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Abstract: Recent studies have reported cold seeps offshore of Mocha Island. Gas hydrate occurrences
along the Chilean margin could explain seeps presence. Gas-phase (gas hydrate and free gas) and
geothermal gradients were estimated analysing two seismic sections. Close to Mocha Island (up
to 20 km) were detected high (up to 1900 m/s) and low (1260 m/s) velocities associated with high
gas hydrate (up to 20% of total volume) and free gas (up to 1.1% of total volume) concentrations,
respectively. A variable and high geothermal gradient (65–110 ◦C/km) was obtained. These results
are related to high supply of deep fluids canalised by faults and fractures. Faraway from Mocha Island
(>60 km), free gas concentrations decrease to 0.3% of total volume and low geothermal gradient
(from 35 to 60 ◦C/km) are associated with low fluids supply. Finally, we propose gas hydrate
dissociation processes as the main supply source for seeps in the vicinity of Mocha Island. These
processes can be caused by: (a) active faults and seismic activity; and (b) warm fluid expulsion
from deeper zones altering hydrate stability conditions. In both cases, gas hydrate dissociation
could generate slope instability and landslides, as occurred in the past in this region and reported in
the literature.
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1. Introduction

The studies regarding gas hydrate occurrences worldwide are important for three main reasons:
(a) energy resource; (b) submarine geohazard; and (c) global climate change [1]. Gas hydrate distribution
in Chile has been mapped mostly by using indirect measurements [2–13]. Moreover, several studies
along the Chilean margin have reported gas-phase concentrations modelling seismic velocity [2,3,6–18]
covering almost 10% of the entire margin. From multichannel seismic data, it is possible to
detect the principal indicator of gas hydrate presence known as bottom simulating reflector (BSR).
The worldwide distribution of BSR occurs mainly in marine sediments along the active continental
margins (predominantly in the circum-Pacific belt) and in permafrost regions (Antarctic and Arctic)
(e.g., [1,19–24]).

The interest for gas hydrate occurrences plays an important role due to the high seismicity
that characterises the entire region and the global warming effect on the methane trapped in the
shallow marine sediments. In the first case, several scientific studies have reported gas hydrate
dissociation triggered by earthquakes, e.g., Great Sumatra, Japan and Norwegian margins [14–18].
The BSR along the Chilean margin is recognised in the continental slope, covering a wide extension
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close to 3000 km (from 33◦ S until 56◦ S). In the second case, some authors have modelled possible
scenarios for gas hydrate dissociation in shallow water (from 150 to 600 m water depth) considering
the increasing temperature due to the global warming and the consequent potential methane release
into the atmosphere. They concluded that the gas hydrate dissociation processes are induced just
by a slight increment of temperature [25–31]. In this context, gas hydrate estimates contribute to
evaluate submarine geohazards, global warming contribution related to gas hydrate dissociation and
the potential methane reservoir. Moreover, estimates of methane stored in marine sediments as gas
hydrate and free gas phases can be used to model more realistic scenarios associated with gas hydrates
dissociation and its effects as a greenhouse gas.

Relationships between gas hydrates and cold seeps have been documented in active and passive
margins [5,31–36], in which chemosynthetic communities, authigenic carbonate nodules, enrichment
stable isotopes in pore water, and faults and fractures, connected with BSR and detected in seismic
profiles, can be related to gas hydrate presence.

The present study adds new information regarding gas-phase concentrations of the southern
Chilean margin by using seismic and theoretical velocity models (Figure 1). Mocha Island is
characterised by active seismicity and constitutes an emerged block uplifted during the Quaternary in
the Arauco peninsula [37,38]. Further, Mocha Island is known for intertidal and subtidal gas seepage
system [39,40] and deeper seeps at 1400 water depth [41], whose presence probably is related to gas
hydrates dissociation. In this context, gas-phase estimates contribute to map and understand its role in
fluid escapes supply.
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Migration (PSDM); (b) velocity anomalies evaluation; (c) gas-phase estimates by fitting seismic velocity
with theoretical velocity; and (d) geothermal gradient calculation by using seafloor, BSR depths and
water bottom temperature.

2. Materials and Methods

2.1. Seismic Data

RC2901–731 and SO161–35 seismic lines were analysed. Seismic data were acquired during
1988 and 2001 in the framework of ODP (Mid-Ocean Spreading Ridge, Chile Ridge; RC2901–731
seismic line) and SPOC (Subduction Processes off Chile; SO161–35 seismic line) projects, respectively.
Seismic acquisition parameters are detailed in Table 1. Open-source Seismic Unix [43] software was
used to perform the seismic processing.

Table 1. Seismic acquisition parameters.

Seismic
Lines

Research
Vessel

Long
Streamer Channels Intertrace Shot

Spacing
Airguns/Total

Volume

RC2901–731 RV/Conrad 3000 m 240 12.5 m 50 m 10/61.3 L

SO161–35 RV/Sonne 3000 m 25
108

12.5 m
25 m 50 m 20/54.1 L

2.2. Inversion Modelling

Once the BSR along the seismic lines was identified, two sections of approximately 20 km-long
were chosen. The seismic analysis uses pre-stack data to perform Kirchhoff depth migration to
model migration velocity by using an iterative algorithm [44]. The seismic migration analysis builds
iteratively the velocity model by using a layer stripping approach [45], in which each layer is modelled
in depth. The velocity model is built by selecting continuous reflectors. In our case, the seafloor (SF),
the horizon 1 (H1), the BSR and the Base of Gas Reflector (BGR) were selected. The grid was defined
considering a vertical and horizontal spacing equal to 10 and 25 m for RC2901–731 and SO161–35
seismic sections, respectively. The migration velocity analysis uses the output of PSDM to evaluate the
reliability of velocity by measuring the flatness in Common Image Gathers (CIGs). At each iteration,
the migration velocity analysis is corrected to flatten the events in the CIGs; when the events become
flat, the velocity layer is fixed and a new horizon is analysed. The number of iterations of each layer
necessary to flatten the events are detailed in Table 2:

Table 2. Layer iteration numbers.

RC2901–731 Seismic Section SO161–35 Seismic Section

Layers Iterations Layers Iterations

Seawater 3 Seawater 4
From SF to H1 5 From SF to BSR 15

From H1 to BSR 18 Free gas 10
Free gas 4 - -

A velocity gradient was introduced below the BGR and the final velocity models were smoothed
to improve the stacked depth migrated image. The stacking of the CIGs was performed by using a
maximum offset of 2500 m to attenuate stretching effects. Finally, a mixing and band-pass filter was
applied; the final sections are shown in Figure 2.
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2.3. BSR-Derived Geothermal Gradient

The geothermal gradient (dT/dZ) was calculated using the BSR information reported in the
literature [10,11]. The main parameters to consider are: (1) BSR depth (ZBSR); (2) seafloor depth (ZSEA);
(3) BSR temperature (TBSR); and (4) seafloor temperature (TSEA). Thus, the geothermal gradient can be
obtained using the following relationship:

dT/dZ = (TBSR − TSEA)/(ZBSR − ZSEA) ()

where TSEA was obtained from ODP information and reported studies in Central Chile [46,47]. The TBSR

is based on gas hydrate stability curves reported by Dickens and Quinby-Hunt [48]. Finally, ZBSR and
ZSEA were taken from seismic data analysis.
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2.4. Gas-Phase Concentrations

Gas-phase (gas hydrates and free gas) concentrations were estimated using a simplified
method [49–51] of the Biot theory [50]. The velocity anomalies (i.e., the difference between the
background and seismic velocities) were evaluated considering the geological context to associate
positive velocity anomalies with gas hydrate concentrations as well as negative velocity anomalies
with free gas concentrations. A qualitative estimate can be obtained by comparing theoretical velocity
curves in absence of gas (i.e., the background velocity [52,53]) with our seismic velocity curves obtained
as described in the Section 2.2. The method calculates the free gas concentration in the pore space
by considering uniform (gas and water in pore space) and patchy (all gas in patches without water)
distributions. In our case, a uniform distribution was considered [50]. Theoretical velocity was
modelled by supposing a porosity at the seafloor of 65%, as measured during ODP leg 202 and
reported in [46].

3. Results

BSRs were recognised in both seismic sections. Along the entire SO161–35 seismic section, the
BSR is continuous, strong and shows a variable depth, reaching a maximum thickness in deepest
areas up to 200 m below seafloor (mbsf) (see from 0 to 6 km of distance in Figure 2), while minimum
thicknesses are located in shallowest areas (~80 mbsf). On the contrary, RC2901–731 seismic profile
shows discontinuous and locally strong BSR, while a constant BSR depth of about 250 mbsf is evidenced
from 4 to 16 km of distance (Figure 2). Note that in the same section from 16 to 25 km of distance, the
BSR is weak or disappear. In both sections, the BGR is detected and it is characterised by an average
thickness of about 70 m (see blow-up in Figure 2).

The velocity distribution across SO161–35 and RC2901–731 sections shows strong vertical and
lateral variations. The vertical velocity distribution across SO161–35 and RC2901–731 profiles shows
a drop below the BSR, reaching minimum values of 1260 and 1465 m/s, respectively, which can be
associated to the free gas presence (see Figure 2). Regarding lateral velocity variations, high velocity
values (ranging from 1700 to 1900 m/s) were recognised above the BSRs (Figure 2). In both sections,
faults and fractures with small slips affecting the seafloor were identified in correspondence to low
velocity values (Figures 2 and 3). Moreover, in the eastern part of the SO161–35 profile, a submarine
canyon was identified (Figures 2 and 3) and a normal fault that configures a lower and upper sector
of the RC2901–731 line (see bottom panel of Figure 3f at 22 km of distance). Finally, in both sections,
locally dipping reflections were associated to folding (see blow-ups in Figure 2).

Variable gas hydrate and free gas concentrations were identified in both seismic profiles.
Regarding gas hydrate, average concentrations are equal to 7.5% of total volume in both sections. On
the contrary, the free gas average concentrations are different, equal to 0.4% and 0.12% of total volume
in the SO161–35 and RC2901–731 sections, respectively. An opposite gas-phase concentration trend
was locally observed, in which high gas hydrate concentrations (ranging from 12% to 20% of total
volume) overlies low free gas concentrations (<0.4% of total volume for RC2901–731 section and <0.1%
of total volume for SO161–35 section). In the same way, low gas hydrate concentrations (<4% of total
volume in both sections) are locally in correspondence with high free gas concentrations (up to 1.1%
of total volume for SO161–35 and up to 0.3% of total volume for RC2901–731 sections; see Figure 3).
Besides, a normal trend was locally observed, in which high gas hydrate concentration was recognised
in correspondence with high free gas concentration and, on the contrary, low gas hydrate concentration
was recognised in correspondence with low free gas concentration (Figure 3).

A variable geothermal gradient across both sections was obtained and reported in Figure 4.
However, a recognisable higher geothermal gradient was identified across the SO161–35 profile
(ranging from 60 to 110 ◦C/km; Figure 4a), while a lower geothermal gradient across the RC2901–731
profile was observed (ranging from 35 to 65 ◦C/km; Figure 4b). The seismic and line drawing sections
(Figures 2 and 3) underline that the lowest geothermal values are located upwards in correspondence
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with the submarine canyon for SO161–35 section (see Figure 3 (top) at 12 km of distance) and the
normal fault for RC2901–731 section (see Figure 2 (bottom) at 22 km of distance).Energies 2018, 11, x FOR PEER REVIEW  6 of 13 
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4. Discussion

Faults, fractures and folding affecting the shallow sediments in both sections are related to an
active domain. In fact, Mocha Island is characterised by high seismicity and the uplifting process
started during the Quaternary [37]. The SO161–35 seismic profile is located approximately 12 km south
of Mocha Island and shows a strong and continuous BSR, while SO161–731 seismic profile, which
is approximately 60 km south of Mocha Island, evidences a discontinuous and locally strong BSR.
Moreover, a laterally variable BSR depth close to Mocha Island (SO161–35 section) was identified, while
along RC2901–731 only a slight variation in the BSR depth was recognisable. The BSR seismic character
and its depth variability can be related to the gas-phase concentrations, the water depth and the
geothermal gradient distribution across the seismic profile. Regarding BSR seismic character, several
studies argue that strong and continuous BSRs are related to significative free gas concentrations and
strong vertical velocity variations [7,54,55]. In our case, across SO161–35 seismic profile, the highest
free gas concentrations up to 1.1% of total volume (associated to the lowest velocity equal to 1260 m/s)
are related to strong vertical velocity variation of 640 m/s, which is the velocity difference between
gas hydrate and free gas velocity layers. On the other hand, faraway from Mocha Island (RC2901–731
seismic profile), the lowest velocity below BSR increases to 1450 m/s and the difference between gas
hydrate and free gas velocities decreases to 400 m/s with respect to the seismic velocity determined in
proximity of the Mocha Island. The variability of the BSR depth along the SO161–35 section can be
explained by a variable geothermal gradient (ranging from 60 to 110 ◦C/km; Figure 4a). Thus, the gas
hydrate stability field shifts upwards due to the high geothermal gradient. In the same way, a constant
BSR depth along the RC2901–731 section could be associated to slight geothermal gradient variability
(ranging from 35 to 65 ◦C/km; Figure 4b). Along the RC2901–731 line, the discontinuous and locally
strong seismic character of the BSR can be related to small deformation presence, in which the gas
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hydrate and the free gas appear trapped across faults and fractures. In fact, along this profile, sectors
are characterised by high/low velocity above/below the BSR in correspondence to deformation areas
and faults (see RC2901–731 seismic profile in Figures 2 and 3). Our result is in agreement with several
authors who reported slight folding structures as structural traps for fluid storing associated to gas
hydrate occurrences [7,56–58].

Higher geothermal gradient values were obtained close to Mocha Island, with average value equal
to 85 ◦C/km. In contrast, lower geothermal gradient values were found distant from Mocha Island,
with average value equal to 50 ◦C/km. These results are in agreement with anomalous heat flows
reported by Villar-Muñoz et al. [12] in the same area. The former authors argue that the high heat flow
variability would be related to ancient sliding processes, in which the headwall slide constitutes a fluid
advection zone altering the geothermal gradient at the present. In addition, some authors proposed
this area as a hydrated and/or fluid saturated forearc region [59]. In this context, the warm-fluid
supply from deeper sectors (transporting methane) can be canalised by faults and fractures (Figure 5)
and reaches the hydrate stability zone altering the thermal state, giving place to high geothermal
gradients as reported in this study. Decreased geothermal gradient faraway from Mocha Island is
associated with the regional geothermal gradient, where typical values above subduction zones of
oceanic crust are older than 10 Ma [12,13,46,47].
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Figure 5. Schematic diagram of SO161–35 seismic profile located close to 38◦30′ S (see Figure 1),
explaining fluid migration processes close to the Mocha Island. Faults are reported by Berndt et al. [17],
Horozal et al. [18]. Dashed line shows part of the ancient sliding reported by Geersen et al. [60].

High gas hydrate concentrations up to 20% of total volume are reported in both sections, but the
highest free gas concentrations up to 1.1% of total volume are located near Mocha Island (SO161–35
seismic profile), while the lowest free gas concentrations up to 0.3% of total volume are found faraway
from Mocha Island (across RC2901–731 section). In both sections, the highest gas hydrate concentration
can be explained as follows: (a) high fluid supply from deeper zones that can favour gas hydrate
formation, as suggested by several authors [7,51]; and (b) overestimating the compaction due to
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deformation processes. On the other hand, the highest free gas concentration located near Mocha
Island would be related to the gas hydrate dissociation associated to past sliding processes reported
by Geersen et al. [60] or free gas stored below an impermeable gas hydrate layer (see Figure 5), while
the lowest free gas concentrations across RC2901–731 seismic profile can be explained by lower fluid
supply from deep zones and high fluid escape rates preventing free gas storing. These fluid escapes
are canalised by faults and fractures affecting seafloor and releasing gas as seeps. In both sections, an
opposite gas-phase concentration trend was locally recognised, in which low gas hydrate concentration
overlies high free gas concentration. In this case, we argue that the gas hydrate dissociation occurs
or the free gas is stored below an impermeable gas hydrate layer. The contrary case, i.e., high gas
hydrate concentration overlying low free gas concentration, can be associated to gas hydrate formation.
This trend is in agreement with results reported by Vargas-Cordero et al. [7] in the southernmost
region. Besides, we locally observed high/low gas hydrate concentration overlying high/low free gas
concentration; this phenomenon is located mainly upwards eastern part of our sections. In this case,
lateral fluid flow seems to be stored concentrating both gas hydrate and free gas in shallow water areas
(see Figure 3). Even though gas hydrate dissociation can occur due to temperature increase (global
warming) in the seabed on the upper slopes, we suggest that the dissociation processes occurring at
both analysed seismic sections are mainly originated by tectonic forced extensional faults and fluids
expulsion associated with hydrated and/or fluid saturated forearc region, as documented by [59]
(see Figure 5). In fact, in this part of the Chilean margin, high magnitude and recurrent seismicity are
reported [37,61–63] Besides, cold seeps documented and extensional faults interpreted in this study
are connected in deep with BSR presence, reaching the seabed at 500 m water depth (see SO161–35
profile in Figures 2 and 3). These faults can be related to Mocha Villarica Fault Zone (MVFZ) reported
in the literature by [38] and can play a role in the transport of deep fluids upwards until to reach the
shallow seabed zone.

Finally, considering high gas hydrate (average 7.5% of total volume) and free gas concentrations
(0.4% of total volume) reported in this study, we conclude that close to Mocha Island gas hydrate
dissociation processes occurring in the past and, potentially, in the present can constitute the main
seepage supply source along this part of the Chilean margin.

5. Conclusions

The results of this research regarding gas-phase concentrations (gas hydrate and free gas) in the
Chilean margin close to Mocha Island lead us to conclude that:

(a) The BSR was recognised in both seismic sections analysed. Near Mocha Island (SO161–35
seismic profile), the BSR is continuous, strong and shows a variable depth. On the contrary, the
RC2901–731 seismic profile reveals a discontinuous and locally strong BSR, while a constant BSR
depth (~250 mbsf) is evidenced.

(b) Variation on the geothermal gradient is the main cause of BSR depth variability close to the
Mocha Island, where values ranging from 65 to 110 ◦C/km were obtained. These values are
related to fluids advection canalised by faults and fractures present in the area.

(c) High gas hydrate concentrations up to 20% of total volume (average 7.5%) were found in both
sections. On the contrary, the free gas average concentrations are different and equal to 0.4% and
0.12% of total volume in SO161–35 and RC2901–731 seismic profiles, respectively.

(d) The highest free gas concentration was observed close to Mocha Island (up to 1.1% of total
volume) and would be related to gas hydrate dissociation associated to past sliding processes or
free gas stored below an impermeable gas hydrate layer.

(e) The highest gas hydrate concentration close to Mocha Island can be explained as due to high
fluid supply from deeper zones, which can favour gas hydrate formation.
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(f) Gas hydrate dissociation processes, caused by active faults, seismic activity and/or by warm
fluids expulsion from deeper zones, can constitute the main seepage supply source along this
part of the Chilean margin. In both cases, these processes could generate slope instability
and landslides.
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