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Abstract: A demand response (DR) based home energy management systems (HEMS) synergies
with renewable energy sources (RESs) and energy storage systems (ESSs). In this work, a three-step
simulation based posteriori method is proposed to develop a scheme for eco-efficient operation of
HEMS. The proposed method provides the trade-off between the net cost of energy (CEnet) and
the time-based discomfort (TBD) due to shifting of home appliances (HAs). At step-1, primary
trade-offs for CEnet, TBD and minimal emissions TEMiss are generated through a heuristic method.
This method takes into account photovoltaic availability, the state of charge, the related rates for the
storage system, mixed shifting of HAs, inclining block rates, the sharing-based parallel operation
of power sources, and selling of the renewable energy to the utility. The search has been driven
through multi-objective genetic algorithm and Pareto based optimization. A filtration mechanism
(based on the trends exhibited by TEMiss in consideration of CEnet and TBD) is devised to harness
the trade-offs with minimal emissions. At step-2, a constraint filter based on the average value
of TEMiss is used to filter out the trade-offs with extremely high values of TEMiss. At step-3,
another constraint filter (made up of an average surface fit for TEMiss) is applied to screen out the
trade-offs with marginally high values of TEMiss. The surface fit is developed using polynomial
models for regression based on the least sum of squared errors. The selected solutions are classified for
critical trade-off analysis to enable the consumer choice for the best options. Furthermore, simulations
validate our proposed method in terms of aforementioned objectives.

Keywords: eco-efficient home energy management; dispatch of renewables and energy storage
systems; load-shedding-compensating dispatchable generators; optimization using surface fitting
techniques; multi-objective genetic algorithm; Pareto optimization

1. Introduction

From the previous decades, the energy requirement has grown to a critical level; however,
the generation units have not been maintained at a sufficient rate to manage this increasing demand.
The balance between demand and generation is a vital requirement for stable power system operation.
The problem to maintain this balance has conventionally been addressed in the past; utilities have
upgraded their centralized generation units and transmission capabilities through some supply side
management methodologies. However, during the previous decade, demand-side management
(DSM) has become a substituent scheme to manage the increasing requirement of energy which
focuses on the consumer side. The home energy management system (HEMS) is used to implement
DSM in a home. Major approaches for HEMS operation include price-based demand response (DR),
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and DR synergized with renewable energy sources (RESs) and energy storage systems (ESSs) optimal
dispatch (DRSREOD) [1]. The DR-based HEMS operation schedules the consumer’s loads by shifting
them towards the off-peak periods. Such scheduling benefits the consumer with a minimized cost
of energy (CE) based on the acceptable value of time-based discomfort (TBD) [2,3]. The utility,
on the other side, is benefited with a reduced cost of generation through a smoother demand profile.
The DRSREOD-based HEMS operation schedules the load in coordination with the optimal dispatch of
the power grid, renewable energy sources (RESs) and energy storage systems (ESSs). The operation of
such HEMS introduces additional benefits by minimizing the electricity cost, minimizing high demands
and permanent demands, increasing total cost minimization and empowering the selling of the extra
power to the utility [4-11]. The aforementioned HEMSs are modeled to optimize the objectives
comprising the net CE (CEnet), consumer discomfort/inconvenience, and peak and permanent
demands. The abbreviations and nomenclature are given in Tables 1 and 2, respectively.

Table 1. Abbreviations.

Advanced scheduling/advanced Average-surface-based

AS scheduled ASCE constraint filter

AVCE Average-valug-based constraint DAP Day-ahead pricing
filter
DG Dispatchable generator DR Demand response
DR synergized with RESs and DRSREOD integrated with load
DRSREOD ESS optimal dispatch DRSREODLDG shedding-compensating DG
Delayed scheduling/delayed

DS scheduled EM Energy management

ESS Energy storage system EVH Electric vehicle

GA Genetic algorithm HA Home appliance
HEMS Home energy management LDG Load shedding-compensating

system DG

LSD Load shedding MGD Micro-grid

MILP Mixed integer linear MOGA Multi-objective GA
programming
Mixed scheduled (includes SHAs . .

MS with AS and DS) NSHA Non-shiftable home appliance

PO Pareto optimization POS Pareto-optimal set

pv Photovoltaic energy RES Renewable energy source
RTP Real-time pricing SB Storage battery

SHA Shiftable home appliance ToU Time-of-use pricing

WSMD Weighted sum method WTB Wind turbine
PAR Peak-to-average ratio EFTs Emission factors

Furthermore, a general architecture of DRSREODLDG-based HEMS is shown in Figure 1.
The main components of such a system include home appliances (HAs), RESs, an ESS, an LDG,
the HEM controller (HEMC) and the smart meter (SM) with the local communication for home area
network. The SM is used for bidirectional interaction in order to exchange the electricity bill and
power consumption data between users and power grid. The HEMC embeds whole computational
intelligence which is sufficient for the proposed optimum HEMS operations.
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Figure 1. Architecture for demand response synergized with renewable energy sources and energy
storage systems optimal dispatch integrated with load shedding-compensating dispatchable generator
based home energy management system for a smart home [10].

Furthermore, the rampant rise in green house gas (GHG) emissions, the consequent climate
changes and the related environmental issues have raised serious concerns over the quality of the
life on the earth. In order to mitigate the serious environmental issues, various proposals have
been discussed for GHG emissions at the highest international forums to confine them. The Kyoto
protocol of United Nations Framework Convention on climate change has been mutually signed by
192 countries all over the world which proposes a reduction in GHG emissions through selling of
emission commodities [12]. Such a trading sets penalties and quantitative limitations on emissions
by polluters that may include utilities, independent microgrid (MGD) operators, and the prosumers
having fossil fuel based generation deployed with DRSREODLDG-based HEMSs.

The aforementioned scenario has incentivized utilities to reduce not only the cost of generation of
energy; however, also the supply-side emissions making use of RESs installed for DRSREOD-based
HEMS. The research on HEMS now seems to focus on reducing the GHG emissions along with the
other well-known objectives for CE, TBD, etc. In [13], a scheme for DR-based HEMS is presented.
Non-critical house loads are shifted towards low demand periods for minimizing the daily bill of
the generation-side and the supply-side emissions. It is validated that implementation of the DR
program effectively reduces the cost of generation on the supply-side; however, the emission on
this side is reduced only when peak demand is met by high emission fuels based peaking plants.
The DRSREOD-based HEMS, on the other hand, through an optimal operation of HEMS devices,
can easily be used for reducing the supply-side emissions along with the reductions in the CEnet for
the consumer and cost of generation for the utility. In [14], the authors present a scheme for optimal
scheduling of shiftable home appliances (SHAs) integrated with the optimal dispatch of an RES and
an storage battery (SB). The objectives include reductions in CEnet, temperature based discomfort,
peak load, and the GHG emissions. The supply-side emissions are computed using GHG emission
factors (EFTs) for the energy mix adopted at different times of the day. The supply-side emissions are
reduced through an optimal operation of local RESs and SBs during high emission times.

Furthermore, fossil fuel based DGs are integrated into MGDs to improve the self-healing structure
and the flexibilty of the power supply. In [15], an operational scheme is developed for a stand-alone
HEMS operation using PSO. The scheme is based on load shifting of SHAs, an optimal dispatch of a
wind turbine (WTB), a DG, and an SB. The DG is operated at the rated power in order to improve its
efficiency and to reduce emissions. The power from the grid, however, is not included in the modeling.
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In [16], an optimal dispatch scheme for a PV unit, a WTB, an ESS, a DG, and the power grid to supply
a fixed load profile in an MGD is computed using GA. Constraints for ESS charge/discharge rates,
generator start/stop and supply capacity are taken into account. Net emission for the power supplied
by the grid and local DGs are computed.

Table 2. Nomenclature.

B Vector for numbering SHAs CE Electricity bill from the utility
CEMiss Cost of emissions paid by the utility to CEnet Net cost of energy to be paid by
prosumer for his sold renewable energy the consumer
. , Vector of GHG emissions from
EFT GHG emission factor EMiss the LDG
ENslor ~ vector of the ending slots of the SHAs IBR Inclining block rate
operating time intervals
Iterat Number of iterations K Number of SHAs
Vector of lengths of SHAs Number of slots in the scheduling
LoT O N .
operating times horizon
Ng_mx Maximum number of generations for Pa Vector of per slot power of SHAs
the GA
Pch Vector of SB charging power values Pch_mx Maximum SB charge rate
Vector of power dissipated in a dummy Vector of SB discharging power
Pdl . Pds
load during LSD values
Pds_mx Maximum SB discharge rate PE Vector of the electr1.C1ty price from
the grid
. . Levelized cost of energy from
PEf Vector of the feed-in tariff PEg the LDG
Pgd Vector of the power from the grid Pgds Power grid status
Vector of the power supplied by
Pgn the LDG Ppv Vector of the power from the PV
Pschd Vector of the scheduled load Psold Vector of the energy sold to the grid
SoC Vector of states of charge SoC(init) Initial SoC at the start of the
scheduling horizon
SoC_mn Minimum SoC limit SoC_mx Maximum SoC limit
Sum of the squared error terms in Vector of the starting slots of the
SSE . STslot , . . .
regression SHAs’ operating time intervals
. Average time-based discomfort due
Styp Vector of scheduling types for SHAs TBD to shifting of AS and DS type HAs
. Total GHG emissions during the TEMiss_ Re51dua1.be10w the average value of
TEMiss . . . TEMiss used as reference for
scheduling horizon Resid_avg

filtration of solutions in step-2

Furthermore, fossil-based LDGs are integrated into DRSREOD-based HEMSs to supply the load
during load shedding (LSD) hours. Such a LDG adds a vital benefit of uninterrupted supply of power
to DRSREOD-based HEMS. An algorithm for optimal sizing of LDG for DRSREODLDG-based HEMS
was proposed in our recent research [11]. The proposed sizing was based on the trade-off analysis
for the parameters including CE, TBD and size of LDG. An uninterrupted supply of power through
the integration of LDG was ensured; however, the operational schemes for HEMS were remained to
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be analyzed for the emissions released during the LDG operations. To implement an eco-efficient
operation of DRSREODLDG-based HEMS, optimal trade-offs between CEnet, TBD and minimal GHG
emissions (TEMiss) need to be computed. This research introduces a method to harness a diversified
set of solutions to decision vector Tst and the related trade-offs for CEnet, TBD and minimal TE Miss
for an eco-efficient HEMS operation.

The proposed method for an eco-efficient operation of DRSREODLDG-based HEMS is based on
a three-step approach. In step-1, a set of primary solutions in terms of Tst and the related trade-offs
for CEnet, TBD and minimal TEMiss are generated using Algorithm 1. The algorithm is based on
a heuristic derived from our previous studies on HEMS in [11]. The proposed heuristic takes into
account PV availability, the state of charge, the related rates for the storage system and the similar
functionality of the sources. To achieve maximum reduction in CEnet, SHAs are modeled for mixed
scheduled (MS) as already validated in [11]. This research formulates the trade-off parameters for:
CEnet to include the cost of energy purchased from the grid, cost of energy sold to the grid and the cost
of energy supplied by the LDG; TE Miss to include the energy supplied by the LDG during LSD hours,
EFT based on the calorific value of the fuel, the consumption efficiency of the LDG and the related
emission factors for GHGs; and TBD to include the delay in the starting times of delay scheduling (DS)
type and advanced completion of the job of advanced scheduling (AS) type for HAs. The trade-off
solutions obtained in step-1 are analyzed for TEMiss as related to the trade-offs between CEnet and
TBD as shown in Figure 2.

1.80
1.60
1.40 .
.
1.20 : .
A
a . °
=) .
= 1.00 —ts
3 - ° R =0.0111
e .o . T
£ 0.80 — B
l: - s ge - - - . . .
= e oo . o o
eoe - & % e
0.60 .- -
* oV alee *°° ue - - eo®
0.40
R =0.8501

0.20

0.00
20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00
CEnet (Cents)

TBD  TEMiss Expon (IBD) Linear (TEMViss)

Figure 2. Un-even trends for TEMiss as related to CEnet and TBD.

The plot in Figure 2 reveals a highly un-even relation between TEMiss and the related parameters
for CEnet and TBD. This un-even trend for TEMiss is exploited to screen out/exclude a set of trade-offs
with larger values of TEMiss using a constraint filtration mechanism as presented in Algorithm 2
(step-2 and step-3). In step-2, an average value based constraint filter (AVCF) for TEMiss is developed
and applied to filter out the trade-offs with extremely high values of TEMiss. In step-3, average surface
tits for TE Miss are developed in terms of CEnet and TBD using polynomial based regression. The most
suitable polynomial is selected after cross-validation of 25 number of polynomial model that fits on
their capabilities in order to reduce TEMiss and TBD, and to maximize the number of diverse trade-offs
for CEnet and TBD. The average surface fit based constraint filter (ASCF) with the selected polynomial
formulation is applied to screen out the trade-offs with even marginally higher values of TEMiss.
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The solutions for an eco-efficient HEMS operation are thus achieved including diversified trade-offs
for CEnet, TBD and minimal TEMiss. Followings are the novelties of this research:

e An innovative method is proposed to harness diversified trade-offs between CEnet, TBD and
minimal TEMiss for an eco-efficient operation of DRSREODLDG-based HEMS.

*  Trade-offs for such HEMS have rarely been computed by combining a multi-objective genetic
algorithm or Pareto optimization (MOGA /PO) based heuristic and regression based constraint
filtration. The polynomial model fit for regression is based on its capabilities to reduce the
trade-off parameters for eco-efficient HEMS operation.

®  Most of the authors use the weighted sum method (WSMD) to handle multi-objectivity for similar
problems. This research presents a diverse set of trade-offs that are critically analyzed to enable
the consumer choosing the best option.

e  Trends exhibited by the trade-off parameters are analyzed based on vital factors affecting these
parameters, e.g., loss of unused energy from the PV unit.

¢ The proposed method validated to minimize the emissions from a local LDG for a
DRSREODLDG-based HEMS; however, it is easily extendable to reduce the supply-side emissions
as well.

The organization of the paper is as follows: Section 2 describes the related work whereas the
system model is elaborated in Section 3. The problem formulation for eco-efficient operation of
DRSREODLDG-based HEMS and the techniques used to solve this problem are presented in Section 4.
The proposed Algorithm 1 to generate primary trade-offs for optimal HEMS operations, and Algorithm
2 to harness eco-efficient trade-offs through a constraint filtration mechanism are presented in Section 5.
In Section 6, simulations are presented to demonstrate the validity of Algorithm 1 to generate schemes
for DRSREODLDG-based HEMS operation in terms of Tst and the primary trade-offs between CEnet,
TBD and TEMiss. The trends exhibited by the primary trade-offs are analyzed in detail and the bases
for the selection of constraint filters including AVCF and ASCEF are validated. Further simulations are
presented to demonstrate the validity of Algorithm 2 to harness eco-efficient trade-off solutions using
the optimal constraint filters. Conclusions and future work are discussed in Section 7.

2. Related Work

With the installation of smart grid technologies enabling DSM, a widespread deployment of DR-
and DRSREOD-based HEMSs has been carried out throughout the world in the past few years [17,18].
The report in [17] has given an overview and boost to the RESs by forming policies among various contries.
In [18], the current phase of Paris agreement has focused on developing a global approach, which limits
the GHG emissions of all countries. In recent years, authors have presented various models and methods
for the optimal operation of such systems [2-8]. The objectives for optimal HEMS operation include
minimizing CE, TBD, peak-to-average ratio (PAR) and peak/permanent demands [19-21]. In[19],
the authors have used different priorities to derive user comfort. Khan et al. [20] have used three different
appliances to minimize CE, TBD, and PAR. Meta-heuristics approaches including optimal stopping rule
are used as optimization schemes. Similarly, the authors in [21] have applied meta-heuristics approaches
along with a hybrid approach to minimize CE. Furthermore, utilities owning energy deficient power
networks in developing countries are subjecting their users for LSD to maintain energy demand and
supply. In such power networks, consumers deploy a LSD-compensating DG in DRSREOD-based HEMS
for ensuring the reliable distribution of the energy [11]. The aforementioned objectives for optimal HEMS
operation have been achieved using optimization techniques like linear programming (LP), mixed integer
LP (MILP), advanced heuristics, etc.

Additionally, the issue regarding serious environmental concerns over the use of fossil fuels has
been raised at international forums consistently in the past few decades. Recently, worldwide consensus
has been reached to reduce the GHG emissions by selling them as commodities [12]. Such trading sets
quantitative limitations on the emissions made by polluters that may include utilities, independent MGD
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operators and the prosumers having local fossil fuel based generations. The present scenario based on
the polluter pays principle has incentivized utilities to reduce not only the generation cost; however,
the supply-side emissions as well while making use of the RESs installed for DRSREOD-based
HEMSs [14,22,23]. Furthermore, MGD operators having RESs, ESSs and DGs also include TEMiss as an
objective in the optimal dispatch scheme for their systems [15,16,24]. Furthermore, in energy-deficient
power networks, DRSREODLDG-based HEMSs having LSD-compensating DGs are used to ensure an
uninterrupted supply of power during LSD hours [11]. The operation of LDG in such HEMSs, however,
does accompany the release of emissions, which needs to be minimized.

The related work includes the recent research on models and methods to achieve important
objectives for DR and DRSREOD-based HEMSs including reductions in TEMiss (supply-side), CEnet,
and TBD; for MGDs including reductions in TEMiss and CEnet ; and for DRSREODLDG-based HEMS
including reductions in TEMiss (local), CEnet and TBD. The recent research related to the proposed
method for an eco-efficient operation of DRSREODLDG-based HEMS is summarized in Tables 3 and 4.

Table 3. Related work of proposed method for eco-efficient DRSREODLDG-based HEMS operation.

RES and SB

Tariff +.HEMS Objectives Salient Features of the HEMS Achievements Limitations Optimization
Devices Method
Horlzog (jllVlfied into 4 windows; Gain of 0.185 for ) )
HAs classified in terms of occupancy, Fixed windows
. user comfort, . .
activity and delay tolerance are compared with limit user Particle swarm
ToU + SHAs [2] CE and TBD operated in designated windows; Opl 49 for convenience; optimization
Objectives for CE and TBD are uns'che duled TEMiss not (PSO)
combined through the WSMD for included
loads
user comfort
Ortmized shoduling or S ety
ToU/IBR + SHAs CE, peak load . ’ 22% through TEMiss not
. . Preferred periods for NSHAs; CE . . CPLEX solver
+ EVH [3] and satisfaction . . optimal SHAs included
and interruption cost for SHAs are schedulin.
combined using the WSMD 8
Prosumer-based HEMS; Predicted L.
Start/end limits
demand; Delayed /advanced
CE and scheduling; HAs clustered for CE reduced by not modeled, that linear
RTP + SHAs + PV . e - ) 11% for DR and affects .
frustration due operation in three time windows; . . programming
[4] X e R . . further through convenience;
to time shifting Frustration and CE combined using ) (LP)
sale of PV energy ~ SB/TEMiss not
the WSMD; Penalty cost to consumer included
for not providing PV to utility
Evaluation of HEMS algorithms GA-based
. SB may be
based on GA, BPSO and ant colony algorithm included with PV CA. Binar
ToU/IBR + SHAs CE, TBD and optimization (ACO); Fixed HAs, outperforms to reduce TBD: PSOI (BPSC;/)
+ Elastic + PV [5] PAR SHAs, and elastic HAs; BPSO and ACO P EMisenot o ACO
Knapsack-based formulation; CE and  for CE, TBD, and included
TBD combined using the WSMD PAR
ToU + SHAS + Priorit}‘/—based resource scheduling; CE rsduced by TBD and Heuristic based
. . CE and peak Maximized PV usage; SB used after 15.96% and sold .
Curtailable + Fixed A . TEMiss not on resource
demand PV; SHAs operation based on units/day are 90 . L.
+ PV + SB [6] . . . included priorities
real-time priority adjustment Nos.
EVH scheduling integrated with
SB/EVH/PV power utilization; CE reduced by
Difference between CE and cost of 65% by shifting ~ SHAs scheduling
DAP + PV + SB energy sold mlmmlzed; SB charged EVHs towa'rds and objectives for MILP/CPLEX
+EVH[7] CE from PV /utility for low demand off-peak periods TBD and solver
periods and discharged during peak and selling PV, TEMiss not
periods; Penalty function adjusts ESS, and EVH included
priority of PV, SB, and EVHs to sell energy
energy
DR for aggregated homes; Locational CE reduced by
RTP/LMP + SHAs + marginal price-based HA shifting 9.5% for DR and TBD and
Curtailable + PV CE and AC temperature control; PV/SB by 28.6% for TEMiss not LP
+SB [8] integrated to supply loads based on DRSREOD for included
PV, SoC, Pds_mx and Pch_mx 1000 homes
Sizing of an LDG based on DR based
s Trade-offs
forward/reverse load shifting of provided for Trade-off
ToU/IBR + Fixed + CE, TBD and sHAs integrated with an 0pt1m§l optimal sizing of solutions for MOGA /PO
SHAs + PV + SB LDG size dispatch based on parallel operation LSD-compensatin CEnet, TBD and based heuristic
+LDG [11] of RESs, SB, and LDG; LDG operates mp & TEMiss not
X . X . DGs with CE and
during LSD in collaboration with TBD computed

Note: The abbreviations used in table are defined in Table 1.
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2.1. Emissions Reduction Using DR-Based HEMSs

Most of the research on DR-based HEMS has focused on objectives like CE, PAR, peak load
and discomfort [2,3]. Such systems have limited capabilities to play a role in the reduction of GHG
emissions. In [13], a scheme for DR based HEMS is presented. Non-critical house loads are shifted
towards off-peak hours to minimize the daily cost of generation and emissions for the supply-side.
It is validated that implementation of DR program effectively reduces the cost of generation on the
supply-side; however, the emissions on this side are reduced only when peak demand is met by

peaking plants based on high emission fuels like coal, diesel, etc.

Table 4. Related work.

The emission is

DR-based scheduling of noncritical loads CE reduced by reduced only if Heuristic/
DS?{PA/ST;%"— ](; 5 ]3[1:35 to minimize daily cost of generation and ~ 3.7% and TEMiss peaking plants stochastic
) the supply-side emission for the utility by 20% are fossil fuel programming
based
DR-based scheduling of SHAs integrated Trade-off
CE, thermal  with the optimal dispatch of RES, SB, and .
. . X . CE reduced by solutions for CE,
ToU + SHAs discomfort, the power grid; TEMiss computed using
I ;s . 28% at a TBD and
+PV +EVH total/peak, emission coefficients for the energy mix discomfort of TEMiss not MILP
+ ESS [14] load and adopted by utility; DRSREOD reduces .
. . . . 41.7% available to
TEMiss supply-side TEMiss by supplying load consumer
during high emission hours
PSO is 90 times Computing of
Generation An algorithm for an optimal HEMS faster; DG at putng
RTP + SHAs . . . TEMiss, TBD
Cost, DG operation for HES including WTB, DG, rated power . LP/PSO and
+WTB + DG . . . . . and the grid
- efficiency and SB; PSO is compared with sequential improves sQP
+ SB [15] ) . R .. power not
and TEMiss quadratic programming (SQP) efficiency and included
reduces TEMiss
Algorithm for optimal dispatch of PV,
ToU + Fixed Operating WTB, ESS' and main grid in ’fi MGD; Model validated Loaq shifting npt
: Constraints for ESS charge/discharge, . considered while
+PV+WTB  cost, TEMiss .. for varied load .
DGs start/stop, emissions and supply . computing GA
+ FC + ESS and RES . . . for different .
capacity considered; TEMiss computed dispatch for
+ DGs [16] usage . . . seasons
using emission factors for grid, power power sources
supplied from local plants and ESS
Shifting of major HVAC loads integrated
with PV, SB and power grid dispatch; Diversified
TOU/RTP + CE, ) HEMS operation based on user CE reduced by tr_ade—off
consumption, preferences, home occupancy, day ahead 5 solutions based
thermostat + . . . 20% and peak MILP/GLPK
TEMiss, and emissions and climate forecasts; Net on CE, TBD and
SHAs + PV o . . load reduced by . Solver
+SB[22] peak emission cost includes carbon footprint 50% TE Miss not
demand of customer from grid electricity usage available to
minus emission reduction by injecting consumer
emission free PV energy
An algorithm to maximize a sum of
benefits to consumers and the utility;
Emission mitigation through CEMiss A welfare Diversified
Welfare for based trading; Utility profited by function trade-off Lagrange
consumers reducing his carbons purchasing energy proposed to solutions based multipliers
DAP + PV and the from the local RES and the SB during integrate optimal CE. TBD and used to
+SB [23] utility, and high emission hours; Welfare includes objectives; O; EM. lfss are igt introduce
privacy for benefits due to consumption-based Dynamic selling available to the scalability and
the consumer  satisfaction and reduced electricity cost and buy-back privacy

to the consumer, and reduced peak load,
generation cost and emissions to
the utility

tariff proposed

consumer

Note: The abbreviations used in table are defined in Table 1.

2.2. Emissions Reduction Using DRSREOD-Based HEMSs

Most of the models for DRSREOD-based HEMS presented in the recent past are based on optimal
scheduling of SHAs integrated with the optimal dispatch of RESs and ESSs. HEMS problems for
these models have been solved to reduce CE and discomfort for the consumer, and to minimize
peak load/PAR and cost of generation for the utility [4-8]. Recently, in the context of worldwide
concerns over GHG emissions, authors have focused on the reduction in emission as an objective
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for DRSREOD-based HEMS. In [14], authors proposed a scheme for optimal scheduling of SHAs
integrated with the optimal dispatch of RES, SB, and the utility. Major goals include reductions in
CEnet, temperature based discomfort, peak load, and the supply-side emissions. Such emissions are
computed using emission coefficients for the energy mix adopted by the utility during various times
of the day. An optimal dispatch of local RESs and SBs results in the reduction of net supply-side
emissions by supplying the load during high emission hours. MILP has been used to solve the model.
In [22], an operating mechanism of major HAs including heating and cooling appliances integrated
with the optimal dispatch of PV and SB is presented. The algorithm for real-time HEMS operation is
based on user preferences, home occupancy, day ahead emissions and climate forecasts. The objectives
for reduction in CE, electric consumption, TEMiss, and the peak demand are formulated. The net cost
of emission includes carbon footprint of the customer from the grid electricity usage minus carbon
reduction from injecting emission-free electricity from RES. In [23], a prosumer based algorithm is
presented to maximize the sum of benefits to the consumer and the utility. The emission trading has
been considered as a mean of mitigating this commodity. The utility is profited by reducing his carbon
footprints while purchasing energy from locally installed RESs and ESSs during high emission times.
The fitness function maximizes the welfare including consumption-based satisfaction and monetary
benefits from RESs and ESSs to consumers and benefits of the reduced peak load, generating cost and
emissions to the utility. A dynamic selling with dynamic buy-back pricing scheme is also proposed
to implement the model. For scalability and user privacy, the problem is solved using Lagrange
multipliers. The objectives in all of the above research are combined using the WSMD.

2.3. Emissions Reduction in MGDs

In MGDs, RESs and ESSs are integrated with DGs to enhance the quality and the reliability
of the power supply. In [15], a solution for DRSREOD-based HEMS operations for a stand-alone
home including WTB, DG, and SB is computed using PSO. The local fossil fueled DG is operated
at rated power for an improved efficiency and reduced emissions. A separate objective function for
emissions; however, is not included. An optimal dispatch for an MGD is computed in [16] using
GA. Additional constraints for ESS charge/discharge rates, DG start/stop and supply capacity are
considered. Total emission is computed using emission factors for the grid, power supplied from the
local DG and the ESS. The model does not include load shifting while computing the dispatch for
power sources. A method to compute an optimal dispatch of RESs and DGs for a MGD is presented
in [24]. The dispatch is based on costs of energy from WTB, PV and DG, EMiss and CE from/to main
grid for a fixed load profile. The WTB and the PV are the preferred sources. The SB is discharged
based on its SoC if local RESs are not able to meet the demand; else, the load is supplied through the
economic dispatch of the DG, fuel cell (FC), SB and the grid. Non-critical loads are disconnected when
local sources are insufficient. The DG is operated at rated power to minimize EMiss. DR based load
shifting is not included.

2.4. Emissions Reduction in DRSREODLDG-Based HEMS

Energy-deficient power supply networks in developing countries are based on the compromises
for the consumers to LSD in order to maintain the equilibrium between demand and generation of
energy [10,11]. While a number of consumers in developing countries are participating in DSM making
use of DRSREOD-based HEMSs, LSD-compensating DGs are deployed in such HEMSs for ensuring the
uninterrupted supply of electricity. An algorithm for optimum sizing of an LDG for DRSREOD-based
HEMS was presented in our recent research [11]; however, such a DG does introduce emissions when
operated during LSD hours. Based on the recent scenario for quantitative restrictions on carbon
emissions, research on the optimized operation of DRSREODLDG-based HEMS focusing reduction
in TEMiss looks pertinent. A simulation-based posteriori method for an eco-efficient operation of
DRSREODLDG-based HEMS takes into account the trade-offs between CEnet, TBD, and minimal
TEMmiss is proposed. A three-step approach is followed. At step-1, primary trade-off solutions
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for CEnet, TBD, and TEMmiss are generated using a heuristic proposed for an optimal operation
of DRSREODLDG-based HEMS. The heuristic, which uses MOGA /PO to search optimal trade-offs,
is detailed in Algorithm 1. At step-2, an AVCF is used to filter out the trade-offs with extremely high
values of TEMiss, whereas an ASCF is used to screen out the trade-offs with marginally high values
of TEMiss at step-3. The ASCF was developed using advanced regression techniques. The filtration
mechanism including AVCF and ASCF used to harness eco-efficient trade-off solutions for CEnet,
TBD, and minimal TEMmiss is detailed in Algorithm 2.

3. System Model

The architecture for DRSREODLDG-based HEMS is shown in Figure 1. The major components
of such HEMSs include home appliances, renewable energy sources, an energy storage system,
an LSD-compensating DG, a HEMS controller, a local communication network, and a smart meter for
bidirectional interation between users and the power grid. The proposed optimal operation for such
HEMS are based on DR synergized with the optimal dispatch scheme for RESs, ESSs and an LDG.
The operating scheme takes into account the MS of SHAs, their combined corresponding functions
of the PV unit, the SB and the utility, and the energy sold to the grid based on the parametric values
of power vector from PV (P, ), vectors of the state of charge (SoC), the maximum charge/discharge
rates, and the tariff scheme. PV unit is the preferred source that is responsible for suppling the power
to the scheduled appliances. The surplus PV energy is saved into the SB for utilizing the power during
peak hours and it is sold to the utility for a monetary benefit. During the LSD hours, if SB is full and
there is no energy demand than the excess energy from the PV unit is dissipated in a dummy load [9].
The mentioned energy (shown by Pdl) represents a loss of the PV energy that could not be sold due to
the unavailability of the main grid. The LDG is used for supplying the load in high demand periods
which is contributing similar to PV unit and the SB to prevent the electricity blackouts. The operation
of the LDG in such systems ensures an uninterrupted supply of power; however, such operation of
the LDG accompanies the release of GHGs emissions as well. The problem for DRSREODLDG-based
HEMS operation has been formulated as multi-objective-optimization (MOQO) to minimize CEnet,
TBD, and TEMiss.

Furthermore, according to [10], 31% and 21% energy is consumed in industrial and residential
sectors, respectively. However, in this paper, we consider only residential area for implementation of
our proposed scheme. Because our proposed schemes are based on load scheduling from ON-peak to
OFF-peak hours, it is not possible in industrial or agriculture sectors to reduce electricity cost via load
shifting due to production problems. Therefore, we consider only residential area for implementations.
Moreover, there are a lack of sources in developing countries, so the energy management system is a
huge opportunity for these countries.

A three-step simulation based posteriori method is proposed to provide trade-off solutions for
an eco-efficient operation of DRSREODLDG-based HEMS. The method makes use of Algorithm 1
and Algorithm 2 to harness eco-efficient schemes for HEMS operation in terms of Tst and the related
trade-offs for CEnet, TBD, and minimal TEMiss. At step-1, primary trade-off solutions for CEnet,
TBD, and TEMiss are generated making use of Algorithm 1. Algorithm 1 is based on a MOGA /PO
based heuristic proposed in this work. At step-2, the primary trade-off solutions are passed through an
AVCEF to filter out the trade-offs with extremely high and above average values of TEMiss. The filtrate
is then passed through an ASCEF to screen out the trade-offs with even the marginally higher values
of TEMiss at step-3. The proposed filtration mechanism comprising AVCF and ASCEF is detailed
in Algorithm 2. The simulations to validate the method for harnessing the desired trade-offs for
eco-efficient operation of DRSREODLDG-based HEMS are presented in Section 6.

Major components of the proposed model for DRSREODLDG-based HEMS are presented below.
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3.1. Parameters for Scheduling

A scheduling resolution of 10 min. slot has been adopted. To formulate the HEMS operations,
total time is sub-divided into 144 slots. While scheduling, each SHA is executed in the specific horizon
for a specified number of slots. The proposed model for HEMS operation is dependant on a dynamic
electric pricing signal, i.e., an IBR pricing signal, the PV panel, the SB, and the LDG. The control
parameters for HEMS components are described in Section 4 on problem formulation.

3.2. HAs

Motivated from the literature [21,25], the HAs are classified into non-shiftable home appliances
(NSHAs) and SHAs. NSHA, e.g., electric lamps, and fans, are working on required time slots and can
not be opted for scheduling. SHAs are assumed to be scheduled towards the low demand hours and
the PV harnessing hours for optimized HEMS operation. To achieve a maximized reduction in the cost
of energy, shiftable appliances are modeled as AS and DS. Such classification enables more reduction
in the cost of energy making use of enhanced flexibility in the appliances shifting and an increased
direct usage of the PV energy from the PV unit [11]. AS and DS type SHAs with the user prioritize
settings and the NSHAs along with their forecasted load, used in the simulation section are described
in Tables 5 and 6.

Table 5. Shiftable home appliances and scheduling specifications.

SHA Power (kWh) LoT (slots) Start/End (slots)

Air Conditioner 1 (Reversible) 1 18 01-36 (DS)

Air Conditioner 2 (Reversible) 1 9 37-54 (DS)
Air Conditioner 3 (Reversible) 1 9 103-120 (DS)
Air Conditioner 4 (Reversible) 1 12 121-144 (DS)
Dishwasher 1 0.6 3 49-102 (DS)
Dishwasher 2 0.6 3 127-144 (DS)

Electric Geyser 1 0.8 6 01-36 (DS)

Rice Cooker/Oven 1 (Manual) 0.4 3 73-81 (DS)
Computer/Laptop (Manual) 0.1 6 114-144 (DS)
Washing Machine 0.7 9 93-123 (AS)
Water Pump 0.7 3 37-117 (AS)

Electric Geyser 2 0.8 6 55-121 (AS)
Rice Cooker/Oven 2 (Manual) 04 3 100-117 (AS)
Iron (Manual) 0.6 3 55-117 (AS)

Table 6. Non-shiftable home appliances considered for scheduling.

NSHAs Power (kWh) Start/End (slots)
01 Light + 02 Fans + 01 Refrigerator 0.2 01-36
02 Lights + 02 Fans + 01 Refrigerator 0.25 37-54
01 Lights + 02 Fans + 01 Refrigerator 0.2 55-78
02 Lights + 02 Fans + 01 Refrigerator 0.25 79-108
03 Lights + 03 Fans + 01 Refrigerator + 01 TV 0.3 109-114
04 Lights + 03 Fans + 01 Refrigerator + 01 TV 0.35 115-144

The proposed method is generic in nature and is equally applicable to DRSREODLDG-based
HEMS based on time-of-use pricing and Day-ahead pricing schemes. A 2-step ToU pricing tariff with
respective IBR values and threshold power demand are used in simulations in Section 6.



Energies 2018, 11, 3091 12 of 40

3.3. RESs

Solar irradiation data as measured by the Pakistan Engineering Council in Islamabad has been
applied for the simulations to validate the proposed system [11]. It is possible to sell the surplus
energy produced from the RESs [26]. The PV system is used in the simulations and its parameters’
configurations are given in Table 7. The energy generation profile of PV unit is displayed in Figure 3.
The electricity bill of generations from local RESs has not been included in the model and such
installations have been considered as a module of the current system [11].

08 b

0.6 b

Ppv (kWh)

Time Slots

Figure 3. Profile for photovoltaic energy.

Table 7. Photovoltaic system specifications.

Parameter Value
Total capacity 5kW
Rating of each panel 250 W
Number of panels and panel area 20, 32 m?
Efficiency of PV panels 15%

3.4. ESS

The SB and the inverter are important parts of the proposed DRSREODLDG-based HEMS.
These components along with their specifications are given in Table 8. Net loss for the SB is initially
supposed up to 20%; otherwise, it is considered for charging.

Table 8. SB and inverter specifications.

Parameter Value
Inverter rating 5kW
Inverter efficiency 70%
SB Ah 600 Ah
SB voltage 48V
SB capacity 4.8 kWh/slot
SB charge rate 0.48 kWh/slot
SB discharge rate 0.32 kWh/slot
Minimum SoC 30%
Maximum SoC 95%
SB efficiency 80%
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3.5. LDG

The consumers perform optimally sizing the LDGs according to their deficient load as [27].
The specifications of the LDG to cope with the LSD are used in the simulation of proposed model as
given in Table 9. The emission factor is computed as per Equation (8) using the pertinent data given
in [28,29]. The cost of energy for the LDG is according to the levelized cost of energy for such units
given in [30].

Table 9. Load shedding-compensating dispatchable generator specifications.

Parameter Value
LDG rating 1kVA
Power factor 0.8
Emission factor 1.6 Lbs./kWh
Levelized cost of generation for the LDG 17 Cents/kWh

4. Formulating DRSREODLDG-Based HEMS Problem and the Related Optimization Techniques

The contents of this section are inherently divided into two parts: (1) the problem formulation for
HEMS optimization to generate optimal schedules of SHAs in terms of Tst and the primary trade-offs
for CEnet, TBD and TEMiss along with the proposed techniques.

The problem to generate the primary trade-offs for CEnet, TBD and TEMiss is computed using
the following input values:

e B=]I1,2,.,b,.,k] =SHASs used for scheduling,

e T=11,23.,n,.,N]=Slot numbers defined for the scheduling horizon,

®  Pa = [Pay, Pay,.., Pa;] = Power ratings of the SHAs rer-slot,

e LoT = [LoTy, LoTy,.., LoT;] = SHAs having different lengths of operation time,
e STslot = [STsloty, STsloty, .., STsloty] = SHAS starting slots,

e ENslot = [ENsloty, ENsloty, .., ENsloty] = SHAs Ending slots,

e PE = [PEy,PE,, .., PEN] = ToU pricing tariff values in Cents/kWh,

e IBR = [IBRy,IBRy, .., IBRy] = IBR factors for power more than PT,

e Tst = [Tsty, Tsty, .., Tsty] = Each SHA’s decision vector for start time.

The problems for HEMS are formulated to compute the power requirement for whole of the
scheduling horizon. With Tst as the decision vector, HEMS problem for the scheduling vector Pschd_sh
is treated as MILP and computed using the following Equations.:

N k
Pschd_sh =Y Y X(b,n), 1)
n=1b=1

where X (b, n) for the b SHA is computed based on the following terms,
X(b,n) = Pa(b) : for Tst(b) + LoT(b) > n > Tst(b),
10 : for Tst(b) > n > Tst(b) + LoT(b).
The load vector Pload_nsh for NSHAs is added to Pschd_sh to calculate the final scheduled load
vector (Pschd) using Equation (2):

Pschd = Pschd_sh + Pload_nsh. 2)

The problem is solved using a MOGA /PO based heuristic proposed in Algorithm 1 to obtain a
decision vector, Tst, which optimizes the outcomes for trade-offs parameters by fulfilling the required
constraints.
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4.1. Objectives for DRSREODLDG-Based HEMS Problems

The main objective for DRSREODLDG-based HEMS optimization is to achieve the optimal
trade-offs between the CEnet, TBD and TEMiss. To obtain the above-mentioned trade-offs,
the problem for HEMS is formulated using SHA schedules by calculating Pschd paralelly, synergizing
the scheduling with RES, ESS, LDG and power grid dispatch for N time intervals over a specified
scheduling horizon. The LDG is integrated in the dispatch only for the LSD intervals to supply
the load in collaboration with the PV unit and SB. The heuristic presented in Algorithm 1
computes the corresponding vectors for Pgd, Pgn, and Psold that are used to compute the objective
functions/trade-off parameters.

4.1.1. Reduction of CEnet

The CEnet is computed using the Equation (5):

N
Minimize Y (Pgd x PE + Pgn x PEg — Psold x PEf). 3)

n=1

Here, Pgd and PE are the power purchased from the main grid and its price in Cents/kWh.
The terms Psold and PEf are the energy sold to the utility by the consumer and its feed-in price in
Cents/kWh, respectively. Pgn and PEg are the energy supplied from the LDG and its levelized price
in Cents/kWh, respectively. A factor Psold x CEMiss can be excluded from CEnet as a reward for
reducing the supply-side emissions through the PV energy sold to the utility.

4.1.2. Minimization of TBD for the Consumer

We consider user discomfort in terms of average waiting time (TBD) of appliances. It simply
means how much time a user will wait to switch ON any appliance. Moreover, the maximum average
waiting time means maximum user discomfort and vice versa. For instance, if the average waiting
time of all appliances is four hours, then user discomfort will increase by 0.4 because the user feels
discomfort to wait. Moreover, in the case of unscheduled electricity consumption, users do not wait to
turn ON their appliances. Electricity user can use any appliance at any time, so their waiting time is 0
and the user’s comfort is maximum (no discomfort). The TBD formulation is given below:

k1
TBD(D) = Y ((Tst — STslot)/,
=1 4

(ENslot — LoT — STslot + 1)) /ky,

where STslot and ENslot indicate the users’ time bounds flexibility for representing the starting and
ending boundaries for SHAs working. LoT is a vector which is comprised of total length of operation
time for eacg SHA for completing its execution. Tst is also a decision vector which consists of starting
intervals of all SHAs, whereas k; is the number of SHAs designated as DS.

When the corresponding SHA starts its execution at STslot, the TBD(D) uses its initial value as
0, i.e., the start of the execution time is assigned from the users. When Tst(b) is equal to ENslot(b) —
LoT(b) + 1, it obtains its maximum value at 1, i.e., late starting time for the SHA results in finishing of
the task at the late alloted time ENslot(b). The boundaries for the selection of Tst should be considered
feasibly which are calculated with the help of the next Equation:

Lb = STslot and Ub = ENslot — LoT + 1. (5)
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Due to the advanced completion of the jobs of AS type SHAs denoted by TBD(A), the average
TBD is computed. It is calculated by taking the average of the normalized advance-completion times
of all gadgets. This value is computed using the next equation:

ka

TBD(A) = ) _ ((ENslot — Tst — LoT + 1)/
b=1
(6)
ENslot — LoT—
STslot + 1)) /k,

whereas, k, denotes the number of SHAs for AS type.

When the corresponding SHA completes its execution at ENslot(b), TBD(A) takes its initial value
as 0, for example, when Tst(b) + LoT(b)-1 is equal to ENslot(b). When Tst(b) is equal to STslot(b),
it gets its maximum value as 1, for example, using the finishing time of the appliance which is calculated
with STslot(b) + LoT(b) — 1.

There are muitple appliances and some of them are categorized as AS and others are categorized
as AS in MS. For minimizing the average TBD for total k appliances in MS mode, the objective function
is defined as below:

Minimize(TBD(D) + TBD(A)). (7)

For a scheduling flexibility and better reduction in CEnet, TBD based on MS of SHAs as per
Equation (7) has been opted for this model.

4.1.3. Reduction of TEMiss

Equation (8) computes the emissions” minimization ratio, i.e., TEMiss, from which the LDG
is formulated: N
Minimize ) _ (Pgn x EFT). 8)
n=1
Here, EFT is the carbon emission factor (kg/kWh) and Pgn is the vector for the energy supplied
by the LDG in kWh during the LSD hours [13,16]. A value of 1.6 Lbs./kWh has been used for EFT for
the LDG as per the data available in [28,29].

4.2. Techniques to Solve DRSREODLDG-Based HEMS Optimization Problems

The HEMS optimization is considered as a combinatorial optimization problem. Multiple HEMS
problems are nonlinear, non-convex constrained, multi-dimensional in nature and they have a variety
of the solutions available in literature. To solve these problems, both conventional and advanced
heuristic optimization techniques are used.

4.3. Techniques to Handle Multi-Objectivity in HEMS Optimization

Multiple HEMS optimization problems faced in existing scenarios are multi-objective optimization
(MOO); however, these problems have conflicting objectives. Minimization of CEnet is considered
as a major aim in most existing studies on HEMS, while minimizing TBD is another significant aim
in the consumer perspective. After the serious concerns over the environmental issues, the role of
DRSREOD-based HEMS to reduce the emissions due to the local as well as due to the centralized
generation by the utility has recently started to be investigated. Various methods have been used in the
recent research to take into account important trade-offs between CEnet, TBD and TEMiss. The most
widely used approach is the WSMD [12,13,15,18-20]. This is an a priori technique that converts MOO
into single-objective optimization (SOO) in order to achieve one solution. These techniques do not give
the feasible relations among the objectives to allow the consumer to choose among specific preferences.
The methods may miss a number of good solutions for a specific user regardless of their preference
standards. Analysis of the trade-offs among the above-mentioned aims is considered very pertinent,
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which enables consumers in decison-making from the set of the diverse set of optimized outcomes.
The posteriori method known as Pareto-based multi-objective optimization is dependent on the Pareto
dominance idea, which provides the diverse set of possible solutions for multiple objectives.

The concept of MOO problems for a HEMS using decision vector Tst and m
objectives for Pareto-based optimization is computed as: minimizing the objective vector
F(Tst) = [Fi(Tst), Fo(Tst), .., E,(Tst)], following the mentioned constraints. When Tst; is better than
Tstp in any one of the given objectives and is not considered worse in any other than the solution
Tst1, which is said to dominate another Tst;. The Pareto-optimal set is composed of the set of
non-dominated solutions. The recently introduced MOGA includes features to implement Pareto
optimization. Pareto-optimal sets providing optimal trade-offs between CEnet, TBD and TEMiss for
a DRSREODLDG-based HEMS have been calculated in this work by using MOGA and the Pareto
optimization features as described in Algorithm 1. One hundred of these aforementioned trade-offs
computed through MOGA /PO based heuristic are processed to enhance eco-efficiency making use of
a constrained filtration mechanism as discussed in Sections 4.4 and 4.5.

4.4. Constrained Filtration of Trade-Offs to HEMS Optimization

The trade-off solutions achieved for a multi-objective optimization problem can be passed through
an adequately designed filtration mechanism in order to apply a constraint on any one or more of
the specified trade-offs. Such filtration mechanism enables harnessing the trade-offs with enhanced
efficiency. In this research, a filtration mechanism has been proposed to screen out the trade-offs with
larger values of TEMiss as related to the trade-offs for CEnet and TBD. This mechanism comprises of
an AVCF and an ASCF. AVCF makes use of an average value of the trade-off parameter TEMiss to
filter out the trade-offs with above average and extremely high values of TEMiss. While ASCF takes
into account an average surface fit for TEMiss in terms of CEnet and TBD to screen out the trade-offs
with higher values of TEMiss. ASCF has been developed using polynomial based regression technique
elaborated in Section 4.5. The formulation for AVCF and ASCF and their application to harness
eco-efficient trade-off solutions are presented in Section 4.

4.5. Regression Based Surface Fitting Techniques to Develop ASCF

Regression models are used to establish a relation between the dependent and the independent
variables in a set of data (z;, x;, ;). In order to develop a surface for the variable z in terms of variables
x and y, a regression model is fit to the set of input data. Major models for surface fitting include
interpolant, lowess, and polynomial. A polynomial surface fit model has been used in this research for
its flexibility in application to the input data. For polynomial surfaces, a general model is designated
as Poly(kl), where k is the degree in x and [ is the degree in y. The degree of x in each term will be less
than or equal to k, and the degree of y in each term will be less than or equal to /. The maximum for
the sum of k and [ is m. The degree of the polynomial is the maximum of the values of k and I. A linear
regression model (LRM) for i number of observations for the independent variables (x;, y;) defines a
curved surface for the dependent variable z; in a 3D-space. The LRM for the surface in terms of an
order-m polynomial may be represented as:

ko1
zi= Y Y Ak xx* <y +u;, )
f=1g=1

where 0 < k+1 < m.

z; is called a dependent variable or regressand, and x; and y; are called independent variable
or regressors. The first term in Equation (9) is deterministic and represents the conditional mean of
z; based on the given values of x; and y;. The second term u;, called the error term, is random in
nature. The term is added or subtracted from the first term to realize the actual data. A(k,!) are called
regression coefficients (RCs). In LRMs, they are assumed to be fixed numbers. The term linear in
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LRM refers to the linearity of the RCs. The fitting of a model is based on the estimates for the RCs.
The estimation is carried out based on the minimization of the least squares of the error term called a
least square method. Based on Equation (9), u; is the difference between the actual value of z; and the
one obtained through the regression. For an optimal linear coefficient (LC) for surface fitting, the sum
of the squared error term (SSE) to be minimized is given as follows:

i ko1 2
SSE=Y u?=(zi— Y Y A(kI)xx*xy') . (10)
e=1

f=1g=1

As u; is a function of RCs, the minimum value of the SSE may be computed by taking partial
derivatives of the same with respect to each of the RCs and equating the expression to zero. Based on
the estimated a(k, [), a sample model z;; is formulated and the error term is also known as residuals,
which is computed as ¢; = z; — z;5. The regression coefficients a(k, ) are the estimators of A(k, ) and
ei is the estimator of the error term u;. The numerical values taken by an estimator are called estimates.
The least-squares solution to the problem is a vector a(k, 1), which estimates the unknown vector of
coefficients A(k,1). In present research, SSE has been used to estimate the model fit for an average
surface for TEMiss in terms of CEnet and TBD. It is assumed that the observed data is of equal quality
and thus has constant variance; however, the fit might be unduly influenced by the data of poor
quality. Methods like weighted-least-squares regression are applied to reduce the influence of the low
quality data on estimating the model fits [31,32]. In present research, the use of AVCF to screen out the
trade-offs with extremely high values of TEMiss inherently improves the data quality for the model fit
for ASCF.

The model fit in this research is based on minimization of SSE that may be improved using
methods like minimization of root mean square error and root mean square error of approximation.
However, the improved well-fitting is of minimal value, if it is not based on the ideas from a theory
validation point of view and in such cases an extensive cross-validation is required [33]. Accordingly,
various polynomial models fit, 25 in number, have been examined for their capabilities to reduce the
average value of trade-off parameters for TEMiss and the number of diverse trade-offs available for
CEnet and TBD after the application of filtration mechanism.

5. Algorithms for Eco-Efficient Trade-Offs for DRSREODLDG-Based HEMS

A three-step approach has been used to achieve eco-efficient trade-off solutions for
DRSREODLDG-based HEMS. In step-1, schemes for optimal HEMS operation and the related trade-offs
for TEMiss, CEnet, and TBD are computed using Algorithm 1. The trade-off solutions thus obtained
are passed through a filtration mechanism to harness the ones with bare minimum TEMiss in terms of
CEnet and TBD using Algorithm 2. The filtration mechanism is completed in two stages designated as
step-2 and step-3. In step-2, an AVCF for TE Miss is developed and applied to the primary trade-offs
to filter out the ones with extremely high and above average values of TEMiss. The remaining
trade-offs are then passed to step-3 to screen out the trade-offs with even the marginally higher values
of TEMiss. In step-3, an ASCF is used to filter out the trade-offs with TEMiss parameters residing
above the average surface fit for TEMiss. Eco-efficient solutions including bare minimum TEMiss
and diversified trade-offs for CEnet and TBD are thus achieved for DRSREODLDG-based HEMS
operation. The followings algorithms have been proposed to harness the eco-efficient tradeoff solutions
for DRSREODLDG-based HEMS:

¢ Algorithm 1 to generate primary tradeoffs for DRSREODLDG-based HEMS (Step-1).
e Algorithm 2 for filtration mechanism to harness eco-efficient tradeoffs for DRSREODLDG-based
HEMS (Step-2 and step-3).

The algorithms are presented in the following subsections.
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Algorithm 1: Algorithm to generate operating schemes and the primary tradeoffs for
drsreodldg-based hems (step-1).

Input: PE, PEf, PEg, IBR, TP, EFT, Pa, Styp, STslot, ENslot, LoT, Pload_nsh, Pgds,
SoC(init), SoC_mx, SoC_mn, Pch_mx, Pds_mx, Ppv

Output: Optimal tradeoffs for TEMiss, CEnet and TBD with Tst for SHAs

1: Initialize input parameters

2: Call MOGA

3: Initialize Tst within bounds STslot and ENslot-LoT+1

4: for Iterat = 1: Ng_mx

5: if Iterat > 1

6: Generate new Tst populations within bounds using GA operations

7: end

—-Computing Pschd vector for DR-based scheduling—

8: Tend = Tst+LoT-1

9: fori=1k

10: forj=1N

11: if (j > Tst(i) &&j < Tend(i))
12: Power_matrix(i,j) = Pa(i)
13: else

14: Power_matrix(i,j) = 0

15: end

16: end

17: end

18: Pschd = sum(Power_matrix)+ Pload_nsh

——Computing dispatch for the PV system, SB, grid and the LDG—
19: forj=1:N

20: Pres(j) = Ppv(j)-Pschd(j)

——-Dispatch when PV energy > Pschd——-

21: case (Ppv(j)> Pschd(j)) do

22: if SoC(j)> SoC_mx

23: if Pgds(j) == 0

24: Pdl = Pres(j)

25: else

26: Psold(j) = Pres(j)

27: end

28: SoC(j+1) = SoC(j)

29: else

30: Pch(j) = min(Pch_mx,Pres(j),SoC_mx-SoC(j))
31: if Pch(j)# Pres(j)

32: if Pgds(j) ==

33: Pdl = Pres(j)-Pch(j)

34: else

35: Psold(j) = Pres(j)-Pch(j)
36: end

37 end

38: SoC(j+1) = SoC(j)+0.8* Pch(j)
39: end

40: endcase

——-Dispatch when PV energy < Pschd——-
41: case (Ppv(j)< Pschd(j)) do

42: if (SoC(j)< SoC_mn) | ((SoC(j)> SoC_mn) && (PE(j)< price_set))
43: if Pgds(j) ==1
44: Pgd(j) = -Pres(j)

45: else
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Algorithm 1: Cont.

46: Pgn(j) = -Pres(j)

47. end

48: SoC(j+1) = SoC(j)

49: elseif ((SoC(j)> SoC_mn) & & (PE(j)> price_set))
50: Pds(j) = min(Pds_mx,-Pres(j),50C(j)-SoC_mn)
51: if Pds(j) == Pds_mx

52: Pload_d(j) = Pschd(j)-Ppv(j)- pds_mx

53: elseif Pds(j) == (SoC(j)-SoC_mn)

54: Pload_d(j) = Pschd(j)-Ppv(j)-(SoC(j)-SoC_mn)
55: end

56: if Pgds(j) == 0

57: Pgn = Pload_d(j)

58: Pload_d(j) =0

59: end

60: SoC(j+1) = SoC(j)-Pds(j)

61: end

62: endcase

63: Pgd(j) = Pgd(j)+Pload_d(j)
——-Computing tariffs with IBR
64: if Pgd(j)> TP

65: PE(j) = IBR x PE(j)
66: end
67: end

—Computing fitness function forTEMiss—

68: TEMiss = EFT x sum(Pgn)

—Computing fitness functions for CEnet—

69: CEnet = sum(PE x Pgd)+sum(PEg x Pgn)-sum(PEf x Psold)
—Computing fitness function for TBD—

70: fora=1k

71: if Styp = DS

72: TBD(D)(a) = (Tst(a)-STslot(a))/
(ENslot(a)-LoT(a)-STslot(a)+1)

73: else

74: TBD(A)(a) = (ENslot(a)-Tst(a)-LoT(a)+1)/
(ENslot(a)-LoT(a)-STslot(a)+1)

75: end

76: end

77:  Compute TBD = (sum(TBD(D))+sum(TBD(A)))/k

78: end

79: Exit MOGA; return results as TE Miss,
CEnet and TBD tradeoffs and
corresponding Tst
80: Goto Algorithm 2 to harness eco-efficient tradeoff solutions
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Algorithm 2: Algorithm for filtration mechanism to harness eco-efficient tradeoffs for
drsreodldg-based hems (step-2 and step-3).

Input: Tradeoffs from algorithm 1 for CEnet, TBD and TEMiss

Output: Eco-efficient tradeoff solutions for CEnet, TBD and minimal TEMiss
——Step-2: Filtration of tradeoff solutions using AVCF for TE Miss—

1: Do

—Computing average value of TEMiss—

2: TEMiss_avg = Average (TEMiss)

—Computing residuals for TEMiss w.r.t TEMiss_avg —

3: TEMiss_Resid_avg = Average (TEMiss)- TEMiss

—Filtration based on average value of TEMiss—

4: Filter out/ Exclude solutions with negative TEMiss_Resid_avg

5: Collect the remaining solutions for refined filtration in step-3

6: Enddo

—Step-3: Refined filtration of tradeoffs based on average surface of TEMiss—
7: Do

8: Tabulate CEnet, TBD and TEMiss

—Computing average surface for TEMiss—

9: Generate an average surface using polynomial option (Ploy41)
—Computing residuals for TEMiss w.r.t average polynomial surface—
10: TEMiss_Resid_avgs = TEMiss on surface - Actual value of TEMiss
—Filtration based on average surface of TEMiss —

11: Filter out tradeoffs with negative TEMiss_Resid_avgs

12: Collect the remaining tradeoffs as eco-efficient tradeoff solutions
13: End do

5.1. Algorithm 1 to Generate Operating Schemes and the Primary Tradeoffs for DRSREODLDG-Based HEMS
(Step-1)

This algorithm computes a set of primary tradeoff solutions for optimized HEMS operation based
on MS of SHAs synergized with the optimal dispatch of the PV system, the SB, the grid, and an
LDG. The LDG supplies the load only during LSD hours in coordination with the PV unit and the
SB. Tradeoffs for CEnet, TBD, and TEMiss are based on the underlying scheme for HEMS operation.
At the start, vector Tst for SHAs is generated that is followed by the production of Pschd vector. The PV
system is regarded as the preferred source to directly supply Pschd. The dispatch planning is mainly
based on the excess PV energy in each slot denoted by Pres which is the arithmetic difference between
Ppv and Pschd. Two main cases arise with regard to the relative values of these two quantities and in
each case, SoC, the maximum charge/discharge rates, the grid status and the power from the LDG
play major roles in the dispatch. In the first case, where excess PV energy is available, as shown on line
21, the energy is stored in the SB if SoC is less than its maximum value; otherwise, it is sold to the grid.
However, during LSD hours, the excess energy that would be sold to the grid is instead supplied to a
dummy load as shown on line 24. The SB charging state depends on the condition given on line 30.
If a value other than Pres is computed, it indicates that either the maximum charge rate or the limiting
value of SoC is restricting the complete storage of the excess PV energy in the SB. Hence, any excess
energy left after charging the SB is sold to the grid, as shown on line 35. However, during LSD hours,
the excess energy that would have been sold to the grid is instead supplied to a dummy load, as shown
on line-33. In the second case, in which Ppu is less than or equal to Pschd, as shown on line 41, the PV
energy is insufficient to completely supply the load. The residual energy, in this case, will be supplied
from the grid if SoC is less than or equal to its minimum limit or from the SB otherwise. Moreover,
the SB will still also not be discharged if cheap energy is available from the grid as given on line 42.
However, during LSD hours, the LDG will supply the load in place of the grid, as shown on line 46.
SB shall supply the load only during peak hours when the cost of energy is greater than a maximum
price limit. The discharging state of the SB depends on the condition given on line 50. If the minimum
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computed value is equal to the maximum discharge rate or to the residual capacity of the SB before
discharging to the minimum SoC, then one of these constraints is restricting the ability to supply the
full load from the SB, and the remaining load must be supplied from the grid, as shown on lines 52 and
54. However, during LSD hour, the LDG will supply the remaining load in place of the grid as shown
on line 57. For each slot in the scheduling horizon, one of the above two cases will hold, the vectors
Ppv, Pgd, Pds, and Pgn will be computed for dispatch accordingly. Similarly, the loads for each slot is
computed for Pschd, Pch, Pdl, and Psold. TEMiss is computed (applying EFT) for the net generation
from LDG as shown on line 68. CEnet is computed by arithmetically adding CE (applying PE/IBR),
cost of generation from LDG (applying PEg) and cost of energy sold to the grid (applying PEf) as
shown on line 69. The TBD values are computed on line 77 after adding TBD(A) and TBD(D) on
lines 72 and 74. The values for the mentioned objective functions are computed for each MOGA
iteration. The algorithm provides Pareto optimal sets comprising one hundred operating schemes for
HEMS in terms of Tst and the related tradeoffs for CEnet, TBD and TE Miss.

5.2. Algorithm 2 for Filtration Mechanism to Harness Eco-Efficient Trade-Offs for DRSREODLDG-Based
HEMS (Step-2 and Step-3)

The algorithm completes the filtration process in two steps as stated below:

Step-2: An AVCF based on the average value of TEMiss is developed taking into account all of
the primary trade-offs generated through Algorithm 1 as shown on line-2. The residuals for TEMiss
(TEMiss_Resid_avg) for each solution are then computed as given on line-3. A trade-off solution with
the value of TEMiss_Resid_avg less than 0 indicates an above average value for TEMiss, and all such
trade-offs are filtered out at the step shown on line-4. The trade-off solutions with average (or less
than average) TEMiss values are collected and forwarded to step-3 for further processing as shown
on line-5.

Step-3: An ASCF based on the average surface fit (using polynomial-based regression) is
developed making use of the trade-off solutions forwarded from step-2 as shown on line-9.
The residuals for TEMiss (T EMiss_Resid_avgs) for each solution are then computed by taking the
difference between the TEMiss and the average surface fit of TEMiss computed in terms of CEnet
and TBD as shown on line-10. A trade-off solution with the value of TEMiss_Resid_avgs less than
0 indicates the TEMiss value greater than the respective value on the average surface fit, and all
such trade-offs are filtered out at a step shown on line-11. The remaining trade-off solutions with the
TEMiss values equal to (or less than) the respective values on the average surface fit are selected and
declared final eco-efficient trade-offs for DRSREODLDG-based HEMS operation as shown on line-12.

6. Simulations for DRSREODLDG-Based HEMS Operation and the Filtration Mechanism to
Harness Eco-Efficient Trade-Off Solutions

The simulations are conducted using MATLAB 2015 and are reported in Section 6.1 based on
Algorithm 1. These results show the validity of MOGA /PO based heuristic for DRSREODLDG-based
HEMS to compute operational schemes for SHAs in terms of vector Tst and the primary trade-offs
for CEnet, TBD and TEMiss. The results of simulations enable analyzing the trends exhibited by the
trade-off parameters taking into consideration vital factors affecting these parameters. The critical
analysis of the primary trade-offs enabled designing a filtration mechanism to extract desired set
of eco-efficient trade-off solutions with minimal TEMiss. The simulations reported in Section 6.2
are based on Algorithm 2. They demonstrated the validity of the filtration mechanism to harness
eco-efficient trade-offs. Regression based polynomial formulations and the procedure to finalize the
model fits for the proposed mechanism are also elaborated in Section 6.2. Simulations have been
conducted for the following:

- DRSREODLDG-based HEMS operation to compute primary trade-offs for HEMS ( based on
Algorithm 1/step-1).
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- Application of filtration mechanism to harness eco-efficient trade-offs for HEMS (based on
Algorithm 2/step-2 and step-3).

6.1. Simulations for DRSREODLDG-Based HEMS Operation to Compute Primary Trade-Offs Using
Algorithm 1

Simulations were performed to validate DRSREODLDG-based HEMS operation using
Algorithm 1. Operating schemes for SHAs in terms of Tst and the primary trade-offs were computed.
The trends exhibited by the trade-off parameters were analyzed. Critical analysis for validating the
relation between the trade-off parameter: TEMiss and the trade-offs for CEnet, TBD, enabled designing
a filtration mechanism required to harness the desired eco-efficient trade-off solutions with minimal
TEMiss from a large set of primary trade-offs.

For the simulations, the 2-stage ToU pricing tariff with an IBR value of 1.4 are considered.
This comprises of hourly price of 15 Cents/kWh during the peak hours from 7:00 p.m. to 11:00 p.m.
(slot numbers 115-138) hours and a hourly price of 9 Cents/kWh for the whole day, as displayed in
Figure 4. The IBR factor threshold is considered as the power demand of 2.4 kW. A feed-in tariff, PEf,
valued at 0.7 times of PE was considered for the PV energy sold to the grid.
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Figure 4. Two-stage time-of-use tariff scheme.

The software and hardware technologies used in simulations have included the followings items:

*  Machine: Core i7-4790 CPU @3.6 GHz with 16 GB of RAM.

e  Platform: MATLAB 2015a.

¢ Optimization tool: MOGA /PO with the following parameters,
¢ Population size: 100,

*  Population type: Double vector,

. Generation size: 1400,

. Crossover fraction: 0.8,

e  Elite count: 0.05 x population size,

e  Pareto fraction: 1.

The primary trade-offs for CEnet, TBD and TEMiss, generated through simulation for an optimal
DRSREODLDG-based HEMS operation, are presented in Table 10. Due to space limitation, the related
Tst vector is not shown in this table (however, it is presented with the final eco-efficient trade-offs
in Table 13). The primary trade-offs are graphically shown in Figure 5. The trends exhibited by the
trade-off parameters and the relationship between them has been analyzed to approach a filtration
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mechanism that enables harnessing trade-offs with diversified options for CEnet, TBD and minimal

value of TE Miss.

Table 10. Primary trade-offs for DRSREODLDG-BASED HEMS using Algorithm 1 (Step-1).

TEMiss TEmiss
CEnet TEMiss . Pdl CEnet TEMiss . Pdl
Sr.No. (Cents) TBD (Lbs.) _Resid (kWh) Sr.No. (Cents) TBD (Lbs.) _Resid (KWh)
av, _avg

1 52.87 0.17 0.67 0.11 1.87 51 36.65 0.28 0.56 0.22 1.06
2 52.87 0.17 0.67 0.11 1.87 52 36.34 0.28 0.7 0.08 0.91
3 51.74 0.17 0.67 0.11 1.87 53 36.18 0.31 1.27 —0.49 0.59
4 51.74 0.18 0.67 0.11 1.87 54 36.18 0.31 1.27 —0.49 0.59
5 51.02 0.17 0.75 0.03 1.79 55 35.82 0.28 0.73 0.05 0.99
6 51.02 0.17 0.75 0.03 1.79 56 35.56 0.29 0.57 0.22 0.94
7 50.39 0.17 0.81 —0.03 1.69 57 35.13 0.3 0.6 0.18 0.86
8 50.3 0.18 0.67 0.11 1.71 58 35.03 0.3 0.57 0.22 0.86
9 49.5 0.17 0.84 —0.06 1.58 59 33.9 0.32 0.57 0.22 0.84
10 48.78 0.18 0.8 —0.02 1.55 60 33.86 0.33 0.64 0.14 0.74
11 48.78 0.18 0.8 —0.02 1.55 61 33.85 0.31 0.92 —0.14 0.57
12 48 0.18 0.75 0.03 1.63 62 33.68 0.34 0.56 0.22 0.81
13 47.51 0.19 0.81 —0.03 1.38 63 33.67 0.29 0.65 0.13 0.63
14 47.51 0.19 0.81 —0.03 1.38 64 33.02 0.59 0.57 0.21 0.27
15 46.77 0.18 0.85 —0.07 1.45 65 32.98 0.33 1.11 —0.33 0.33
16 45.81 0.19 0.57 0.21 1.61 66 32.96 0.36 0.56 0.22 0.62
17 45.72 0.19 0.99 —0.21 1.24 67 32.67 0.34 0.56 0.22 0.7
18 45.18 0.18 0.6 0.18 1.66 68 32.57 047 0.56 0.22 0.73
19 45.01 0.19 0.56 0.22 1.9 69 32.37 0.33 0.65 0.13 0.51
20 44.62 0.2 0.6 0.18 1.5 70 32.24 0.33 0.7 0.08 0.54
21 44.36 0.2 1.36 —0.58 1.24 71 32.01 0.35 1.23 —0.45 0.17
22 44.08 0.19 0.88 —0.1 1.31 72 32.01 0.35 1.23 —0.45 0.17
23 43.96 0.22 1.55 —0.77 1.09 73 31.99 0.35 1.2 —0.42 0.17
24 43.96 0.22 1.55 —-0.77 1.09 74 31.92 0.51 0.56 0.22 0.63
25 43.8 0.2 0.74 0.04 1.49 75 31.88 043 0.65 0.13 0.59
26 43.74 0.2 1.15 —0.37 1.24 76 31.76 0.57 0.62 0.17 0.27
27 43.57 0.2 0.56 0.22 1.74 77 31.76 0.57 0.62 0.17 0.27
28 43.45 0.19 1.18 —0.39 1.24 78 31.45 0.35 0.7 0.08 0.42
29 43.27 0.24 0.56 0.22 1.34 79 31.27 0.52 0.56 0.22 0.53
30 43.07 0.22 0.79 —0.01 1.26 80 31.15 0.35 0.9 —0.12 0.32
31 42.73 0.2 0.99 —0.21 1.09 81 30.82 0.32 0.73 0.05 0.34
32 419 0.2 0.68 0.1 1.43 82 30.49 0.35 0.7 0.08 0.32
33 41.33 0.21 0.57 0.21 1.46 83 30.34 0.4 0.7 0.08 0.25
34 41.15 0.22 0.8 —0.02 1.24 84 30.3 0.36 0.73 0.05 0.29
35 40.92 0.23 0.56 0.22 1.58 85 30.15 0.43 1.09 —0.31 0.03
36 40.87 0.22 0.66 0.13 1.4 86 30.02 0.53 0.56 0.22 0.33
37 40.69 0.22 0.74 0.04 1.32 87 29.65 0.37 0.7 0.08 0.14
38 4043 0.27 0.64 0.14 1.01 88 29.65 0.37 0.7 0.08 0.14
39 40.31 0.21 0.66 0.13 1.25 89 29.03 0.36 0.73 0.05 0.21
40 40.06 0.26 1.41 —0.63 0.84 90 28.77 0.37 0.73 0.05 0.22
41 40.06 0.26 1.41 —0.63 0.84 91 28.75 0.37 0.85 —0.07 0.09
42 39.22 0.23 1.03 —0.25 0.96 92 27.98 0.38 0.73 0.05 0.04
43 38.94 0.25 0.68 0.1 1.28 93 27.87 0.44 0.85 —0.07 0.01
44 38.69 0.24 0.74 0.04 1.18 94 27.87 0.44 0.85 -0.07 0.01
45 38.47 0.23 0.85 —0.07 0.88 95 27.36 0.46 0.65 0.13 0.11
46 38.11 0.24 1.03 —0.25 0.84 96 26.98 041 0.73 0.05 0.04
47 37.88 0.25 0.6 0.18 1.21 97 26.98 0.49 0.73 0.05 0.04
48 37.56 0.26 0.56 0.22 1.11 98 26.8 0.45 0.65 0.13 0.11
49 36.89 0.32 0.56 0.22 1.28 99 26.66 0.51 0.73 0.05 0.04
50 36.66 0.27 0.6 0.18 1.16 100 26.22 0.48 0.65 0.13 0.11
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Figure 5. Primary trade-off solutions with un-even surface for TE Miss generated through Algorithm 1.

Refer to Table 10, each trade-off solution is related to a unique Tst. The decision vector Tst is
generated through the MOGA based on the vectors STslot and ENslot. The vector Tst for each of the
solution corresponds to a unique demand profile, Pschd. To supply this demand, a dispatch scheme
for energy sources and ESS based on the parameters Ppv, Pgd, Pgn, Pch, and Pds is computed through
the heuristic proposed in Algorithm 1. Preferably, the load is supplied from the PV unit. The extra
energy from the PV unit is stored in the SB after supplying the load. The SB is discharged to supply
the load during the peak hours for making use of the stored energy. The LDG supplies the load in
coordination with the SB during LSD hours only. The excess PV energy is sold to the grid. This is
designated as Psold after supplying the load and charging the SB. However, during the LSD hours,
the excess energy from the PV ought to be dissipated into the dummy load viz. designated as PdI.
The PV, SB, and the charger system are considered a part of the existing infrastructure and their cost is
not included in computation.

The trade-off parameter CEnet is based on the dispatch from various sources to supply the
scheduled load and the energy sold to the utility according to Equation (3). The rates for energies
including PE, PEf and PEg in different slots play vital role in the computation of CEnet. The loss of
the harnessed PV energy due to the unavailability of the grid, given by Pdl, is another important factor
affecting the value of CEnet. The parameter TEMiss primarily depends on the energy supplied by
the LDG, Pgn, during LSD hours. The EFT for the LDG is also important while evaluating TE Miss.
The TBD is based on the time shift of SHAs from their preferred times of operation and is computed
using Equation (7). The relationships between the trade-off parameters for the primary trade-off
solutions are graphically presented in Figures 2 and 6.
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Figure 6. Relations among primary trade-offs for CEnet, TBD and TEMiss using Algorithm 1.

The trends exhibited by the trade-off parameters comprising CEnet, TBD and TEMiss are
analyzed in subsections below. The primary trade-offs with extreme values of the parameters have
especially been investigated.

6.1.1. Trends for CEnet

The objective to minimize the CEnet is mainly based on the following factors:

1.  Maximized usage of the PV energy to supply the load directly: This avoids the loss of energy in
the SB due to storage/re-use of the PV energy while supplying the load (a net loss of 20% has
been assumed for the SB). The energy thus saved enables to reduce the demand from the grid
and the LDG which ultimately results in a reduced value of CEnet.

2. Maximized usage of the stored PV energy to supply the load during the peak hours: This reduces
the energy to be supplied from the grid during the peak hours as well as from the LDG during
the peak LSD hours, which results in a reduced value of CEnet.

3. Selling of the extra PV energy to the utility: A direct usage of the energy from the PV unit is better
than selling it to the utility as PEf is generally lesser than the PE (PEf is assumed as 70% of the
PE). However, it is beneficial to sell the PV energy to the utility, if a surplus of it is available
after supplying Pschd and the charging load. The above-mentioned factors enable reducing the
CEnet parameter through an optimal use of the PV energy based on the PE, PEf, PEg and the SB
efficiency. Other factors to reduce CEnet parameter include the followings:

4. Load shifting towards the off-peak hours: The load left after being supplied from the PV and
the SB unit should have been shifted towards off-peak hours. This shifting minimizes the CEnet
based on the tariff PE.

5. Load to be supplied by the LDG during LSD hours: The algorithm enables supply of the energy
from the LDG during LSD hours. If more load is shifted towards LSD hours, LDG is required to
supply that load in coordination with the PV /SB at a higher cost of energy (PEg), which results
in an increased value of CEnet.

6.  Loss of the harnessed PV energy: The dummy load Pdl has been identified as a factor of vital
importance for reducing CEnet. Figure 7 reveals a direct relationship between the CEnet and the
Pdl. The Pdl needs to be minimized to achieve an optimal value of CEnet. A larger Pdl indicates
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a loss of the PV energy due to lesser shifting of the load (including charging of the SB) towards
the LSD hours having the harnessed PV that results in a larger CEnet.
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Figure 7. Relation between CEnet and Pdl for DRSREODLDG-based HEMS.

To investigate the variations in CEnet parameter based on the above-mentioned six factors,
solution-1 and solution-100 with the maximum and the minimum values of CEnet are analyzed as
case studies. The analysis is based on the related HEMS operation including the power profiles for
the loads and the dispatch scheme for the power sources and the SB. Solution-1 shows a CEnet value
of 52.87 Cents, the largest of all solutions. This largest value of CEnet may be analyzed based on the
above-mentioned factors by focusing on the power profiles for this solution shown in Figure 8.
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Figure 8. Power and emission profiles for DRSREODLDG-based HEMS operation for solution-1.

First, a very small portion of the load (Pschd) has been supplied directly from the PV energy that is
available from time slot no. 37. Some of the available PV energy has been used to charge the SB while
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most of the PV energy is sold to the utility at cheap rates (PEf equals 70% of PE). A part of the load,
instead of being supplied directly from the PV unit, is shifted towards the off-peak slots and supplied
from the grid at the off-peak time rate. This load thus has been supplied at a net 30% increased cost of the
energy as compared to the cost of energy sold to the grid. Second, a load larger than the capacity of the
SB is shifted towards the peak-time slots. An average load of 0.21 kWh is thus supplied from the grid
during peak time slot nos. 132-134. The CEnet could be reduced if the load exceeding the capacity of the
SB was shifted towards off-peak time. Third, a net load of 0.348 kWh has been supplied from the LDG
during LSD based slot nos. 139-144 at a rate of PEg (viz. higher than PE). This load is based on NSHAs
only and it can not be shifted. However, the LDG also supplies a load of 0.068 kWh during slot no. 102
that may be shifted towards the grid /PV to reduce the CEnet. Fourth, the least of part of the the load has
been shifted within the PV harnessed LSD hours starting from slot nos. 61 and 97. Under this scenario,
1.87 kWh of the PV energy has been lost/dumped during slot nos. 63-66 and slot nos. 97-101. More load
could be shifted towards the mentioned slots to minimize the loss of the harnessed energy from the PV
and thus to reduce the CEnet. In brief, a load shifting resulted in a non-optimal use of the PV energy,
a very large value of the Pdl and other aforementioned factors resulted in the largest value of CEnet for
this solution. Solution-100, on the other hand, exhibits the lowest CEnet value of 26.22 Cents that is again
based on the aforementioned factors. The lowest value of CEnet may again be analyzed by focusing on
the corresponding power profiles for the solution as shown in Figure 9.
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Figure 9. Power and emission profiles for DRSREODLDG-based HEMS operation for solution-100.

First, a larger portion of the load (Pschd), as compared to solution-1, has been supplied directly
from the PV that is available from time slot no. 37. The harnessed PV energy has been used to charge
the SB as well as to supply the maximum of the load, while a smaller value of the PV energy is
sold to the utility at cheap rates. Second, the remaining load viz. smaller as compared to solution-1
has been shifted towards the peak time slots so that the SB is able to supply most of the said load.
Accordingly, an average load of 0.189 kWh is left to be supplied by the grid during the peak time slot
nos. 135-137, which is smaller as compared to the same load in solution-1. Third, the LDG supplies
a total energy of 0.054 kWh during slot nos. 100-101, which is smaller as compared to the same
parameter in solution-1. Fourth, most of the load has been shifted towards the PV harnessed LSD
hours and hence Pdl exhibits a minimal value 0.11 kWh. In brief, a load shifting enabling an optimal
use of the PV energy minimized the value of Pdl and other aforementioned factors resulted in the
lowest CEnet for this solution. Similarly, the solutions with an intermediate value of CEnet may also
be validated by focusing the same above-mentioned factors affecting CEnet.
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6.1.2. Trends for TBD

The value of TBD is based on the total time shifts of the SHAs from the preferred times (STslot or
ENslot based on type of scheduling) provided by the consumers. It depends on the decision vector
Tst and computed using Equation (7) through Algorithm 1. The simulations reveal an exponential
relation between the CEnet and TBD as shown in Figure 10. The TBD increases exponentially while
reducing the CEnet. The relationship between the CEnet and TBD is very important in the context of
the consumer’s welfare. The optimal solutions provide diverse choices to the consumer for trade-offs
between CEnet and TBD. However, it has been observed that CEnet cannot be reduced beyond a
specific value after the TBD reaches a knee-point value. A knee-point value of 0.48 for TBD may be
realized from Figure 10.
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Figure 10. Relation between CEnet and TBD for a DRSREODLDG-based HEMS.

On the other hand, the relation between the TBD and TE Miss for DRSREODLDG-based HEMS
is highly un-even as shown in Figure 11. Such relations are not possible to be defined using
standard techniques.
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Figure 11. Relation between TBD and TEMiss for a DRSREODLDG-based HEMS.
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6.1.3. Trends for TE Miss

The variation in TEMiss is analyzed based on the primary trade-offs presented in the
Figure 6/Table 10. Figure 6 exhibits an extremely uneven variations in TEMiss as related to CEnet
(and TBD), especially around the center of the data. The solution-23 with the largest, solution-27 with
the smallest and solution-73 with moderate values of TEMiss are analyzed as case studies.

Solution-23 exhibits a TEMiss value of 1.55 Lbs., the largest of all solutions. The value of TEMiss
parameter depends on the profile for Pgn parameter. The profile for this solution is analyzed by
focusing on the power/emission profiles shown in Figure 12. The value of TEMiss mainly depends on
the operation of the LDG during four number of LSD hours discussed as follows. The loads shifted in
the first LSD hour (starting at slot no. 61) and in the third LSD hours (the peak time hour starting at
slot no. 121) are completely supplied by the PV and the SB, respectively. Thus, in actuality, the LDG
has to operate only during the second LSD hour (starting at slot no. 97) and during the fourth LSD
hour (starting at slot no. 139) to supply the shifted load as neither the grid nor the SB is available to
supply within these hours. During the fourth LSD hour, a fixed load made up of NSHAs is supplied
by the LDG completely. As no other source is available to supply during this hour, the fixed load has
been supplied by the LDG in all scenarios. Focusing the second LSD hour, PV is available to supply
the shifted load; however, the demand exceeding the energy harnessed from the PV (named excess
demand) is only supplied through the LDG. This excess demand to be supplied by the LDG during
the second LSD hour combined with the fixed demand in the fourth LSD hour, in fact, determines the
net value of TEMiss. A maximum shifting of the excess demand out of the second LSD hour results in
the minimization of the TEMiss. For solution-23, a maximum excess demand supplied through the
LDG during the second LSD hour resulted in a maximum TEMiss value of 1.55 Lb. for this solution.
The CEnet parameter in this scenario assumes a near average value of 43.96 Cents that is based on the
combined effect of the related parameters’ values including: a PV energy loss of 1.09 kW; a supply
of an average load of 0.2 kWh through the grid during peak time slot nos. 132-134; and a maximum
supply of 0.98 kWh of energy from the LDG at a higher cost of value (PEj).
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Figure 12. Power and emission profiles for DRSREODLDG-based HEMS operation for solution-23.

Solution-27 exhibits a TE Miss value of 0.56 Lbs, the lowest in all solutions and the power profiles
shown in Figure 13. The minimum value of TEMiss in this scenario is because of zero loading of LDG
during the second LSD hour. On the other hand, the CEnet parameter shows a near average value
of 43.57 Cents that is very similar to the CEnet value in solution-23. The value is again based on the
combined effect of the related parameters’ values including: a PV energy loss of 1.75 kW; supply of an
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average load of 0.23 kW by the grid during the peak time slot nos. 132-134; and a minimum supply of
0.35 kWh of energy from the LDG at a higher cost, PEg.
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Figure 13. Power and emission profiles for DRSREODLDG-based HEMS operation for solution-27.

Solution-73 shows a moderate TEMiss value of 1.20 Lbs. corresponding to the power profiles
shown in Figure 14. The excess load during the second LSD hour has not been completely shifted
out of this hour and so the same has been supplied through the LDG. The TEMiss for this solution,
therefore, is higher as compared to its value for solution-27. A much lower CEnet of value 31.99 Cents
as compared to the value of CEnet in solution-27 is based on a more efficient shifting of the load and a
smaller value of Pd! in solution-73.
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Figure 14. Power and emission profiles for DRSREODLDG-based HEMS operation for solution-73.
6.1.4. Critical Analysis for TEMiss and Trade-Offs for CEnet and TEMiss

The relation between TEMiss parameter and the trade-offs for CEnet and TBD is analyzed based
on the primary trade-offs (sorted on CEnet), presented in Table 10. The trade-offs are graphically
shown in Figure 15. Based on the variations in TEMiss, the data may be divided into three classes.
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Class-1, including solution nos. 01-20 at the beginning of the data, class-2, including solution nos.
21-73 around the center of the data, and class-3, including solution nos. 74-100 at the end of the data.

Class-1 is characterized by the trade-offs with minimal values of TEMiss combined with maximal
values of CEnet; and class-3 by the trade-offs with minimal values of both of the TEMiss and CEnet
parameters. Whereas class-2 around the middle section of the data, including more than 50% of the
trade-offs, exhibits a highly un-even/irregular trend for TEMiss as related to the trade-offs for CEnet
and TBD, it includes an un-even distribution of the data with the minimal, average as well as extremely
high values of the TEMiss. Such trends indicate the presence of numerous solutions with comparable
values of the trade-offs for CEnet and TBD, however with large variations in the related values for
TEMiss. Solutions-23 and 27, graphically shown as points A and B respectively in Figure 15, are an
example of such large variation in the TEMiss parameter. For comparable values of (43.96, 0.22) and
(43.57, 0.2) for CEnet and TD B, the solutions exhibit extremely varied values of 1.55 Lbs. (maximum
of all solutions) and 0.56 Lbs. (minimum of all solutions) for TE Miss.
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Figure 15. Variations in total GHG emissions during the scheduling horizon TEMiss with the related
trade-offs for net cost of energy CEnet and time-based discomfort TBD.

Solution-69 and solution-72 shown as points C and D are another example of similar large
variations in TEMiss. For comparable values of (32.37, 0.33) and (32.01, 0.35) for CEnet and TDB,
the solutions show largely varied respective values of 0.65 Lbs. and 1.23 Lbs. for TEMiss.

Figure 15 reveals a large number of data points especially in class-2 exhibiting large variations
in TEMiss with very small corresponding variation in the respective trade-off values of CEnet and
TBD. The finding regarding the existence of a large number of multiple comparable trade-offs for
CEnet and TBD with extremely varied values of TEMiss in the primary trade-offs was exploited to
design a mechanism to harness eco-efficient trade-offs for DRSREODLDG-based HEMS operation.
A filtration mechanism was proposed to screen out the trade-offs with larger values of TE Miss in order
to harness eco-efficient trade-offs with minimal TEMiss and a set of diverse trade-offs for CEnet and
TBD. The proposed mechanism, based on an average value constraint filter and an average surface
based constraint filter, is presented in Algorithm 2.
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6.1.5. Simulation for Filtration Using AVCF (Step-2)

This step includes the formulation and application of a constraint filter based on the average
value of TEMiss for the primary trade-off solutions presented in Table 10. In the following are the
software and hardware tools used to demonstrate the solution space, and to formulate and apply the
filter to validate the AVCEF based filtration:

e  Machine: Core i7-4790 CPU @3.6 GHz with 16 GB of RAM,
e Platform: MATLAB 2015a,

¢ Regression model = Linear interpolation,

e Interpolation surface model = linearinterp,

¢  Method = Linear least square,

e  Normalize = off,

e  Robust = off,

e AVCF formulation and application:

e  TEMiss_Resid_avg = average(TEMiss) — TEMiss,

*  Exclude = TEMiss_Resid_avg < 0,

Where TEMiss_Resid_avg is the decision element for the filter. The exclude option provided
with the surface fitting function can be used to screen out the trade-offs based on the formulation
of the decision element. As per the formulation for TEMiss_Resid_avg, a trade-off solution with
a negative value of the decision element TEMiss_Resid_avg indicates the above average value for
TEMiss. The application of AVCF thus screens out the trade-offs with extremely high as well as above
the average values of TEMiss. The function of the AVCEF to screen out the un-desired trade-offs with
larger values of TE Miss are graphically shown in Figure 16. The selected solutions after the application
of the AVCF are presented in Table 11.
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Figure 16. Application of AVCEF to screen out the trade-offs with larger TE Miss values.

6.1.6. Simulation for Filtration Using ASCF (Step-3)

This step includes the formulation and application of a constraint filter based on the average
surface fit for TEMiss. The average surface fit for TEMiss in terms of CEnet and TBD is generated
using polynomial based regression for the trade-offs achieved after the application of AVCF presented
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in Table 11. What follows are the software and hardware tools used to develop the surface fit and to
formulate and apply the filter to validate the AVCF based filtration:

e Machine: Core i7-4790 CPU @3.6 GHz with 16 GB of RAM,
e Platform: MATLAB 2015a,

*  Regression model = Polynomial,

*  Polynomial surface model = Poly41,

¢  Method = Linear least square,

e Normalize = off,

e  Robust = off,

¢ ASCF formulation and application,

e qaverage_surface_fit = stit( CEnet , TBD),

. TEMiss_Resid_avgs = average_sur face_fit — TEMiss,
*  Exclude = TEMiss_Resid_avgs < 0,

Where average_surface_fit is the value of emission obtained through the average surface fit
based polynomial for the respective CEnet and TBD trade-off. In addition, TEMiss_Resid_avgs is
the decision element for the filter. The exclude option provided with the surface fit function has
been used to screen out the trade-offs based on the formulation of the decision element. As per the
formulation for TEMiss_Resid_avgs in this research, a trade-off solution with a negative value of the
decision element TEMiss_Resid_avg indicates the average surface fit for TEMiss. The application of
ASCF thus screened out the trade-offs with higher values of TEMiss lying above the average surface
fit for TE Miss.

Table 11. Trade-offs achieved after applying AVCF based on Algorithm 2 (Step-2).

TEMiss_ TEmiss_

Sr. CEnet TEMiss A Pdl Sr. CEnet TEMiss . Pdl
No. (Cents) IBD "(1ps) Resid ) No. (Cents) IBD (1bs) Resid — qypy
_avgs _avgs
1 5287 017 067 0.02 1.87 34 3503 03 0.57 0.06 0.86
2> 5287 017 067 0.02 1.87 3% 339 032 057 0.07 0.84
3 5174 017 0.67 0.02 1.87 36 3386 033 0.64 —0.01 0.74
4 5174 018 067 0.00 1.87 37 3368 034 056 0.07 0.81
5 5102 017 075 —0.06 1.79 38 3367 029 065 0.00 0.63
6 5102 017 075 —0.06 1.79 39 3302 059 057 —0.04 0.27
7 503 018 067 0.00 171 0  329% 036 056 0.07 0.62
8 48 018 075 ~0.08 1.63 41 267 034 056 0.09 07
9 4581 019 057 0.08 1.61 £ 257 047 056 0.04 0.73
10 4518 018 0.6 0.07 1.66 43 237 033 065 0.01 0.51
11 4501 019 056 0.09 1.9 4 224 033 07 —0.04 0.54
12 46 02 0.6 0.04 15 45 3192 051 056 0.03 0.63
13 438 02 0.74 ~0.10 149 46 318 043 065 —0.02 0.59
14 4357 02 0.56 0.08 1.74 7 3176 057 062 —0.05 0.27
15 4327 024 056 0.03 1.34 48 3176 057 062 ~0.05 0.27
16 419 02 0.68 —0.04 143 49 3145 035 07 ~0.03 0.42
17 4133 021 057 0.06 146 50 3127 052 056 0.04 0.53
18 4092 023 056 0.05 1.58 51 3082 032 073 ~0.04 0.34
19 4087 022 066 —0.04 14 5 3049 035 07 —0.02 0.32
20 4069 022 074 —012 132 53 3034 04 0.7 —0.03 0.25
21 4043 027 0.64 —0.06 1.01 54 303 036 073 —0.05 0.29
2 4031 021 066 —0.03 125 55 3002 053 056 0.06 0.33
23 3894 025  0.68 —007 128 56 2965 037 07 —0.01 0.14
24 3869 024 074 —012 118 57 2965 037 0.7 —001 0.14
25 3788 025 0.6 0.02 1.21 58 2903 036 073 ~0.02 0.21
2% 3756 026 056 0.06 111 50 2877 037 073 —0.02 0.22
27 3689 032 056 0.03 128 60 2798 038 073 —001 0.04
28 3666 027 0.6 0.02 116 61 2736 046 065 0.04 0.11
29 3665 028 056 0.06 1.06 62 2698 041 073 0.00 0.04
30 3634 028 07 ~0.08 0.91 63 2698 049 073 ~0.05 0.04
31 358 028 073 ~0.10 0.99 64 268 045 065 0.06 0.11
32 355 029 057 0.05 0.94 65 2666 051 073 ~0.06 0.04

33 35.13 0.3 0.6 0.03 0.86 66 26.22 0.48 0.65 0.05 0.11
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6.2. Simulations for Filtration Mechanism to Harness Eco-Efficient Trade-Offs Using Algorithm 2

The simulation for filtration mechanism is based on Algorithm 2. The mechanism completes its
task in two steps as follows:

e Application of an AVCEF to the primary trade-offs to filter out the the trade-offs with extremely
high and above average values of TEMiss (step-2),

e  Application of an ASCF to the filtrate of step-2 to filter out the trade-offs with marginally higher
values of TEMiss (step-3).

Various polynomial model fit options were coupled with the ASCFE. The best model fit for the
polynomials was achieved after comparison of the actual trade-offs for DRSREODLDG-based HEMS
problem exhibited by various polynomial models ranging from Poly11l to Poly55. The trade-off
solutions harnessed through each polynomial based ASCF were analyzed for the average value of
TEMiss and the number of diverse trade-offs harnessed for CEnet and TBD. Polyl1l based ASCF
achieved the minimum average TEMiss value of 0.58 Lbs.; however, the filter harnessed the least
number of trade-off solutions that did not include the desired solutions like ones with CEnet value
below 30 Cents. Poly12 based ASCF, on the other hand, included the trade-offs with minimal CEnet
value less than 30 Cents; however, on the other hand, it lacked the diversification due to a lesser
number of trade-off solutions. The options with the average TEMiss value equal or less than 0.59 were
focused and poly41 was selected based on the lesser average values for TEMiss and TBD (0.59 Lbs.
and 0.3) and more diverse solutions for trade-offs between CEnet/ TBD. In this way, the model fit is
based on an optimal set of the performance trade-offs for DRSREODLDG-based HEMS problems [33].
A summary comparing the performance of polynomial based ASCFs is given in Table 12 below.

Table 12. A comparison of performance parameters for polynomial based ASCF.

No. of Trade-Offs Average Average

; 2
Regression Model Harnessed CEnet (Cents) Average TBD 1 pyjcs wbs) SSE R

Polyl1 29 37.01 0.31 0.58 0.28 0.05
Poly12 29 36.98 0.31 0.58 021 031
Poly13 32 37.48 0.31 0.6 018 041
Poly14 31 37.66 0.31 0.59 017 042
Poly15 33 38.49 0.3 0.6 017 044
Poly21 34 38.41 0.3 0.6 019 035
Poly22 35 37.46 0.31 0.6 017 042
Poly23 35 37.46 0.31 0.6 017 042
Poly24 35 37.01 0.31 0.6 017 042
Poly25 34 36.95 0.31 0.61 016 048
Poly31 32 37.62 0.31 0.59 019 037
Poly32 36 37.82 0.31 0.6 017 043
Poly33 37 37.52 0.3 0.61 017 043
Poly34 35 37.67 0.3 0.61 016 047
Poly35 35 37.51 0.3 0.61 013 0.55
Poly41 33 38.01 0.3 0.59 019 037
Poly42 33 38.47 0.3 0.6 017 044
Poly43 32 37.56 0.3 0.6 0.16 045
Poly44 33 37.57 0.3 0.6 016 047
Poly45 33 36.59 0.31 0.61 0.13 0.55
Poly51 33 37.67 0.31 0.6 018 04
Poly52 35 35.78 0.32 0.61 015 051
Poly53 37 35.6 0.33 0.61 0.14 0.53
Poly54 34 36.32 0.31 0.61 0.13 0.56

Poly55 35 36.16 0.31 0.62 0.13 0.56
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The proposed polynomial model, poly41, for ASCF is based on the following formulation:
z(x,Y) = poo + P10 X X+ Po1 X Y+ pao X X2+ p11 X X X Y+ p3g X x>+ pyy X x2 X y+pgo x xt+p3y x ¥ xy. (11)

The proposed polynomial model is based on the coefficients (with 95% confidence bounds)
as follows:

o poo =548 (—41.39,52.35),
o pio=—03234 (—4.894,4.248),
o por=-9.079 (—77.88,59.73),

* P2 =0.00699 (—0.1564, 0.1704),

*  pn =06176 (-5.337,6.572),

*  p3o=—4.498 x 1075 (—0.002571, 0.002482),

e px =-0013(-0.1842,0.1582),

*  pao=—1359 x 1078 (—1.426 x 107>, 1.423 x 107°),
*  p3=6.749 x 10~ (—0.001563, 0.001698).

The eco-efficient solutions harnessed after the application of Poly41l surface filter are
graphically shown in Figure 17. The final set of trade-off solutions for eco-efficient operation of
DRSREODLDG-based HEMS are tabulated as Table 13.

Table 13. Eco-efficient solutions for DRSREODLDG-BASED HEMS using Algorithm 2 (Step-3).

(ng:) TBD Téﬁ ’js (lf)‘ffil) Ts1 Ts2 Ts3 Tsd Ts5 Ts6 Ts7 Ts8 Ts9 Tsl0 Tsll Ts12 Ts13 Tsld
5287 017 067 187 6 39 104 123 60 128 4 73 119 107 108 102 114 95
5287 017 067 187 6 39 104 123 61 128 5 73 119 107 108 102 114 95
5174 017 067 187 6 39 104 123 60 128 5 73 119 107 107 102 114 95
503 018 067 171 6 40 104 123 61 128 5 73 119 107 107 102 114 95
4581 0.19 0.57 161 5 40 104 123 60 128 4 73 119 107 107 93 114 94
4518 0.8 0.6 166 5 39 104 123 60 128 4 73 119 107 106 94 114 94
4501 019 0.56 1.9 6 39 104 123 60 128 5 73 119 107 105 92 114 94
462 02 0.6 15 5 40 104 123 60 128 5 73 119 105 107 94 114 94
4357 02 0.56 174 5 40 104 123 61 128 5 73 120 107 104 92 114 94
4327 024 056 134 5 40 105 123 60 128 5 73 119 107 107 63 113 94
4133 021 0.57 146 6 41 104 123 60 129 5 73 119 107 104 93 114 94
4092 023 0.56 158 5 42 104 124 60 129 6 73 119 106 104 90 114 93
3788 025 0.6 121 5 42 105 123 60 129 6 74 119 106 103 94 113 90
3756 026 056 111 5 40 104 123 60 128 5 74 120 104 105 62 112 95
3689 032 056 128 5 42 104 123 62 132 5 75 122 105 91 78 108 97
36.66 027 0.6 116 5 42 104 123 62 130 6 74 120 106 98 91 110 95
3665 028 056 106 5 41 104 123 60 129 5 74 120 103 103 62 112 93
3556 0.29 0.57 094 5 42 105 123 60 129 7 74 118 105 97 8 114 64
3513 03 0.6 08 5 42 105 123 62 130 7 74 120 104 98 64 114 94
3503 03 0.57 086 5 40 105 124 60 129 7 74 117 104 97 6 111 89
339 032 057 084 5 42 105 123 62 130 7 74 120 103 97 64 110 94
3368 034 056 081 5 42 105 123 60 130 7 74 119 103 95 6 110 76
3367 029 0.65 063 5 42 104 123 60 130 5 74 120 104 99 6 113 90
3296 036 056 062 5 41 104 124 60 132 7 75 121 104 64 62 110 95
3267 034 056 07 5 43 105 123 62 130 8 74 121 103 96 63 109 93
3257 047 056 073 6 44 105 124 75 132 8 76 120 103 84 6 106 63
3237 033 0.65 051 5 42 105 124 60 131 5 74 119 103 99 61 112 8
3192 051 0.56 063 6 44 106 124 78 133 11 76 121 103 78 61 105 62
3127 052 056 053 6 44 105 124 95 135 11 75 120 103 80 61 104 62
3002 053 0.56 033 7 44 104 124 81 135 12 77 130 103 63 61 104 98
2736 046 065 011 3 41 105 125 58 133 8 74 117 93 61 60 104 6l
268 045 0.65 011 5 44 105 125 58 134 10 74 119 93 61 61 107 94
2622 048 065 011 6 44 105 124 59 135 7 74 117 93 8 61 103 61
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Step-3 Avg. Surface Filteration:
®  Selected eco-efficient solutions
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Figure 17. Eco-efficient solutions selected using average surface filtration based on Algorithm 2 (Step-3).

6.3. Critical Trade-Off Analysis of Solutions for Eco-Efficient DRSREODLDG-Based HEMS Operation

The final trade-off solutions for eco-efficient HEMS operation harnessed through Algorithms 1 and 2
are analyzed in this section for percentage reduction in CEnet, TBD, and TEMiss. The values of CEnet,
TBD and TEMiss obtained without using the proposed method are 68.32 Cents, zero and 1.354 Lbs.,
respectively, and the same have been used as base values in this analysis. For critical trade-off analysis
(CTA), the finalized trade-offs are classified for percentage reduction in CEnet, TBD and TEMiss as
presented in Table 14. In the following are the main features of the proposed classification:

Class-I: The percentage in CEnet ranges from 22.61 to 36.23, with the corresponding discomfort
levels from 17% to 20%. The comfort-conscious consumers are likely to opt this class due to minimal
TBD and a reasonable reduction in CEnet. Maximal reduction in TEMiss ranging from 50.53% to
58.58% ensures eco-efficiency.

Class-II: The percentage reduction in CEnet ranges from 36.67 to 52.18 with the corresponding
discomfort levels from 21% to 36%. The reduction in TEMiss ranges from 51.72% to 58.58%. With the
double-tailed polynomial trend for TEMiss as shown in Figure 18, the class lies in the minimal range
for emission. The class exhibits the best trade-off solutions taking into account CEnet, discomfort and
TEMiss. Most of the consumers are likely to choose this class for a fairly high welfare in terms of
CEnet and the discomfort for the consumer with bottom minimal TEMiss. The class is regarded as the
best for eco-efficiency.

Class-III: The percentage reduction in CEnet ranges from 52.33 to 61.63 with the corresponding
discomfort levels from 33% to 53%. Users who belong to this class have an increase in cost reduction
up to 61.63% (largest for all classes) followed by high user discomfort level of 53% (largest for all
classes). Users can choose this class for getting the large possible reduction in CEnet. The maximal
reduction in TE Miss ranging from 50.53% to 58.58% for this class ensures eco-efficiency. Furthermore,
the last three solutions in this class offer the maximum reduction in CEnet reaching up to 61.63% with
a relatively low level of discomfort of value down to 45% as compared to the other members of this
class. The consumers satisfied with these typical operating schemes may avail the maximum welfare
through the largest reduction in CEnet at a relatively low level of discomfort.
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Table 14. Critical trade-off analysis for eco-efficient DRSREODLDG-BASED HEMS operation.

Classes CEnet Reduction Range TBD Range TEMiss Reduction Range
(Cents) in CEnet (%) (%) (%) (Lbs.) in TEMiss (%) (%)

52.87 22.61 0.17 0.67 50.53
52.87 22.61 0.17 0.67 50.53
51.74 24.26 0.17 0.67 50.53
50.30 26.38 0.18 0.67 50.53

I 45.81 32.95 22.61-36.23 019  17-20 0.57 58.11 50.53-58.58
45.18 33.87 0.18 0.60 55.74
45.01 34.12 0.19 0.56 58.58
44.62 34.70 0.20 0.60 55.74
43.57 36.23 0.20 0.56 58.58
43.27 36.67 0.24 0.56 58.58
41.33 39.50 0.21 0.57 58.11
40.92 40.11 0.23 0.56 58.58
37.88 44.56 0.25 0.60 55.74
37.56 45.02 0.26 0.56 58.58
36.89 46.00 0.32 0.56 58.58
36.66 46.33 0.27 0.60 55.90
36.65 46.36 0.28 0.56 58.58

I 3556 4795 36.67-52.18 0.29 21-36 057 5819 51.72-58.58
35.13 48.58 0.30 0.60 55.90
35.03 48.73 0.30 0.57 58.19
33.90 50.38 0.32 0.57 58.19
33.68 50.70 0.34 0.56 58.58
33.67 50.71 0.29 0.65 51.72
32.96 51.75 0.36 0.56 58.58
32.67 52.18 0.34 0.56 58.58
32.57 52.33 0.47 0.56 58.58
3237 52.62 0.33 0.65 51.72
31.92 53.28 0.51 0.56 58.58
31.27 54.22 0.52 0.56 58.58

I 3002 56.05 52.33-61.63 0.53 33-53 056 5807 51.72-58.58
27.36 59.96 0.46 0.65 51.72
26.80 60.78 0.45 0.65 51.72
26.22 61.63 0.48 0.65 51.72

37 of 40

CTA given in Table 14 along with the respective scheduled times Tst in Table 13 enables consumer
to select the best eco-efficient options according to his needs after consulting a diverse set of current
optimized choices for CEnet, TBD and minimal TE Miss.
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7. Conclusions and Future Work

A three-step simulation-based posteriori method for eco-efficient operations of a
DRSREODLDG-based HEMS is proposed. First, a MOGA/PO based heuristic method is
used to generate a set of 100 trade-off solutions for HEMS operation. Second, an average value
constraint filter for TEMiss is applied to filter out the solutions with extremely high values of TEMiss.
Third, an average surface fit (for TEMiss) is formulated in terms of CEnet and TBD using an optimal
polynomial model for regression. This method delivered an eco-efficient set of 33 trade-off solutions
between CEnet and TBD against a minimal TEMiss. The trade-offs were classified to enable the
consumer choice to select the best eco-efficient option. Class-I offered a maximum reduction of
36.23% for CEnet against a 20% value of TBD, while reduction in TEMiss remained above 50.53%.
Class-II offered a maximum reduction of 52.18% for CEnet against a 36% value of TBD, while a
reduction in TEMiss remained above 51.72%. Class-1II offered a maximum reduction of 61.63% for
CEnet against a 53% value of TBD while a reduction in TEMiss remained above 51.72%. The best
eco-efficient solution for a consumer was comprised of a maximum reduction of 60.78% in CEnet
against a 45% value of TBD and a 51.72% reduction in TEMiss.

Future work will address improved performance and extended diversification of the trade-off
parameters including CEnet, TBD and TEMiss for DRSREODLDG-based HEMS through the
following means:

¢ Use of MOGA with a varied value of crossover fraction and type of crossover function from the
opted default values.

*  Use of other meta-heuristic and hybrid methods to generate the primary trade-offs and comparing
their performance with MOGA.

e  Activate normalize and robust options available for surface fitting with the polynomial model for
regression. These options are not activated in this research.

e Use of other types of surface fits and the related options to achieve more efficient and
diversified solutions.

* Additions of constraints regarding the life of the storage devices, starting the LDG, and the
operation of the LDG near rated power.

*  The development of a scheme for the integrated reduction of the carbon commodities for the
consumers and the utility through DRSREODLDG-based HEMS.

*  Minimization of the sum of the PV energy losses in HEMS.
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