose the data set X has n groups and each group has p fault data and they construct an original
data observation matrix:

Xn×p =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp

 (1)

To solve the principal components, it needs to find i(i ≤ p) linear functions: yji = AT
i Xj,

where j = 1, · · · , n, Xj = (xj1, xj2, · · · , xjp)
T , and Ai = (a1i, a2i, · · · , api)

T is unknown. The amount
of information of x is proportional to its variance. Letting Yji = (y1i, y2i, · · · , yni)

T and to avoid
var(Yji)→ ∞ , ‖Ai‖2 = 1 Therefore, to obtain the maximum variance, the following equations of
conditional extremes are formed: {

max var(Yji) = maxAT
i ∑ Ai

AT
i Ai = 1

(2)

where ∑ represents the covariance matrix.
Here Lagrange multiplier method is used to solve (2). The Lagrangian objective function is

expressed as:
Q(Ai) = AT

i ∑ Ai − λj(AT
i ∑ Ai − 1) (3)

where the Lagrange multiplier λj is the characteristic root of ∑ and Ai is the corresponding eigenvector.
Because Ai 6= 0 and AT

i ∑ Ai = var(AT
i Xj) > 0, ∑ is positive definite and all characteristic roots are

positive. Assuming that:
λj1 ≥ λj2 ≥ · · · ≥ λjp ≥ 0 (4)

In the practical applications, only p′ principal components will be selected, which satisfies
p′

∑
k=1

λjk/
p
∑

i=1
λji ≥ 0.85. The k-th principal component for the j-th group is yjk = AT

k Xj. All the principal

components form a vecor Yj = (yj1, yj2, · · · , yjp′)
T .

2.2. Support Vector Machine

Suppose the j-th group of principal component Yj reflects the fault type zj. We divide n groups of
fault data into two sets. One set is the training set including l groups and the other set is the testing set
including (n-l) groups. The training set is used to solve the parameters of SVM.

TFD is usually a multi-class problem to classify the categories in d (d ≥ 2). The one-versus-one
(OVO) method is adopted to extend 2-category SVM to multi-class SVM in this paper. This means
it need to build SVM classifiers for any two different fault types F1 and F2 (F1, F2 ∈

{
zj
}

), and there
are a total of d(d− 1)/2 classifiers. Assume a hyperplane function ωT ϕ(Y) + b = 0 can accurately
separate F1 and F2 whose category labels are marked in −1 and 1. Here ω is the normal vector of the
hyperplane, b is the offset, and ϕ(y) is nonlinear transformation function. For the optimal classification
hyperplane, the following conditions should be satisfied:{

ωT ϕ(Yj) + b ≥ 1, Hj = 1
ωT ϕ(Yj) + b ≤ −1, Hj = −1

(5)

and Hj ∈ {F1, F2} is the classification of Yj. In this case, Yj is mapped into a high-dimensional space.
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The maximum margin between the plane and the nearest data is 1/‖ω‖. The greater it is, the better
the classification confidence is. To increase the misclassification tolerance of SVM, a non-negative
variable ej is introduced. Then the problem can be described as:

min

(
1
2‖ω‖

2 + C
l

∑
j=1

ej

)
Hj
(
ωT ϕ

(
Yj
)
+ b
)
≥ 1− ej

ej ≥ 0

(6)

where C is a constant named penalty factor and controls the punishment degree for misclassified data.
Lagrange multiplier method is also used to solve (6). The corresponding Lagrangian function is:

L
(
ω, σ, ej, αj, β j

)
=

1
2
‖ω‖2 + C

l

∑
j=1

ej −
l

∑
j=1

αj

[
Hj

(
ωT ϕ

(
Yj
)
+ b
)
− 1 + ej

]
−

l

∑
j=1

β jej (7)

where αj > 0 and β j > 0 are the Lagrangian multipliers. After αj(j = 1, · · · , l), ω and b are solved,
the final SVM classification function is:

f (Y′r) = sgn(
l

∑
j=1

αj HjK(Y′r , Yj) + b) (8)

where Y′r (r = l + 1, · · · , n) is the r-th group data in testing set, K(Y′r , Yj) = ϕ(Y′r) · ϕ(Yj) is the kernel
function and we choose Gaussian radial basis function:

K(Y′r , Yj) = exp

(
−
‖Y′r −Yj‖2

σ2

)
(9)

where σ is the parameter of kernel function.

2.3. Parameter Optimization in SVM Using Improved PSO

As mentioned before, when using SVM for fault diagnosis, we first need to determine the
parameter σ in kernel function (9) and penalty factor C in (6). σ affects the optimal classification
performance and generalization ability of the SVM. C is required to balance the learning machine’s
complexity and empirical risk when determining the minimization of the objective function. Therefore,
σ and C should be optimized. We use an improved PSO algorithm for optimization.

Assuming that in a 2-dimensional search space, there is a swarm including S particles,
qs = (qs1, qs2) (s = 1, · · · , S). Each particle represents a potential solution and corresponds to a point in
the 2-dimensional search space. Its velocity is vs = (vs1, vs2)

T and optimal position is Ps = (Ps1, Ps2)
T .

The optimal position within the S-particle population represents the global extremum, and it is set to
Pg =

(
Pg1, Pg2

)T . The position-updating method for the particle’s velocity is expressed as:

vsd(t + 1) = wv(t) · vsd(t) + c1(t)r1(t)(Psd(t)− qsd(t)) + c2(t)r2(t)
(

Pgd(t)− qsd(t)
)

, d = 1, 2 (10)

qsd(t + 1) = qsd(t) + vsd(t + 1) (11)

where c1(t) and c2(t) are acceleration constants, r1(t) and r2(t) obey the (0,1)-uniform distribution,
wv(t) is the speed update inertia weight representing the effect of the previous generation’s particles
on the next generation particles’ velocity during the particle updating process.

Generally, the algorithm has relatively strong global optimization capability when wv(t) is
large, and a relatively strong local optimization capability when wv(t) is small. However, the linear
weight-adjustment method is single, and thus limits the optimization of the search ability. Aiming to
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change to single adjustment mode and better adapt to the complex environment, we present a new
scheme for the stochastic inertia weight:{

wv(t) = α1 + ε/2.0, k ≥ 0.05
wv(t) = α2 + ε/2.0, k < 0.05

(12)

k =
fit(t)− fit(t-10)

fit(t-10)
(13)

where fit(t) represents the optimal fitness value of the t-th generation and fit(t-10) is the optimal fitness
value of the (t-10)-th generation, α1 and α2 are set to 0.5 and 0.4, respectively, reflecting the search
ability in different situations, and ε is a random value between 0 and 1. The acceleration constants
c1(t) and c2 are modified in: {

c1(t) = c11 + (c12 − c11)
t
T

c2(t) = c21 + (c22 − c21)
t
T

(14)

where c1(t) decreases linearly from the initial value c11 to the final value c12, while c2(t) increases
linearly from c21 to c22.

3. Verification and Discussion

Based on the above mentioned SVM-diagnosis model, optimized using PSO, a code is made in
MATLAB in which SVM algorithm is implemented directly by MATLAB toolkit [15]. Some real TFD
examples are analyzed.

3.1. TFD Example 1

We analyze the dissolved-gas data for the existing 157 groups of transformers under normal and
other fault conditions. The dissolved-gas data were detected from 6 types of real transformer faults:
low-energy discharge fault (LE-D), high-energy discharge fault (HE-D), high temperature overheat
fault (HT), medium temperature overheating fault (MT), medium and low temperature overheating
failure (ML-T), and low temperature overheating fault (LT). 112 groups of data were selected as training
samples, and the remaining 45 groups were used for testing. The distribution of the various faults and
normal state samples are shown in Table 1.

Table 1. Statistics of samples for training and testing, corresponding to various types of real faults.

Fault Type Training Sample Test Sample Total

Normal 17 7 24
LE-D 23 10 33
HE-D 20 8 28

HT 23 10 33
MT 7 2 9

ML-T 13 5 18
LT 9 3 12

Total 112 45 157

In this analysis, the particle swarm number is 20, the maximum iteration number is 200, and the
search intervals for parameters C and σ are [0.01, 1000] and [0.01, 1000], respectively. Furthermore,
C = 15.8823 and σ = 50.1658.

The fault diagnostic results of both the training set and the testing set are shown in Figure 2.
Only one group of samples shows diagnosis errors among 112 groups of training samples (LE-D fault
is diagnosed as HT fault), while 3 out of 45 samples yield diagnosis errors which are marked by
circles. The accuracy reaches 93.33%. Diagnostic errors are either normal (diagnosed as HE-D), or LE-D
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fault (diagnosed as HE-D), or MT fault (diagnosed as HE-D). The results indicate that this method is
relatively accurate and capable of realizing the aim of TFD.
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We adopt the three-ratio method, Duval triangle method, back propagation neural network
(BPNN), and SVM methods to diagnose the testing data set for comparison. The same set of data was
used for all methods. During the test, BPNN selected a network structure with 13 hidden nodes.

Table 2 shows the fault-diagnosis accuracy for different methods, when testing the same sample of
transformer. The Duval triangle method shows the lowest accuracy. The three ratio method’s accuracy
is better than The Duval triangle method, however, worse than other methods. Both of three-ratio
and Duval triangle methods are obtained from typical accidents, and they will fail when dealing with
some complicated faults. The accuracy of the neural-network algorithm (BPNN) is 60% and it will
be improved if there are a lot of data. Compared with the BPNN and IEC methods, the SVM method
shows a relatively good diagnosis. When the SVM parameters are optimized, the accuracy of the fault
diagnosis improves substantially.

Table 2. Accuracy rate for the different diagnostic methods of transformer.

Method Three-Ratio Duval Triangle BPNN SVM This Paper

Accuracy rate 51.111% 42.222% 60.000% 75.556% 93.333%

3.2. TFD Example 2

This section uses SVM optimized by PSO to analyze the fault and normal states from the
132 groups of data detected from real transformers. The data were from the oil-dissolved gas and
SCADA. We also verified the impact of data richness on the results. The dissolved gases in the
oil include C2H2, C2H4, C2H6, CH4, CO, CO2, H2 and total hydrocarbon. The SCADA data include
maximum current, minimum current, average current, maximum active power, minimum active power,
average active power, maximum reactive power, minimum reactive power, and average reactive power.
SVM optimized by PSO is used to diagnose the faults for three kinds of data: using only the dissolved
gas data in oil, using only the SCADA data, and using all data. We used 112 groups as the training set
and 20 groups as the testing set, and then judged the effect of data types on fault diagnosis.

In this experiment, the number for the particle swarm is 20, the maximum iteration number
is 200, and the search interval of parameters C and σ are [0.01, 1000] and [0.01, 1000], respectively.
The optimized parameter values and accuracy rate of different data types are shown in Table 3.

Table 3. Fault-diagnostic results of transformer of different methods.

Types Data C σ Accuracy Rate

1 Dissolved gas data in oil only 5.023 0.709931 80%
2 SCADA data only 26.5631 7.3787 65%
3 Both above data 36.6918 0.074581 95%
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For TFD results using only the dissolved gas in the oil, four out of 20 groups of normal data are
misdiagnosed as fault state. However, the fault state is diagnosed correctly, and so the accuracy can
reach 80% in general. The TFD results of using only SCADA data, as shown in Table 3, has many
errors in the non-fault diagnosis. 13 out of 20 groups were correctly evaluated, and the accuracy is as
high as 65%. For the TFD results using the dissolved gas in oil and the SCADA data as input data of
SVM optimized by PSO, only 1 out of 20 groups of test data is erroneous (the non-fault condition is
misdiagnosed as fault state). Hence, the accuracy of the fault diagnosis is 95%.

Comparing the diagnostic results for the above three data types, type 1 and type 2 can be used
to diagnose most of the transformer states, but there errors are different, when diagnosing non-fault
states. This is because each data type can reflect the fault states of the transformer to some extent,
including part of the transformers’ state changes—but not completely. By combining these two kinds
of data, more state information can be considered. The SVM optimized by PSO can learn the rich
information from the data, thus improving the accuracy of the transformer-fault diagnosis.

4. Conclusions

A new fault-diagnosis technology for transformers, SVM optimized using PSO, was proposed
in this paper, and it fully combines the advantages of the SVM and PSO. We used the dissolved-gas
data in oil as the characteristic quantity and compared it with traditional methods as three-ratio,
Duval triangle, and the artificial intelligence and machine learning algorithms as BPNN and SVM.
The results showed that the proposed technology greatly improves the accuracy of the fault diagnosis.
We also analyzed the effect of different data types of transformer on the TFD results. The data types
included the dissolved-gas data in the transformer oil only, the SCADA data only, and both of them.
The combination of the dissolved-gas data and SCADA data can improve the accuracy of the new
technology substantially. This also testifies the importance of having sufficient data to perform an
accurate transformer fault diagnosis.

The proposed method can be applied to prognostics and health management system in smart
substations. It is noted that, if the amount of fault data is very big, it will take a long time to perform
the fault diagnosis and it is inappropriate for on-line diagnosis; if the amount of fault data is not
enough, its accuracy will be limited. The balance between the data amount and accuracy in its real
applications needs further discussion.
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