
energies

Article

Suppression of Switching Crosstalk and Voltage
Oscillations in a SiC MOSFET Based
Half-Bridge Converter

Haider Zaman * , Xiaohua Wu * , Xiancheng Zheng, Shahbaz Khan and Husan Ali

School of Automation, Northwestern Polytechnical University, Xi’an 710000, China; zxcer@nwpu.edu.cn (X.Z.);
muhd_shahbaz@yahoo.com (S.K.); engr.husan@gmail.com (H.A.)
* Correspondence: hdrzaman@hotmail.com (H.Z.); wxh@nwpu.edu.cn (X.W.); Tel.: +86-1302-2995-582 (H.Z.)

Received: 13 October 2018; Accepted: 9 November 2018; Published: 10 November 2018
����������
�������

Abstract: The silicon carbide (SiC) MOSFET is characterized by high operating voltage, temperature,
switching frequency and efficiency which enables a converter to achieve high power density. However,
at high switching frequency, the crosstalk phenomenon occurs when the gate voltage spike introduced
by high dv/dt and voltage ringing forces false turn-on of SiC MOSFET which causes a crow-bar
current thereby increasing switching losses. In order to increase the immunity against the crosstalk
phenomenon in a half-bridge configuration, this paper presents a gate driver for SiC MOSFET capable
of generating the negative turn-off voltage without using a negative power supply. In addition,
the effect of parasitic inductances on the switching response is analyzed and an RC snubber is
designed using high-frequency based circuit reduction technique to dampen the switching ringing.
The performance of the proposed gate driver and the designed RC snubber is validated using
simulation and experiment at the 1 MHz switching frequency. The results show that the proposed
gate driver with RC snubber eliminates crosstalk by maintaining any spurious gate spike below the
gate threshold voltage.
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1. Introduction

The demand for fast-switching, high voltage, and high-temperature devices, capable of operating
at elevated efficiency has enabled the trend towards WBG semiconductor materials [1,2]. Among the
WBG, the SiC and GaN technologies have matured enough and devices up to 1.7 kV and 650 V voltage
ratings respectively, are commercially available which have been proved as promising alternatives
to the Si. Due to an almost identical gate drive requirements, the GaN cascode transistor can easily
replace Si MOSFET [3]. However, due to features such as a restricted-range of gate voltage, low
threshold voltage, and low parasitic capacitances the gate drive requirements of a SiC MOSFET are
more stringent [4,5].

The recent research focuses on the gate driver design for SiC MOSFET to enable the high switching
speed, also featuring the damping of parasitic resonance and crosstalk suppression [6,7]. The crosstalk
phenomena in half-bridge configuration refer to the spurious triggering of the low-side SiC MOSFET
during the turn-on transition of the high-side SiC MOSFET and vice versa [8]. Due to voltage rise
across the device in off-state, a charging current flow through its parasitic gate-drain capacitance
and induces a positive spike in its gate voltage. When this voltage spike exceeds the gate threshold
voltage, it can falsely trigger the high-side MOSFET, which causes a crow-bar current and result in
increased switching power losses. Therefore, it is essential to suppress the crosstalk phenomena for
the high-frequency and reliable operation of the half-bridge converter [9].
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The gate-impedance control technique reduces the gate voltage spike by adding external
gate-source capacitance to provide a low-impedance path [10,11]. However, the crosstalk mitigation
is vestigial as it results in a prolonged switching transition, increasing the switching losses [12]. The
active suppression technique reported in [13], employed a transistor between the gate and source
terminals to create a short when the gate-source voltage climb above the threshold voltage is detected.
However, due to the high internal gate and source impedances, the gate voltage feedback for crosstalk
detection lacks accuracy and degrades the effectiveness of active suppression system.

Another reported technique used a negatively biased gate voltage, which by level shifting the
gate voltage spike prevents false turn-on and accelerates the SiC MOSFET’s turn-off [14]. The negative
turn-off voltage is commonly supplied using an additional negative voltage source, but, the level
shifter circuits proposed in [15,16] used voltage divider circuit to get rid of the negative voltage source.
However, due to increased circuit complexity, it is not a viable solution for volume optimized and
cost-sensitive converters. In this paper, a gate driver is proposed for SiC MOSFET to suppress the
crosstalk phenomena by a negative level shifting of the gate voltage using a parallel connected zener
diode and a capacitor. Furthermore, the proposed driver circuit does not require a dedicated negative
voltage source and voltage feedback and is realized using low-cost components.

The parasitic inductance and stray capacitance of SiC MOSFET at a high-switching frequency
manifest resonance which introduces a voltage overshoot and ringing during turn-off transition [17].
The parasitic package inductances of the SiC MOSFET becomes further unpropitious when combined
with the stray inductance of PCB interconnection [18]. The parasitic inductance reinforces voltage
overshoot which deteriorates the total harmonic distortion (THD) performance, and as a result, the
converter may require a higher-order filter to meet the desired performance. Therefore, it is necessary to
suppress the parasitic resonance to enable improved THD of half-bridge dc-ac converter or otherwise;
the high-frequency operation will be vestigial [19].

Optimization of package inductances for pushing higher the parasitic resonant frequency is
becoming faltered, and therefore, the conspicuous solution is to maneuver the impedance of the
switching circuit using an auxiliary network [20]. Several techniques aimed to suppress the voltage
ringing, range in complexity from reducing the switching speed using high gate impedance to active
gate control involving a feedback compensator [21,22]. The simplest approach advocates lowering the
switching speed by raising the gate impedance, however, the prolonged switching transition enlarges
switching losses [23]. Due to magnetic saturation caused by current escalation limits application of
ferrite bead to restrain the parasitic inductance. Moreover, the suppression using dc-link capacitors [24]
and magnetically coupled damping circuits [25] is not very convincing. The RC shunt snubber is the
familiar and most effective technique which offers flexibility to achieve the desired level of suppression.
However, the experience-based design commonly leads to inadequate damping [26]. In [27], the
authors formulated a root-locus based RC snubber design for the double-pulse circuit by neglecting the
parasitic source inductance of the SiC MOSFET. In this work, the same design procedure is adapted to
optimize the suppression circuit for the half-bridge dc-ac converter while the SiC MOSFET embodies
the parasitic source inductance.

The rest of this paper is organized as follows. The gate driver for SiC MOSFET is presented
in Section 2. Effect of parasitic components on switching response is illustrated in Section 3.
In Section 4, the snubber circuit design is proposed for mitigating the switching ringing. Simulation
and experimental results are presented in Section 5, followed by the conclusion in Section 6.

2. Gate Driver for SiC MOSFET

2.1. Crosstalk Phenomenon in Half-Bridge dc-ac Converter

Due to fast-rising drain-source voltage, the parasitic capacitances of a MOSFET cause a gate
voltage spike during switching transitions and may result in spurious turn-on if it exceeds the threshold
voltage. The SiC MOSFET is more vulnerable to false triggering due to its low-threshold voltage as
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compared to Si counterpart. For instance, the typical threshold voltage of Si MOSFET IPW65R190CFD
from Infineon Technologies is 4 V, while for SiC MOSFET C3M0120090J from Cree Inc., the value is
only 2.1 V. A detailed schematic of the half-bridge dc-ac converter, including the parasitic components
of SiC MOSFET is shown in Figure 1a. The driving voltages vGH and vGL control the switching state of
the high-side SH and low-side SL MOSFETs respectively. Further, the RGL and RGL(in) are the external
and internal gate resistances of low-side MOSFET SL respectively, while CGSL, CDGL, and CDSL are its
parasitic gate-source, drain-gate, and drain-source capacitances respectively.
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components (b) illustration of voltage spike during turn-on transition of high-side MOSFET.

It is assumed that SL is in its blocking state, and the MOSFET SH is tuning-on as shown in
Figure 1b to illustrate the mechanism of spurious gate voltage spike. At time t1, the vGSH crosses the
threshold voltage VTH, which allows the drain-source voltage of the low-side MOSFET vDSL to rise
abruptly, producing a current iDGL through parasitic capacitance CDGL. This charging current iDGL

further flows through the parasitic capacitance CGSL and the gate resistors RGL(in) and RGL, respectively
denoted as iGSL and iGL. The current iGL introduces a spike in the gate voltage vGSL with the peak
determined by RGL, CGSL, and CDGL. Consequently, a spurious turn-on of the low-side MOSFET occurs
if the resulting voltage spike exceeds the threshold voltage VTH. A likely method to reduce iGL is by
adding external gate-source capacitance, which not only shunts the iDGL but also useful in suppressing
the resonance due to the stray inductance and gate-source capacitance CGSL. However, the external
gate-source capacitance increases the rise time of the gate voltage and thereby results in increased
switching losses. In this paper, the crosstalk suppression by level-shifting of the gate voltage is adopted
using a gate driver that does not require a dedicated negative voltage source and voltage feedback
while is realized only using passive components.

2.2. Previous Work on Gate Driver for SiC MOSFET with Level Shifter

To increase the immunity of SiC MOSFET against the crosstalk phenomenon in a half-bridge
configuration, a gate driver capable of generating the negative turn-off voltage without using a negative
power supply is trending. The reason is that the elimination of negative voltage supply significantly
reduces the complexity in the converter’s layout design. However, it is required that the level shifter
circuit must be simple and effective to justify the replacement. Two of the recently reported gate
drivers use RCD level shifter and voltage divider circuit.
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The RCD level shifter [15] consists of two pairs of parallel connected resistor and capacitor and a
diode as shown in Figure 2a. The diode DP conducts when the driving voltage vGL is high, otherwise
it operates in the blocking mode. For CP and CN >> CGSL, conduction of DP sets the steady-state vN as
given by Equation (1). When vGL flips back to the low-state, the DP disconnects the RP-CP and forcing
the turn-off gate current to flow through RN-CN branch. Therefore, the applied gate voltage is level
shifted by VN.
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Figure 2. Gate driver for SiC MOSFET with (a) RCD level shifter [15] (b) voltage divider based level
shifter [28].

A modified version of the RCD level shifter reported in [28] is shown in Figure 2b, in which the
offset in the gate voltage is also given by Equation (1). During turn-on of SiC MOSFET, the gate current
returns through resistor RM which triggers the transistor Q by creating a positive emitter-base voltage.
The capacitor CP precharged by gate driving voltage, charges CGSL to avoid delays in turning-on.
During turn-off of SiC MOSFET, the current flows through diode D when the capacitor CN acts as local
voltage source to supply negative voltage.

VN =
RN

RN + RP
VGG (1)

2.3. Proposed Gate Driver for SiC MOSFET

The proposed gate driver is shown in Figure 3a only for low-side MOSFET, which is comprised of
a capacitor CZL, an ultra-fast diode DOFL, two resistors R1L and R2L, and three zener diodes DZL, DZPL

and DZNL. The components of the high-side driver use similar notation, except their subscripts end
with the letter “H” instead of letter “L”. The parallel connected zener diode DZL and capacitor CZL

generates a negative gate voltage and thus perform the voltage level shifting without using a negative
voltage supply. Due to narrow operating gate voltage range, i.e., 8/18 V, two zener diodes are used
as a voltage clipper between the gate and source terminals to protect the MOSFET against the gate
breakdown. The diode DOFL enables a lower impedance path for the turn-off gate current to accelerate
the turn-off transition. When the diode DOFL is forward biased, a lower turn-off gate resistance is
realized by the parallel connection of resistors R1L and R2L.

The design criterion of the components is approached through the transient analysis of the
proposed gate driver. Mathematical expressions are derived for gate-source voltage during turn-on
and turn-off process.
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2.3.1. Turn-on Process

An equivalent circuit of the gate driver when the gate drive voltage vGL steps from 0 to VG at
time t0 is shown in Figure 3b. The inceptive gate current iGPL path comprises the components CZL,
R1L, RGL(in) and CGSL, ramping up the voltage vN to the zener voltage VZ of the diode DZL. As a
result, the current through the zener diode denoted as iZL rises and take over the capacitor current iCL

regulating vN at VZ. This indicates that iGPL is the algebraic sum of the capacitor current iCL and the
current through the zener diode iZL. Kirchhoff voltage law (KVL) is applied to the equivalent circuit in
Figure 3b which gives Equation (1) which is essential to derive the mathematical relation for iGPL.

VG =


(

R1L + RGL(in)

)
iCL + 1

(CZL+CGSL)

∫
iCLdt when vN < VZ(

R1L + RGL(in)

)
iZL + 1

CGSL

∫
iZLdt + VZwhen vN = VZ

(2)

Using the Laplace transform, the solution of the integral equations in (2) are given in (3)

iGLP =


iCL = VG

(R1L+RGL(in))
exp

(
−t
τa

)
when vN < VZ

iZL = VG−VZ
(R1L+RGL(in))

exp
(
−(t−t1)

τb

)
when vN = VZ

(3)

where t1 is the time required to charge CZL to voltage VZ, and τa and τb are the time constants
expressed in (4). Equation (3) indicates that the peak iGPL is determined by the driving voltage VG, and
the external and intrinsic gate resistors, i.e., R1L and RGL(in). Since τa > τb, the current iZL decays faster
than iCL. However, for the desired level shifting operation, the zener diode must not cease conduction
until the vGL step to 0 V.

τa = (CZL + CGSL)
(

R1L + RGL(in)

)
andτb = CGSL

(
R1L + RGL(in)

)
(4)
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It is essential to observe vGSL as gate-source voltage determines the MOSFET turn-on. Using KVL
the voltage equation is given as

vGSL = VG − iGPLR1L −
(

1
CZL

∫
iGPLdt + vN(t = t0)

)
(5)

substituting iGPL gives the vGSL expressed in (6). It indicates that the decay rate of vGSL can be
controlled by tuning CZL and R1L. To prevent the abrupt drop of vGSL the criteria, i.e., CZL >> CGSL,
should be ensured.

vGSL =


VG
τb

(
RGL(in)CGSL − τa

)
exp

(
−t
τa

)
− vN(t = t0) when vN < VZ

(VG − VZ)

(
1 − R1L

(R1L+RGL(in))
exp

(
−(t−t1)

τb

))
when vN = VZ

(6)

2.3.2. Turn-off Process

When vGL steps to 0 V, the diode DOFL provides a low impedance path for the gate drive current
iGNL, turning-off MOSFET as shown in Figure 3c. It is desirable to use low-valued external gate
resistance as it shortens the turn-off time. The Kirchhoff voltage law applied to the equivalent circuit
in Figure 3c gives the integral equation(

RTL + RGL(in)

)
iGNL +

1
(CZL + CGSL)

∫
iGNLdt = VZ (7)

where RTL = R1L//R2L. Again, solving the Equation (7) using the Laplace Transform gives the gate
loop current iGPL and voltage-source vGSL voltage as iGNL = VZ

RTL+RGL(in)
exp

(
−t
τc

)
VGSL = −VZ exp

(
−t
τc

) (8)

where τc is the time constant of the equivalent driver circuit during turn-off and is expressed by

τc = (CZL + CGSL)

(
R1LR2L

R1L + R2L
+ RGL(in)

)
(9)

The capacitor CZL, precharged up to voltage VZ serves as a local storage and supplies a negative
gate voltage during turn-off without using a dedicated negative voltage supply. Again, to maintain
the negative gate voltage, the value of CZL must satisfy the condition

(CZL + CGSL)

(
R1LR2L

R1L + R2L
+ RGL(in)

)
> DmTS (10)

where Dm is the expected maximum duty-cycle, and TS is the switching period.
Equations (6) and (8) indicate that the proposed gate driver level shift vGSL by −VZ and thus

toggles between −VZ and VG − VZ voltage levels. The negative bias voltage has a negligible effect on
the turn-on transient of the MOSFET, but accelerates the turn-off as illustrated by the waveforms of
the proposed gate driver in Figure 4.
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3. Effect of Parasitic Inductances on Switching Waveform of SiC MOSFET 

The demand for miniaturized power converters pushes the semiconductor devices to operate 

at higher switching frequencies. However, the parasitic inductances from PCB interconnections and 
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3. Effect of Parasitic Inductances on Switching Waveform of SiC MOSFET

The demand for miniaturized power converters pushes the semiconductor devices to operate
at higher switching frequencies. However, the parasitic inductances from PCB interconnections and
device packages together with the stray capacitances of the SiC MOSFET can influence switching
operation due to high di/dt [29,30]. They causes parasitic resonances which increase electrical
stress [31] and slow down the rise and fall of drain current [32]. Therefore, it is important to model
effect of parasitic components on switching characteristics. For the study, a conduction overlap is
assumed, followed by the low-side MOSFET turn-off transient.

3.1. Overlap Conduction

In the presence of interconnection inductances, an overlap in the conduction of two switches is
first investigated to recognize the effect on the turn-off process. Figure 5a shows the half-bridge dc-ac
converter with lumped package and interconnection inductances. The LDH and LDL represent the drain
inductances, and LSH and LSL represent source inductances of SH and SL MOSFETs respectively. When
the dead-time is too short, there is overlap conduction which allows a momentary crow-bar current.
It is assumed that switch SL is initially conducting current Io and before its transition to blocking state,
the high-side MOSFET SH turns-on creating a crow-bar current. Therefore, MOSFETs SH and SL are
replaced with close switches with conduction resistance RONH and RONL respectively. The inductor
current is assumed as a current source I in order to simplify the analysis. The voltage equations of the
equivalent circuit during overlap conduction are given as{

VIN = (LDH + LSH)
diDH

dt + iDHRONH + LDL
diDL

dt + vDSL

vDSL = LSL
diDL

dt + iDLRONL
(11)

using iDH = I + iDL in (11), and using Laplace transform to solve, the low-side drain current iDL and
drain voltage vDSL are expressed as follows. iDL = Io exp

(
−t
τd

)
+ (VIN−IRONH)

(RONL+RONH)

(
1 − exp

(
−t
τd

))
where τd = (RONL+RONH)

(LDL+LSL+LDH+LSH)

vDSL = (LDL+LSL)
τd

{
(VIN−IRONH)
(RONL+RONH)

− Io

}
exp

(
−t
τd

)
+ (VIN − IRONH)

RONL
(RONL+RONH)

(
1 − exp

(
−t
τd

)) (12)
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Assuming RONL = RONH, Equation (11) indicates that vDSL will approach 0.5 × (VIN − IRONH)
during the overlap time of length Toc, energizing the parasitic inductances.

3.2. The SL Turn-off Transient

Following the overlap conduction, the transition of low-side MOSFET from conduction to blocking
state is shown in Figure 5b, with SL replaced with an open switch. During this switching transition, the
interconnection inductances release their previously stored energy. The drain-source capacitance CDSL

and inductances LDL and LSL of the low-side MOSFET realizes a resonant circuit which introduces
oscillations in vDSL. The circuit equation during SL turn-off is given as{

VIN = (LDH + LSH)
diDH

dt + iDHRONH + LDL
diDL

dt + vDSL

vDSL = LSL
diDL

dt + 1
CDS

∫
iDLdt

(13)

Differentiation of (14) and using iDH = I + iDL, reduces the circuit equation to the following
standard form

d2iDL

dt2 + 2ωrζ
diDL

dt
+ ω2

r iDL = 0 (14)

where the resonance frequency ωr and damping factor ζ are related to the parasitic components as

ωr =
1√

CDS(LDH + LSH + LDL + LSL)
and ζ =

RONH

2

√
CDS

(LDH + LSH + LDL + LSL)
(15)

Using the Laplace transform, the equation for drain current iDL is expressed in (15)

iDL = A exp(−ζωrt) sin
((

ωr

√
1 − ζ2

)
t
)
+ B exp(−ζωrt) cos

((
ωr

√
1 − ζ2

)
t
)

(16)

where the initial conditions determine the constants A and B. Due to the equivalent second-order circuit,
iDL exhibit underdamped oscillations as determined by the milliohm ranged conduction resistance
RONH, forcing vDSL to swing accordingly.

Figure 6 shows the waveform of iDL for overlap conduction interval Toc followed by turn-off
of low side MOSFET SL. Assuming an initial 1.2 A steady drain-source current through the body
diode of SL, during Toc the cross-bar current forces iDL to rise rapidly. Finally, elapse of Toc results in
underdamped oscillations. A significant reduction is noted in the average drain-source voltage which
would result in a lower voltage gain of the dc-ac conversion.



Energies 2018, 11, 3111 9 of 19

Energies 2018, 11, x FOR PEER REVIEW  8 of 19 

 

where the resonance frequency ωr and damping factor ζ are related to the parasitic components as 

( ) ( )
ONH DS

r
DH SH DL SLDS DH SH DL SL

1
 and =

2

R C

L L L LC L L L L
 =

+ + ++ + +
 (15) 

Using the Laplace transform, the equation for drain current iDL is expressed in (15) 

( ) ( ) ( ) ( )2 2
DL r r r r1  1exp sin exp cosi A t t B t t     

   
= − − + − −   

   
 (16) 

where the initial conditions determine the constants A and B. Due to the equivalent second-order 

circuit, iDL exhibit underdamped oscillations as determined by the milliohm ranged conduction 

resistance RONH, forcing vDSL to swing accordingly. 

Figure 6 shows the waveform of iDL for overlap conduction interval Toc followed by turn-off of 

low side MOSFET SL. Assuming an initial 1.2 A steady drain-source current through the body diode 

of SL, during Toc the cross-bar current forces iDL to rise rapidly. Finally, elapse of Toc results in 

underdamped oscillations. A significant reduction is noted in the average drain-source voltage 

which would result in a lower voltage gain of the dc-ac conversion. 

 

Figure 6. Effect of parasitic inductance on the drain current iDL and gate-source and drain-source 

voltage waveforms. 

3.3. PCB Guidelines 

Besides, there is always inescapable intrinsic parasitic inductances of the device, but an 

adequate PCB layout can optimize the efficiency, enhances the input voltage operating range and 

reduces the noise among traces of converter [33]. Importantly, minimizing the high-frequency loop 

inductance enables higher switching frequencies and reduces the voltage overshoot and EMI. 

Besides improving the THD, it also relaxes the filter requirement. The input path carries the 

pulsating current and thereby needs special attention as high di/dt and parasitic inductance of a 

trace can generate voltage ringing [34]. Therefore, it is necessary to minimize the circumference of 

the high-frequency power-loop. 

Conventionally, the power-loop is routed on a single layer known as the lateral power-loop, 

while the next inner layer is used as a shield plane [19], which reduces the impact of the field 

generated by high-frequency switching. Due to pulsating current, the power-loop induces a current 

in the shield layer which produces a magnetic field of its own, counteracting the field of the 

power-loop. Here the shortest loop has been achieved using the top and the next inner layer (power 

plane) for laying out the power-loop. Transistors have been placed on the topmost layer, while the 

internal power plane serves as the return path. Furthermore, the power inductor has been placed on 

the bottom layer and connected to the drain of MOSFET using vias. Several interleaved channels by 

assuming vias reduce the current density and thus the interconnection inductances. This results in a 

smaller power-loop with the field cancellation capability. 

The soldering pad for the transistor’s tab serves as the primary heat-sink, and thereby a larger 

copper area is assigned to spread out the heat. The vias used to connect the power plane, and drain 

of the high-side MOSFET not only reduces the parasitic inductance but also improves the thermal 

performance by facilitating heat conduction from top to bottom of the PCB [35]. Since the bottom is a 

Figure 6. Effect of parasitic inductance on the drain current iDL and gate-source and drain-source
voltage waveforms.

3.3. PCB Guidelines

Besides, there is always inescapable intrinsic parasitic inductances of the device, but an adequate
PCB layout can optimize the efficiency, enhances the input voltage operating range and reduces the
noise among traces of converter [33]. Importantly, minimizing the high-frequency loop inductance
enables higher switching frequencies and reduces the voltage overshoot and EMI. Besides improving
the THD, it also relaxes the filter requirement. The input path carries the pulsating current and
thereby needs special attention as high di/dt and parasitic inductance of a trace can generate voltage
ringing [34]. Therefore, it is necessary to minimize the circumference of the high-frequency power-loop.

Conventionally, the power-loop is routed on a single layer known as the lateral power-loop, while
the next inner layer is used as a shield plane [19], which reduces the impact of the field generated by
high-frequency switching. Due to pulsating current, the power-loop induces a current in the shield
layer which produces a magnetic field of its own, counteracting the field of the power-loop. Here the
shortest loop has been achieved using the top and the next inner layer (power plane) for laying out
the power-loop. Transistors have been placed on the topmost layer, while the internal power plane
serves as the return path. Furthermore, the power inductor has been placed on the bottom layer and
connected to the drain of MOSFET using vias. Several interleaved channels by assuming vias reduce
the current density and thus the interconnection inductances. This results in a smaller power-loop
with the field cancellation capability.

The soldering pad for the transistor’s tab serves as the primary heat-sink, and thereby a larger
copper area is assigned to spread out the heat. The vias used to connect the power plane, and drain
of the high-side MOSFET not only reduces the parasitic inductance but also improves the thermal
performance by facilitating heat conduction from top to bottom of the PCB [35]. Since the bottom is a
low-resistance path for heat flow, vias on the bottom side are connected to the large copper polygon.
Heat sink soldered on the bottom-side is recommended to improve the thermal performance further.

4. RC Snubber for Suppression of Parasitic Ringing

The antecedent section discussed the negative influence of parasitic elements on the switching
waveform of SiC MOSFET. The derived equation indicates that due to parasitic inductance and
capacitance the drain current undergoes ringing, thereby forcing the drain-source voltage to
oscillate [36,37]. Suppression of this obtruded ringing in the switching waveform is vital to ensure low
distortion and stunted electromagnetic noise [38]. Here, the objective is to dampen the ringing in the
drain-source voltage of the low-side MOSFET SL during turn-off by employing an RC snubber across
the SL as shown in Figure 7a. The RSBR and CSBR represent snubber circuit resistance and capacitance
respectively, while RC1 and RC2 are the equivalent series resistance (ESR) of dc-link capacitors.
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Figure 7. (a) half-bridge dc-ac converter with RC snubber (b) Equivalent circuit using
high-frequency assumption.

The snubber design starts with deriving an equivalent circuit of Figure 7a using the high-frequency
minimization [27]. It is supposed that initially, the low-side MOSFET SL conducts current Io. When
the channel resistance increases during the turn-off process, a change in drain-source voltage vDSL

causes the drain-source capacitance CDS of the MOSFET to conduct. Finally, neglecting body-diode
conduction resistance, replacing large inductances such as L and interconnection inductance between
source and converter with open, and replacing dc-link capacitances with short-circuit result in the
equivalent circuit shown in Figure 7b. The notation iSBR, iD, and vDSL represent current through
snubber, drain current and drain-source voltage of SL respectively. In [27], the authors ignored the
parasitic source inductance LSL and assumed vDSL as the voltage across CDS. On the contrary, vDSL is
exercised here as the sum of the voltage across CDS and LSL to achieve more accurate analysis.

The next step is to derive the expression for vDSL as a function of initial drain current Io using the
equivalent circuit, which gives the rule for snubber components design. Applying KCL and KVL to
the equivalent circuit gives the dynamics in (17).

iM = iDL + iSBR

vDSL = 1
CDSL

∫
iDdt + LSL

diDL
dt

vDSL = 1
CSBR

∫
iSBRdt + iSBRRSBR − LDL

diDL
dt

vDSL = −iM(RC1 + RC2)− (LDH + LSH)
diM
dt − LDL

diDL
dt

(17)

Applying Laplace transform and using ISBR, IDL, IM, and VDSL for the corresponding s-domain
functions of iSBR, iDL, iM, and vDSL, respectively, gives Equation (18).

IM = IDL + ISBR (a)
VDSL = ID

sCDSL
+ LSL(sID − Io) (b)

VDSL = ISBR
sCSBR

+ ISBRRSBR − LDL(sIDL − Io) (c)
VDSL = −IM(RC1 + RC2)− (LDH + LSH)(sIM − Io)− LDL(sID − Io) (d)

(18)

Using (18a)–(18c) in (18d) and solving for VDSL gives (19) in terms of initial drain current Io.

VDSL =
N(s)
∆(s)

Io (19)



Energies 2018, 11, 3111 11 of 19

where the numerator N and denominator ∆ are expressed in (19) and (20) respectively.

N(s) = s2(CSBRLDHLDL + CSBRLSHLDL − CDSLCSBRLSLRC1RSBR − CDSLCSBRLSLRC2RSBR)

+s

(
CSBRRSBRLDL + CSBRRSBRLSH + CSBRRSBRLDH + CSBRRC1LDL + CSBRRC2LDL

−CDSLRC1LSL − CDSLRC2LSL

)
+LDH + LSH + LDL

(20)

∆(s) = s4(CDSLCSBRLSLLDH + CDSLCSBRLSLLSH + CDSLCSBRLDLLSH + CDSLCSBRLDLLDH)

+s3

(
CDSLCSBRLSLRC1 + CDSLCSBRLSLRC2 + CDSLCSBRLDLRC1 + CDSLCSBRLDLRC2

+CDSLCSBRLDHRSBR + CDSLCSBRLSHRSBR + CDSLCSBRLSLRSBR + CDSLCSBRLDLRSBR

)

+s2

(
CDSLCSBRRC1RSBR + CDSLCSBRRC2RSBR + CDSLLDH + CDSLLSH + CSBRLDH + CSBRLSH

CDSLLSL + CDSLLDL

)
+s(CDSLRC1 + CDSLRC2 + CSBRRC1 + CSBRRC2 + CSBRRSBR)

+1

(21)

The response of vDSL can be analyzed from the denominator ∆ which give the rules to suppress
the ringing. By choosing RSBR and CSBR such that all the roots of ∆(s) are real, ensures successful
mitigation of oscillations in vDSL. However, it is not a straightforward to comprehend in case of
a fourth-order equation as there is a breakaway point due to the intersection of only two root loci
with the real axis. Therefore, to reduce ∆(s) to a third-order polynomial equation, the drain-source
inductances of high-side MOSFET are assumed negligibly small. Substitution of LSH = LDH = 0 in (21)
and solving algebraic equations ∆(s) = 0 and d∆(s)/dt = 0 for RSBR and CSBR gives

CSBR =
NC(s)
∆C(s)

and RSBR =
NR(s)
∆R(s)

(22)

where the NC(s), ∆C(s), NR(s) and ∆R(s) are explicity given in (23)



NC(s) = ∆R(s) =
(
sCDSLRC1 + sCDSLRC2 + s2CDSLLSL + s2CDSLLDL + 1

)2

∆C = s2

(
s2(C2

DSLLSLR2
C2 + C2

DSLLDLR2
C1 + C2

DSLLDLR2
C2 + C2

DSLLSLR2
C1 + 2C2

DSLLSLRC1RC2 + 2C2
DSLLDLRC1RC2

)
−
(
CDSLR2

C2 + 2RC1RC2 + CDSLR2
C1
) )

NR = −(RC1 + RC2)

(
s4C2

DSL
(

L2
SL + L2

DL + 2LSLLDL
)
+ s32C2

DSL(LSLRC1 + LSLRC2 + LDLRC1 + LDLRC2)

+s22CDSL(LSL + LDL) + 1

) (23)

The final step is to draw RSBR verses CSBR parametric curve by sweeping the variable s in (22), which
gives the boundary of the region where all the roots of ∆(s) are real. Since the solutions to ∆(s) = 0 are
negative for a stable operation, the parameter s is swept on the negative real axis of the complex plane.
Figure 8 shows the resulting parametric curve with the snubber components chosen in the shaded region
ensures suppression of switching oscillations. In addition to dampen the voltage vibrations, the snubber
must also ensure minimum power losses. Therefore, the lower part of the critically damped region is
more suitable as the CSBR significantly affects snubber losses as compared to RSBR.
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5. Results and Discussion

In this section, the proposed gate driver performance is verified using computer simulation and
experimental prototype of SiC half-bridge dc-ac converter. Specifications of the converter under study
are given in Table 1. To simulate the Spice model of SiC MOSFET provided by Cree Inc., LTspice
software is used with a step size of 1 ns. Parameters of SiC MOSFET, i.e., C3M0120090J related to the
gate driving are listed in Table 2. For reduced conduction losses, 16 V turn-on gate-source voltage is
recommended. Since the proposed circuit performs level shifting, therefore, a regulated 18.4 V gate
driver source is applied to set +16 V and -2.4 V, as the on and off gate driving voltages respectively.
Other specifications of the gate driver components based on its transient analysis are given in Table 3.

Table 1. Specifications of the SiC MOSFET based half-bridge dc-ac converter.

Parameter Value

Source voltage (VIN) 100 V
Capacitor (C) 1.5 µF
Inductor (L) 33 µH

Load Resistance (R) 10 Ω
Switching frequency (f s) 1 MHz

Table 2. Parameters of the C3M0120090J.

Parameter Value

Threshold voltage 2.1 V
Intrinsic gate resistance 16 Ω

Maximum gate-source voltage −8/+18
Input capacitance 350 pF

Output capacitance 40 pF
Reverse transfer capacitance 3 pF

Table 3. Parameters of the proposed gate driver.

Parameter Value

R1L 3 Ω
R2L 3 Ω

DZPL 18 V
DZNL 5 V
CZL 1 µF

5.1. Simulation Results

The captured switching waveforms are shown in Figure 9, where the gate-source voltages are
level shifted by 2.4 V. During the turn-on process of low-side MOSFET, the vGSL rises to 16V in 5 ns
thereby forcing drain-source voltage vDSL to fall as shown in Figure 9a. Below 50 V, the change in vDSL

is high, i.e., 15 V/ns, and induces 1.7 V in vGSH. A similar phenomenon is observed in the turning-off
waveform shown in Figure 9b. However, due to the level shifted gate-source voltages, there is no
spurious turn-on.

Moreover, using LTspice simulation the effect of gate resistance on the switching operation is
investigated. Figure 10a shows the turning-off gate-source waveforms under 3 Ω, 9 Ω, and 18 Ω
gate resistances. SiC MOSFET based half-bridge converter is simulated using the Spice model with
inductances of 7.46 nH, 1.5 nH, and 7.06 nH added to the source, drain and gate terminals of each
MOSFET respectively in order to verify the theoretically analyzed effects of parasitic elements. It
is observed that the increase in gate resistance slows down the transition of gate-source voltage
and results in higher spurious peaks, which can also be noted from the relationship between gate
resistance R1L and gate voltage spike, shown in Figure 10b. Thus, it is significantly important to
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choose a relatively lower R1L to achieve the desired level shifting and protects the MOSFET from
false turn-on. On the other hand, while choosing R2L the high intrinsic gate resistance is particularly
noteworthy as spurious turn-on can occur if the voltage drop across R1L//R2L exceeds the gate
threshold voltage. Therefore, R2L is chosen same as R1L to ensure the turning-off gate impedance as
half of the turning-on counterpart.
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between R1L and spurious peak voltage.

Thus, it is concluded that the parasitic inductances negatively influence the switching response
of SiC MOSFET, including voltage overshoot exceeding the steady-state drain-source voltage and
high-frequency oscillations, thereby enlarging voltage stress and EMI noise. Moreover, since the source
inductance couples the power and gate-loop, therefore, the ringing in drain-source voltage forces the
gate-source voltage to oscillate accordingly.

An RC snubber circuit is used to suppress such oscillations. Figure 11 shows the simulation
results of voltage ringing using different snubber combinations. Figure 11a shows that raising the RSBR

dampens the oscillations, while, the converter simulated for different CSBR and RSBR = 1 Ω is shown in
Figure 11b, which indicates that raising CSBR can also suppress the parasitic ringing. However, the
power losses significantly increase by raising CSBR [39]. Therefore, its minimum value is chosen for
experimental implementation.
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5.2. Experimental Results

Figure 12 shows the setup of a half-bridge dc-ac converter for experimental verification.
An isolated driver IC (Si8234) from Silicon Labs incorporation is used, which can operate at elevated
frequencies, source and sink high gate current, and show significant immunity to EMI. Since the driver
circuit traces carry a high-frequency signal, therefore, they are routed on the same layer to prevent the
propagation of noise to other layers. Furthermore, to ensure Equation (24) [18], the driver circuit is
routed using wide (25 mil) and shortest possible traces.

LG
diG
dt

< IR
1

gfs
10% (24)

The symbol IR represents the rated current, gfs is the transconductance of SiC MOSFET, and LG

is the parasitic gate inductance. Since the stray input capacitance is fixed, thereby, minimizing LG is
effective in improving the damping of gate voltage resonance. In addition, a 10 kΩ gate-source resistor
is connected, which is also useful in suppressing gate voltage oscillations.Energies 2018, 11, x FOR PEER REVIEW  14 of 19 
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Figure 13 shows the experimental gate voltage waveform vGSL generated using the proposed gate
driver at the 1 MHz switching frequency. The driver sets the turn-on and turn-off voltage to 16.5 V and
−2.4 V respectively. The −2.4 V offset in gate voltage validates the basic level shifting capability of the
gate driver. Moreover, Figure 14a,b show the turn-off and turn-on transition of the low-side MOSFET,
respectively. Although, the spurious spike in gate-source voltage introduced by the fast-rising vDSL

is below the gate threshold voltage, but the oscillations in vGSL are alarming due to the higher peaks.
The ringing in vDSL due to circuit parasitics forces vGSL to oscillate, which can cause the crosstalk as
well as stressing the device by exceeding the negative gate voltage limit. Therefore, RC snubber is
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used to dampen the parasitic ringing and thus increase the immunity to the crosstalk phenomenon
and the gate breakdown. Figure 15 shows the gate-source and drain-source voltage waveforms of
low-side MOSFET for two different RC snubbers. The waveform in Figure 15a shows the measured
vDSL and vGSL when CSBR = 440 pF and RSBR = 10 Ω, resulting in a voltage overshoot of 41 V and
settling time of 90 ns. For measurement of Figure 15b, CSBR has been raised to 1 nF, which reduces the
voltage overshoot to 27 V and settling time to 54 ns. The results indicate that the assumption LSH =
LDH = 0 leads to a mismatch between the experimental and mathematically derived parametric curves,
and thus, the snubber selected using valley in the non-oscillatory region of Figure 8 is not viable. It
is vital to choose high-valued RSBR to improve damping rather than CSBR to maintain relatively low
power losses.
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SiC MOSFET.

5.3. Limitations of the Proposed Gate Driver and the Snubber Design Technique

Although the proposed level shifter circuit relaxes the gate driver layout by getting rid of the
additional negative voltage supply, but at the same time it relatively lowers the performance bar. The
important concern is that the introduction of the capacitor CZL in the gate loop delays the turn-on
transition of the SiC MOSFET. Moreover, vN requires several switching cycles at the start-up to rise
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up to the zener voltage VZ, and thus the negative turn-off voltage as determined by vN gradually
increases in magnitude VZ. Finally, the negative voltage generated using the level shifter circuit is
prone to parasitic oscillations, which can force gate voltage to exceed the negative limit, as a result
overstressing the SiC MOSFET.
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The snubber design technique presented in the paper predicts a region in the RSBR-CSBR

plane where the switching ringing is suppressed. However, the accuracy of parasitic inductances
and capacitances in the power loop determines the matching of the region derived using
analytical equations with the experimental counterpart. Although, the manufacturer provides
device specifications, but for computation of interconnection inductance, programs driven by the
finite-element algorithm such as Maxwell 3D is required.

6. Conclusions

To improve the immunity against crosstalk phenomena, a gate driver has been proposed for
SiC MOSFET capable of generating the negative turn-off voltage without using a negative power
supply. Unlike the voltage divider based level shifters, the proposed circuit adds a negative offset
to the gate-source voltage using reduced components with no additional resistor in the gate loop,
thereby not affecting the efficiency. The effectiveness of the level shifter circuit has been validated by
driving the SiC MOSFET in the half-bridge dc-ac converter at a switching frequency of 1 MHz which is
10 times higher than the RCD counterpart. Moreover, oscillation due to circuit parasitics are modeled,
and guidelines for PCB layout to minimize the interconnection inductances are recommended. It is
emphasized that due to unavoidable parasitic inductances, certain voltage ringing still exists which
encourages passive damping. A procedure for the RC snubber design has been presented to avoid the
trial and error based design. The snubber circuit has successfully lowered the gate voltage spike by
2.56 V and reduced the damping time by 63 ns.
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Nomenclature

VIN Source voltage
C Output stage capacitor filter
C1/C2 DC-link capacitors
L Output stage inductor filter
R Load resistance
f s/Ts Switching frequency/switching time period
VTH Threshold voltage
VMIL Miller voltage
SL/SH Low-side/high-side MOSFET of half-bridge converter
RONL/RONH Conduction resistance of low-side/high-side MOSFET
CGSL/CGSH Parasitic gate-source capacitance of low-side/high-side MOSFET
CDGL/CDGH Parasitic drain-gate capacitance of low-side/high-side MOSFET
CDSL/CDSH Parasitic drain-source capacitance of low-side/high-side MOSFET
LDL/LDH Parasitic drain inductance of low-side/high-side MOSFET
LSL/LSH Parasitic source inductance of low-side/high-side MOSFET
RGL(in)/RGH(in) Internal gate resistance of low-side/high-side MOSFET
R1L/RTL External gate turn-on/turn-off resistance of low-side MOSFET
DZPL/DZNL Zener diode for positive/negative overvoltage gate protection
CZL/DZL Capacitor/zener diode of the Level shifter circuit
vN/VZ Voltage across CZL/zener voltage of DZL

VG Gate driver supply voltage
LG Parasitic gate inductance
vGSL/vGSH Gate-source voltage of low-side/high-side MOSFET
vDSL/vDSH Drain-source voltage of low-side/high-side MOSFET
iDL/iDH Drain-source current of low-side/high-side MOSFET
iGPL/iGNL Low-side gate current in turning-on/turning-off of MOSFET
iCL/iZL Current through CZL/DZL

Dm Maximum duty cycle
τa/τb Time constant of gate loop during turn-on when (vN < VZ)/(vN = VZ)
τc Time constant of gate loop during turn-off
iSBR/ISBR Snubber current in time-domain/s-domain
gfs transconductance of MOSFET
ωr/ζ Parasitic resonance frequency/damping factor
RSBR/CSBR Snubber resistor/capacitor
RC1/RC2 Equivalent series resistance of C1/C2

WBG Wide band-gap devices
GaN Gallium Nitride
SiC Silicon carbide
THD Total harmonic distortion
PCB Printed circuit board
EMI Electromagnetic interference
RC Resistor-capacitor
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