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Abstract: Electric vehicles (EVs) promote many advantages for distribution systems such as increasing
efficiency and reliability, decreasing dependence on non-endogenous resources, and reducing
pollutant emissions. Due to increased proliferation of EVs and their integration in power
systems, management and operation of distribution systems (ODS) is becoming more important.
Recent studies have shown that EV can increase power grid flexibility since EV owners do not use
them for 93–96% of the daytime. Therefore, it is important to exploit parking time, during which EVs
can act either as a load or distributed storage device, to maximize the benefit for the power system.
Following a survey of the current state-of-the-art, this work studies the impact of EV charging on
the load profile. Since renewable energy resources (RES) play a critical role in future distribution
systems the current case study considered the presence of RES and their stochastic nature has been
modeled. The study proceeds with analyzing EV owners’ driving habits, enabling prediction of the
network load profile. The impact of: EV charging modes (i.e., controlled and uncontrolled charging),
magnitude of wind and photovoltaic (PV) generation, number of EVs (penetration), and driving
patterns on the ODS is analyzed.

Keywords: distribution system; electric vehicle (EV); renewable energy resources (RES);
stochastic programming

1. Introduction

Renewable energy resources (RES) have attracted special attention with their proliferation in
distribution networks due to political, economic, and environmental aspects. Some are related to
policies to reduce pollutant gas emissions which contribute to climate change, awareness of limited
fossil fuel reserves, and the inexhaustible nature of RES such as the sun or wind.

An example of global efforts is the European Union setting targets for 2020 and for the period of
2020–2030, with the aim of increasing energy efficiency and promoting the use of RES to up to 20% of
total energy consumption. This leads to an impact on the global energy mix due to the replacement (or
discontinuation) of conventional systems by less polluting ones, promoting sustainability [1].

In-line with this perspective, and contrary to the early pessimistic analysis of the impact of
electric vehicles (EVs) on grid integration, EVs have great advantages compared to conventional
vehicles. That is because, as with integration of RES in electrical networks, EVs guarantee a reduced
environmental impact through the diminished dependence on non-endogenous resources and are an
appealing solution in systems with a high level of RES penetration [2].
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EVs connected to the grid improve electrical system stability due to their capability of providing
a regulation service, or power reserve, by charging their batteries when wind power production is
excessive, resulting in a consequent balance between production and consumption. In the future,
when a large number of EVs is connected to the electrical grid, a mass charging schedule can be
developed to load EVs during the hours with large wind power production [3].

EVs can also offer ancillary services, which include primary and secondary frequency control
and voltage regulation. Primary control reduces frequency deviation while secondary control helps
balance supply and demand in electrical power systems. The latter is very important in systems with
high penetration of wind power. Voltage regulation can be performed through EV chargers [4,5].

Traditionally, distribution systems have been designed for radial and unidirectional energy flow,
with voltage protection and regulation strategies developed accordingly. Regulators were designed
assuming the flow of energy from high to low voltage. However, with the introduction of intermittent
RES, the unidirectional distribution system changes to a bidirectional one which necessitates a change
in the regulation process [6].

Integration of EVs in the electrical grids requires regulation and scheduling in order to manage
daily load consumption profiles. A sudden bulk of unscheduled, unregulated, EV charging processes
can have negative impacts on the power system by causing transmission congestion, and thus,
increasing losses and decreasing quality of electricity supply. This deteriorates both grid services and
EV batteries. Thus, proper management and prediction of EV charging scheduling processes should
be carried out as an important element of smart grids [7,8].

Due to the features of EVs (and their owners’ behavior), they can operate as distributed generation
elements with energy storage capabilities, providing more benefits to power systems. However, due to
the limited capacity of EV batteries in comparison with the power system demand, EVs should be
grouped into fleets to accumulate individual EV batteries as an aggregation with a larger storage
capacity. In this way, the impacts on the electrical grid are minimized and the amount of noise in the
system is reduced [9,10].

Traditionally, operation of electrical grids is performed with the use of deterministic models
which have the advantages of easy application and evaluation. However, deterministic models do
not explicitly analyze the underlying uncertainties (especially in low voltage networks), which can
result in network augmented load prediction errors and disproportionate estimates for investments to
be made. Hence, probabilistic models evaluate in more detail the foreseen investments in the grid,
being more appropriate when the power system has a strong component of uncertainty due to energy
resources such as EV which increase the load profile during peak hours [11].

Smart grids are the modern paradigm for sustainable use of energy in response to different
components which have been introduced into distribution networks: RES, EV, energy storage systems
and dispersed generation. One of the biggest advantages of smart grids is reduced peak demand,
which can be achieved through incentives, new regulation mechanisms, and shifting of controllable
loads. Within a smart grid (SG), the smart house concept enables users to manage energy consumption
to follow variable electricity prices in order to minimize their energy costs. Users can also control their
RES and storage systems, reducing some of the impacts resulting from EV and RES integration [12].

In recent years, several studies have been carried out on smart grids with EV integration,
proposing several energy management systems which consider different types of EV charging and
the charging time from the distribution system operator (DSO) point-of-view. Intelligent charging
and vehicle-to-grid (V2G) charging are necessary to minimize electrical network costs when EVs are
parked. Intelligent charging is a flexible charging mode which controls EV charging according to
demand in order to avoid network failures, especially during rush and peak hours [13].

A model demonstrating the stochastic nature of an individual EV battery charging starting time
and initial State-of-Charge (SoC) was developed in by the authors of [14]. Four scenarios of domestic
charging were developed: uncontrolled, late-hour, smart, and controlled charging. The four scenarios
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take into account electricity market tariffs, demonstrating that smart charging is beneficial to both the
DSO and the EV owner.

Another study [15] considered a real-life EV recharging area on a university campus.
The performance of batteries versus local PV generation has been compared. The study took into
consideration schedules of EV owners’ journeys and thereby the SoC upon returning to the recharge
area. Locally generated electricity was shown to have a positive impact in terms of both CO2 emissions
and grid peak load. In addition, the study shows the importance of considering the schedules and
habits of EV users and their impact on the load profile.

In reference [16], a study was presented which addresses a set of infrastructures or network
reinforcement solutions to reduce the impact of charging a large number of EVs into low-voltage (LV)
networks. In order to solve problems related to violation of voltage level and equipment overload,
a solution was proposed in which the network is divided in two and a new distribution transformer is
installed and connected to the problematic part of the LV network. In this way, the transformers share
the loads causing a positive impact on the magnitude of the voltage and on the minimization of the
overload of the equipment involved, due to the lower current circulation. However, this solution is not
always attractive depending on feeder topology. Also, it is still necessary to consider associated costs.

In reference [17], a structure for stochastic compensation of the electricity market in the presence of
EVs (taking into account uncertainties and synchronous generators) was suggested. The energy market
considered involves two steps. In the first, Monte Carlo simulation creates a set of random scenarios.
In the second, stochastic market compensation is implemented as a series of deterministic optimization
problems (scenarios), including the non-contingent scenario and different post-contingency states.
The objective function was the total network cost, minimized for each scenario. In [18], an intelligent
domestic operation was proposed that considers the bidirectional capacity of EVs and demand response
(DR) strategies based on real-time pricing (RTP). Different tests were performed using a mixed integer
linear programming (MILP) model to minimize the cost. Moreover, in [19], a local control charging
(LCC) strategy was proposed to provide the maximum amount of power for EVs while keeping the
electrical network within acceptable operating limits. The local control method allows for the charging
of EVs to be programmed individually based on network conditions and EV SoC. The results were
then compared with those of a central control charging (CCC) method in which a single controller
manages the charging of all connected EVs simultaneously.

In reference [20] a prediction and analysis study of the different scenarios of EVs charging was
carried out based on usage data (e.g., SoC, parking duration, parking type, and drivetrain). First,
a deterministic simulation was performed considering EV driving time history, parking standards,
daily distances traveled, and arrival/departure time from home. Then, the results were compared
with three different stochastic methods that differ from one to the other in the type of treatment that
was performed with respect to driving habits and type of charging. In reference [2], the intention
was to investigate potential technical and benefits and environmental aspects of using a PV with a
storage system located on the roof of a house in Ottawa, Canada, in the context of electric mobility.
The residential PV system was combined with an EV charging system. Different scenarios were
analyzed with different EV models and different SoCs. The studies had shown that PV systems are an
efficient solution to power EVs and reduce pollutant emissions.

As stated in reference [21], many studies in the last year have addressed the advantages of
microgrids, such as: the increasing flexibility, reliability, and efficiency of the system and helping to
improve the quality of the power supplied.

Following the extensive state-of-the-art review, this work attempts to analyze the impact of
un/controlled charging of EVs on the load profile. An analysis of EV owners’ driving habits is
performed, enabling the prediction of the network load profile. Moreover, the effect of different
factors on the functioning of the operation of distribution systems (ODS) is studied: (1) EV charging
modes (i.e., controlled vs. uncontrolled), (2) wind speed, solar radiation, and PV size, and (3)
number of functioning EVs (penetration). To perform those analyses, a stochastic objective problem
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is formulated in order to minimize the DSO operation cost considering a grid with conventional
generation, together with wind, PV, and EVs. Due to the stochastic nature of RES, all stochastic
parameters were modeled through a scenario consideration process.

This manuscript is divided as follows: Section 2 presents the proposed mathematical formulation;
Section 3 illustrates the case studies used and presents the results; and Section 4 highlights the main
conclusions and findings of the work.

2. Mathematical Formulation

In this section the proposed mathematical formulation to model the distribution grid is presented.
Since the model is stochastic, problem constraints are differentiated into first and second stage
equations. In the second stage, ten different scenarios of wind and PV production are considered,
whereas in the first there is only one scenario of renewable production corresponding to the average
of the ten scenarios. Moreover, a small network is considered including conventional generators,
renewable production (wind and PV), and EVs (which only act as a load).

Wind and PV production, due to their stochastic nature, are modeled on scenarios that consider the
uncertainties of wind flow and solar radiation. The goal is to minimize daily the network operational
cost from the DSO perspective. The operational cost may vary according to policies and regulations
that differ from one network to another. All subsequent mathematical formulations and constraints
are represented in normalized, per unit (p.u.), values.

2.1. Objective Function

Equation (1) represents the objective function which is divided into two terms. In the first term,
which corresponds to the first stage, the cost varies according to the price of production units as a
function of time

(
CDG

tn
)
, the market compensation price (MCPt), and the cost of regulation for the

day-ahead market
(

Creg
t

)
.

In the second term, corresponding to the second stage, the scenarios are considered which are
a function of on an occurrence probability (probs) and the corresponding regulation prices from the
real-time pricing

(
Csreg

ts

)
.

minimize ∑
t∈NT

{
∑

n∈NN

(
MCPtPPCC

tn + CDG
tn PDG

tn + Creg
t regPCC

tn

)}
+ ∑

s∈S
probs

[
Csreg

ts regsPCC
tns

]
(1)

2.2. First-Step Restrictions Stage

This section presents first stage constraints which are related to the day-ahead market rather than
the renewable production scenarios which are not yet considered. The active power balance of the
system

(
LDAct

tn
)

is shown in Equation (2).
On the production side, PV

(
PPV

tn
)
, wind

(
PWF

tn
)
, and conventional units

(
PDG

tn
)

are included.
On the consumption side, the load required to charge EVs

(
PEV

tn
)

is presented.

PPCC
t + ∑

n∈PV
PPV

tn + ∑
n∈WF

PWF
tn + ∑

n∈DG
PDG

tn + ∑
n′∈NN

(
P+

tnn′ − P−tnn′
)

− ∑
n′∈NN

[(
P+

tnn′ − P−tnn′
)
− Rnn′ I2tnn′

]
= LDAct

tn + ∑
n∈EV

PEV
tn , ∀t, ∀n

(2)

In Equation (3) the balance of the reactive power of the system
(

LDRct
tn
)

is presented, including
again the PV, wind, and non-renewable production,

(
QPV

tn
)
,
(
QWF

tn
)
, and

(
QDG

tn
)
, respectively.

QPCC
t + ∑

n∈PV
QPV

tn + ∑
n∈WF

QWF
tn + ∑

n∈DG
QDG

tn + ∑
n′∈NN

(
Q+

tnn′ −Q−tnn′
)

− ∑
n′∈NN

[(
Q+

tnn′ −Q−tnn′
)
− Xnn′ I2tnn′

]
= LDRct

tn , ∀t, ∀n
(3)
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Equations (4) and (5) represent network nodes voltage considering technical limits of the system.

V2tn − 2Rnn′
(

P+
tnn′ − P−tnn′

)
− 2Xnn′

(
Q+

tnn′ −Q−tnn′
)
−
(

R2
nn′ + X2

nn′

)
I2tnn′ −V2tn′ = 0, ∀t, ∀n (4)

V2Nom
tn I2tnn′ = ∑

τ

(2τ − 1)∆Stnn′∆Ptnn′ + ∑
τ

(2τ − 1)∆Stnn′∆Qtnn′, ∀t, ∀n (5)

Equations (6) and (7) represent active and reactive power linearization, respectively. Equations (8)
and (9) represent the grid constraints.

P+
tnn′ − P−tnn′ = ∑

τ

∆Ptnn′(τ), ∀t, ∀n (6)

Q+
tnn′ −Q−tnn′ = ∑

τ

∆Qtnn′(τ), ∀t, ∀n (7)

∆Ptnn′(τ) ≤ ∆Stnn′ , ∆Qtnn′(τ) ≤ ∆Stnn′ , ∀t, ∀n (8)

I2tnn′ ≤
(

IMax
nn′

)2
, ∀t, ∀n (9)

Constraint Equation (10) represents the limits of active power for the whole system and constraints
Equations (11) and (12) represent the reactive power limits. Moreover, Equation (13) limits the
minimum and maximum power values of conventional generators and RES.

P+
tnn′ − P−tnn′ ≤ VNom IMax

nn′ , ∀t, ∀n (10)

Q+
tnn′ −Q−tnn′ ≤ VNom IMax

nn′ , ∀t, ∀n (11)

PU
tntg

(
cos−1(−θ)

)
≤ QU

tn ≤ PU
tntg

(
cos−1(θ)

)
, ∀t, ∀n (12)

0 ≤ PU
tn ≤ PU,Max

tn , ∀t, ∀n (13)

Equations (14) and (15) limit the minimum and maximum values of the squared voltage of the
system, while Equation (16) expresses the network constraint in relation to the apparent power.

V2
Min ≤ V2 ≤ V2

Max, ∀t, ∀n (14)

V2Nom
tn =

(
VNom

)2
, ∀t, ∀n (15)

∆Stnn′ =
VNom IMax

nn′

τ
, ∀t, ∀n (16)

Equations (17)–(21) describe the SoC of the EV. In detail, Equation (17) refers to the percentage of
EV charge when it arrives at the residence

(
SOCaEV), after the battery has discharged throughout the

day. The
(
SOCmaxEV) represents the maximum value of the SoC, (d) is the distance traveled by EV

in km,
(
E f f EV) is the electric conduction efficiency in km/kWh a, and

(
CEV) is the capacity of the

battery in kWh.

SOCaEV = SOCmaxEV − d
E f f EVCEV , ∀t (17)

Equation (18) corresponds to the percentage of EV charge when it leaves the residence after
charging. To obtain this, the amount of energy that was transferred to the EV battery is added to the
value of the previous hour SoC

(
SOCdEV

t−1
)
. The charge depends on the charging efficiency

(
CeEV),

in percent, of the charging power
(

PEV
t
)
, in kW. The charging power is limited by the battery capacity

of the EV and by the capacity of the power system.

SOCdEV = SOCdEV
t−1 +

CeEV PEV
t

CEV , ∀t (18)
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When the EV arrives at the residence
(
SOCdEV

t−1
)
, the EV SoC

(
SOCdEV

t−1
)

corresponds to(
SOCaEV), as described in Equation (19), where (ta) corresponds to the arrival time.

SOCdEV = SOCaEV , i f t = ta (19)

Equations (20) and (21) limit the minimum and maximum values of the EV battery SoC on arrival(
SOCaEV) and departure

(
SOCdEV

t
)
.

0 ≤ SOCaEV ≤ SOCmaxEV , ∀t (20)

0 ≤ SOCdEV
t ≤ SOCmaxEV , ∀t (21)

2.3. Second-Step Restrictions Stage

This section presents the second stage constraints in which the different RES scenarios are
considered and are related to the real-time pricing market. Equation (22) represents the power flow
equation related to the active power balance of the second stage (Ps) which depends on: the regulation
of the real-time market

(
regsPCC

tns
)
; the flow of the active power upstream and downstream in the

first
(

P−tnn′ , P+
tnn′s

)
and second

(
Ps−tnn′ , Ps+tnn′s

)
stages, respectively; the wind and PV power

generated, for the corresponding scenario,
(

PsWF
tns
)
, and

(
PsPV

tns
)
, respectively. This balance constraint

must be satisfied in order to guarantee production, dispatch in each scenario, and the system security.

regsPCC
tns + ∑

n∈PV

(
PsPV

tns − PPV
tn
)
+ ∑

n∈WF

(
PsWF

tns − PWF
tn

)
+ ∑

n′∈NN

(
Ps+tnn′s − Ps−tnn′s

)
−
(

Ps+tnn′ − Ps−tnn′
)

− ∑
n′∈NN

[(
Ps+tnn′s − Ps−tnn′s

)
+ Rnn′ I2stnns

]
−
[(

Ps+tnn′ − Ps−tnn′
)
+ Rtnn′ I2stnn

]
= 0, ∀t, ∀n, ∀s

(22)

Similarly, Equation (23) represents the reactive power balance in the second stage (Qs), which
depends on: the first and second stage of the reactive power flow shown in the upstream and
downstream directions

(
Qs−tnn′

)
and

(
Qs+tnn′

)
, respectively; the wind and PV power generated, for the

corresponding scenario,
(
QsWF

tns
)

and
(
QsPV

tns
)
, respectively.

QsPCC
tns + ∑

n∈PV

(
QsPV

tns −QPV
tn
)
+ ∑

n∈WF

(
QsWF

tns −QWF
tn
)

+ ∑
n′∈NN

(
Qs+tnn′s −Qs−tnn′s

)
−
(
Qs+tnn′ −Qs−tnn′

)
− ∑

n′∈NN

[(
Qs+tnn′s −Qs−tnn′s

)
+ Xnn′ I2stnns

]
−
[(

Qs+tnn′ −Qs−tnn′
)
+ Xtnn′ I2stnn

]
= 0, ∀t, ∀n, ∀s

(23)

In Equations (24) and (25) the node voltages for the second stage are represented.

V2stns − 2Rnn′
(

Ps+tnn′s − Ps−tnn′s

)
− 2Xnn′

(
Qs+tnn′s −Qs−tnn′s

)
−
(

R2
nn′ + X2

nn′
)

I2stnn′s −V2tn′s = 0, ∀t, ∀n, ∀s
(24)

V2Nom
tn I2stnn′s = ∑

τ

(2τ − 1)∆Stnn′∆Pstnn′s + ∑
τ

(2τ − 1)∆Stnn′∆Qstnn′s, ∀t, ∀n, ∀s (25)

The linearization expressions for the second stage are shown for the active power (Equation (26))
and reactive power (Equation (27)).

Ps+tnn′s − Ps−tnn′s = ∑
τ

∆Pstnn′s(τ), ∀t, ∀n, ∀s (26)
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Qs+tnn′s −Qs−tnn′s = ∑
τ

∆Qstnn′s(τ), ∀t, ∀n, ∀s (27)

Equations (28) and (29) represent the network constraints.

∆Pstnn′s(τ) ≤ ∆Stnn′ , ∆Qstnn′s(τ) ≤ ∆Stnn′ , ∀t, ∀n, ∀s (28)

I2stnn′s ≤
(

IMax
nn′

)2
, ∀t, ∀n, ∀s (29)

Constraint Equation (30) represents the active power limits in the second stage for the whole
system, and constraint Equations (31) and (32) represent the limits of the reactive power in the
second stage.

Ps+tnn′s − Ps−tnn′s ≤ VNom IMax
nn′ , ∀t, ∀n, ∀s. (30)

Qs+tnn′s −Qs−tnn′s ≤ VNom IMax
nn′ , ∀t, ∀n, ∀s (31)

PsU
tnn′stg

(
cos−1(−θ)

)
≤ QsU

tnn′s ≤ PU
tnn′stg

(
cos−1(θ)

)
, ∀t, ∀n, ∀s (32)

Equation (33) limits the minimum and maximum values of the squared voltage of the system in
the second stage.

V2
Min ≤ V2s ≤ V2

Max, ∀t, ∀n∀s (33)

3. Numerical Study and Results

3.1. Numerical Study

The proposed model was implemented in the General Algebraic Modeling System (GAMS) [22],
using the CPLEX MILP solver. The network used for this analysis (shown in Figure 1) is composed of
15 buses and includes renewable and non-renewable production. Buses 5, 13, and 14 are each connected
to conventional generators and their minimum and maximum values are presented in Table 1.
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Table 1. Conventional generation features.

Generator
Power (kW)

PMin PMax

1 (Bus 05) 23.00 230.00
2 (Bus 13) 69.00 690.00
3 (Bus 14) 46.00 460.00
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Two wind farms are connected to buses 8 and 12 and two PV units to buses 5 and 10. In order to
model wind production, a Weibull distribution for the wind speed was assumed in order to obtain
the corresponding wind power through which 10 different scenarios were extracted corresponding
to production on different days. Similarly, 10 different PV production scenarios were defined in
order to have a more realistic model. Wind and PV production scenarios are detailed in Figures 2
and 3, respectively.
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The load curve (shown in Figure 4) can be divided by considering the electric demand and
classifying three different time periods: (1) the valley period from 02:00 a.m. to 08:00 a.m., (2) the
load period from 04:00 p.m. to 06:00 p.m. and from 11:00 p.m. to 01:00 a.m., and finally (3) the peak
period from 09:00 a.m. to 03:00 p.m. and from 07:00 p.m. to 10:00 p.m.. The variation of the electricity
price can be found in Figure 5. In the network under study there are 50 EVs distributed over 15
buses. As previously stated, the objective is to analyze the impact of driving patterns, (departure time,
arrival time, daily distance and charging time), on the network load profile.

Five EV models (Chevrolet Volt [23], Nissan Leaf [24], BMW i3 [25], Tesla S [26] and Renault
Zoe [27]) with different features (namely battery capacity, driving efficiency, and charging power)
were considered, and whose characteristics are listed in Table 2. It is also possible to check the specific
model of each of the 50 EVs used in the study.
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The time of departure and/or arrival and daily distance traveled by each EV were randomly
selected, based on temporal distribution models considering actual driving habits for different possible
trips and different days.Energies 2018, x, x  9 of 20 
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Table 2. Electric Vehicle (EV) features under analysis.

EV Model Battery Capacity
(kWh)

Charging Power
(kW)

Electrical Driving
Efficiency (km/kWh) EV number

Chevrolet Volt 16.00 3.50 3.75 01; 06; 11; 16; 21; 26;
31; 36; 41; 46

Nissan Leaf 24.00 4.00 6.70 02; 07; 12; 17; 22; 27;
32 37; 42; 47

BMW i3 22.00 11.00 7.20 03; 08; 13; 18; 23; 28;
33; 38; 43; 48

Tesla S 60.00 11.00 6.70 04; 09; 14; 19; 24; 29;
34; 39; 44; 49

Renault Zoe 22.00 3.50 6.70 05; 10; 15; 20; 25; 30;
35; 40; 45; 50

Table 3 shows the location of each EV in the network and indicates the time at which each one
leaves and returns to its respective residence. The index (d) corresponds to departure and (a) to the
arrival. Figure 6 shows the traveled distance distribution and Figure 7 shows the distribution of the
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EV SoC at the time of arrival at the residence, which varies according to the distance covered by each
EV. Afterwards, the EVs are connected to the network for charging, which can be carried out either
immediately upon arrival at the respective residence, or at a time when the load profile is reduced.
The following assumptions were made with regards to EV charging:

• Charging efficiency is 85% for all EVs.
• Minimum and maximum SoC is 0.2 and 1, respectively.
• The bidirectional capability of EVs (V2G), to inject power to the network has not been considered.

EV charging can only be carried out at the owner's residence.
• The BMW i3 and Tesla S vehicles include the BMW i wallbox and Tesla wall connectors, respectively,

which increase charge power capacity.
• The EVs are loaded to their maximum SoC.

Table 3. EVs (Vx
n ) departure (d)/arrival (a) time considered.

Time (h)
BUS

2 3 4 5 6 7 8 9 10 11 12 13 14 15

06:00 a.m. - - Vd
08 - - - - -

Vd
23

Vd
38

- - - - -

07:00 - Vd
02 - - Vd

17
Vd

25
Vd

35
Vd

10 - - - Vd
40 - - Vd

44

08:00
Vd

01
Vd

18

Vd
03

Vd
16

Vd
13

Vd
32

Vd
09 - Vd

24 Vd
36 Vd

37 - Vd
39 Vd

28
Vd

41
Vd

47
Vd

45
Vd

43
Vd

46

09:00
Vd

06
Vd

11
Vd

50

Vd
31 Vd

26 Vd
21 - -

Vd
14

Vd
15

- Vd
30 Vd

49 Vd
29 - - -

10:00 - - Vd
12

Vd
04

Vd
05

Vd
20

Vd
34

Vd
19 - - Vd

27 - - - Vd
42 -

11:00 - Vd
07 - - Vd

22 - - - - - - - - -
12:00 a.m. - - - Vd

33 - - - - - - - - - -
01:00 p.m. - - - - Va

34 - - - - - - - - -
02:00 - - - - - - - - Va

38 Va
48 - - - -

03:00 Va
18 Va

03 - - - Va
19 - - - - - - - -

04:00 - Va
02 Va

08 Va
33 Va

17 - - - - - - - - -

05:00 Va
01

Va
11

Va
16

Va
31

Va
26 - Va

20
Va

22
- Va

15 Va
37 Va

23 - - Va
47 Va

42 Va
46

06:00 Va
06

Va
50

-
Va

12
Va

13
Va

32

- - - Va
10 - Va

30 - Va
40 Va

41 - Va
43

07:00 - - -
Va

04
Va

09
Va

21

-
Va

24
Va

25
Va

35

Va
36 - - Va

39 - - Va
45 -

08:00 - Va
07 - - - - Va

14 - Va
27 Va

49 Va
28 - - Va

44
09:00 p.m. - - - Va

05 - - - - - Va
48 Va

29 - - -

Charging time of different models is considered as the time taken from a state of total battery
discharge. Note that the Chevrolet Volt takes 5 h, the Tesla S 6 h, the Nissan Leaf and the Renault Zoe
7 h, and the BMW i3 about 2 h. Hence, EVs with higher battery capacity take a longer time to charge
and the higher the charging power, the faster the EV reaches the desired SoC.
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3.2. Case Study and Results

In this section the simulation results are presented. The charging model is based on the driving
patterns and preferences of the charging times of the EVs. A total of 7 different cases studies were
defined, with different levels of EV penetration and charging modes, as listed in Table 4. A 24-h period
was simulated for each case study. Case 1 was set as a reference/base case with no EV integration,
for which the GAMS code execution time was less than 5 s and the objective function value was
1014.30€. In Case 2, only EVs 1 to 15 were present in the network. Case 3 considers EVs 1 to 30 and
Case 4 considers all EVs (50) present. In Cases 2, 3 and 4, the charging is uncontrolled, i.e., it is carried
out as soon as the EVs owners arrive at their homes continuously until the battery is fully charged
(maximum SoC).

Table 4. Cases studies description.

Case Penetration (# of EVs) Controlled/Uncontrolled

1 (base case) 0 -
2 15 uncontrolled
3 30 uncontrolled
4 50 uncontrolled
5 15 controlled
6 30 controlled
7 50 controlled

In uncontrolled charging, the priority is the comfort and needs of the customers, since the time
of departure differs according to the customer. This type of charging causes an increase in peak load.
In Cases 5, 6 and 7, charging is controlled and is carried out at a time when the load profile is lower:
from 2:00 a.m. to 8:00 a.m. (Figure 4). This type of charging allows the peak load reduction and
minimizes the DSO disruption. In Case 5, the first 15 EVs are considered, in 6 the first 30, and in 7 all
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50 EVs are considered. The charging duration of each EV varies between 1 to 6 h depending on the
SoC value on arrival, the respective charging power, and the battery capacity.

3.2.1. Base Case Study Comparison with Cases 2, 3, and 4

In this section the network load profile of the base case (without EVs) is compared with the
uncontrolled charging Cases (2, 3 and 4). The results of the simulation of Case 2 (15 EVs, uncontrolled
charging) are shown in Figures 8 and 9. Figure 8 shows that from 06:00 p.m. to 08:00 p.m. there is a
period of high energy demand for charging. These values persist for all cases under study as a result
of the driving patterns considered in Table 3.

Figure 9 shows that the highest load demand of EVs is at 07:00 p.m. and is approximately 0.018 p.u.
At 06:00 p.m. the total demand is 0.594 p.u., 2.75% higher than the base case without EVs. At 07:00 p.m.
the demand is 0.618 p.u., 2.93% higher, and the demand for the peak time, 08:00 p.m., is 0.677 p.u.,
1.93% higher than the base case. However, the results show that a penetration of 15 EVs does not cause
significant changes to the load profile.
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In Case 3 (30 EVs, uncontrolled charging), the period of highest demand remains from 06:00
p.m. to 08:00 p.m., as shown in Figure 10. Figure 11 shows a comparison of the load profile with the
base case. The highest load demand occurs at 07:00 p.m. at approximately 0.03 p.u. At 06:00 p.m.,
the total demand is 0.602 p.u., 4.1% higher than the base case without EVs. At 07:00 p.m., the demand
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is 0.63 p.u., 5% higher, and at 08:00 p.m. it is 0.692 p.u., 4.06% higher than the base case. In Case 4
(50 EVs, uncontrolled charging) the time of highest demand remains unchanged from 6:00 p.m. to
8:00 p.m., as can be seen in Figure 12.
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Figure 13 shows the comparison of the load profile with the base case. A higher demand for
charging occurs at 07:00 p.m. at approximately 0.05 p.u. At 06:00 p.m. the total demand is 0.621 p.u.,
7.45% higher than the base case, at 07:00 p.m., it is 0.651 p.u., 8.44% higher, and at 08:00 p.m. it is
0.712 p.u., 7.16% higher than the base case. From the results obtained, the last two cases (30 and 50 EVs)
show a significant increase in the load profile in peak hours. The increase in the number of EVs implies
an increase in demand that can cause problems for the DSO with higher EV penetration.
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3.2.2. Base Case Study Comparison with Cases 5, 6 and 7

In this section the network load profile of the base case is compared with Cases 5, 6 and 7,
which consider the controlled charging. In all three cases, the EV charging process takes place after
02:00 a.m. and is carried out respecting the flexibility of the EV owner to postpone the charging time
due to the expected departure time of each EV, as described in Table 3.

Figures 14–16 show the EVs controlled charging demand considering the penetration of 15, 30 and
50 EVs in the network, respectively. It can be observed that at 02:00 a.m. there will be a significant
increase in the load profile since all EVs are scheduled to begin charging at that time. However,
charging will be faster compared to uncontrolled charging, since the EVs will have higher charging
power or higher SoC on arrival; EVs will charge in about 1 or 2 h.

Figure 17 shows the comparison of the network load profile between the base case and controlled
charging with 15 EVs (Case 5). The highest charging demand occurs at 02:00 a.m. and is approximately
0.04 p.u. Thus, at 02:00 a.m. the total demand is 0.493 p.u., 9.57% higher than the base case; at 03:00 a.m.
the demand is 0.477 p.u., 5.65% higher; and at 04:00 a.m. the total demand is 0.417 p.u., 1.54% higher
than the base case.

Figure 18 shows the comparison of the network load profile between the base case and controlled
charging with 30 EVs (Case 6). Again, the highest charging demand occurs at 02:00 a.m. and is
approximately 0.09 p.u. At 02:00 a.m. the total demand is 0.536 p.u., 19.15% higher, at 03:00 a.m. the
demand is 0.46 p.u., 9.76% higher, and at 04:00 a.m. it is 0.425 p.u., 3.44% higher than the base case.

Figure 19 shows the comparison of the network load profile between the base case and controlled
charging with 50 EVs (Case 6). At 02:00 a.m. there is a charging demand of approximately 0.14 which
results in a total demand of 0.593 p.u., i.e., a value 31.91% higher than the base case. At 03:00 a.m. the
total demand is 0.483 p.u., 14.29% higher, and at 04:00 a.m. the total demand is 0.433 p.u., 5.40% higher
than the base case.

By analyzing the last three Cases (5, 6, and 7) it is possible to observe that controlled charging and
scheduling it for a period of lower network load has the advantage of not increasing the peak-load of
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the network. However, it has the disadvantage of increasing the load at off-peak periods. It can also be
observed that the penetration of EVs in the network, the higher the load will be. This can be verified
the respective results of increasing from 15 to 30 EVs, followed by 30 to 50 EVs.
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4. Conclusions

In this work, a model was developed to analyze the impact of integrating different levels of
penetration of EVs into a power distribution system. Seven case studies with different levels of EV
penetration and two charging modes were formulated. The network under study includes conventional,
wind, and PV generation.

To model uncertainties, ten possible generation scenarios were considered for each RES. In order
to make the model more realistic, five different commercial EV model were considered, each with
different characteristics such as battery capacity, charging efficiency, and charging power.

The results have shown that EV charging had a significant impact on the system load profile and
therefore, measures were needed to guarantee sustainable network planning. The introduction of
15 EVs increased the load by 2%; 30 EVs increased the load by around 4%; and 50 EV's increased it by
around 7%. Thus, it has been identified that higher levels of EV penetration can significantly change the
load profile of a distribution network and consequently increase peak load, especially when charging is
uncontrolled and/or unscheduled. The increasing penetration of EVs in distribution systems presents
new challenges for the DSO. Controlled charging prevents the increase in the peak-load since charging
is scheduled at hours of low demand as opposed to uncontrolled charging which only considers each
owner’s needs.

The analysis of driving patterns of EVs owners (namely the relationship between the
departure/arrival times of the owner and the distance traveled by the EV), can make it possible
to predict when demand will occur. This can provide the necessary data for the tools to analyze the
impacts of EV on the distribution network and can be used to design the incentives to develop strategic
charging solutions which are compatible with the network.

In this way, all network players can exploit the full potential of EVs. Therefore, correct integration
of EVs in the distribution network provides advantages for EV owners and for the DSO. In addition,
it can have environmental benefits as it results in the reduction of pollutant emissions, either by
increasing the flexibility of the network through the distributed storage concept, or through mitigation
of the transportation sector impact. In the future, this work can be extended to consider more detailed
factors (e.g., distribution network failure rate, or extreme weather conditions which will drastically
affect the number of people using their EVs, and the ageing of EV batteries), and a comparison with
other published results.

Author Contributions: Conceptualization, M.S.-k. and G.J.O.; methodology, P.D.L.C.; validation, M.S.-k. and
J.P.S.C.; writing, M.L., P.D.L.C. and G.J.O.; supervision, J.P.S.C.
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Nomenclature

DG Distributed generation index
EV Electrical vehicle index
nn′ Node index
PCC Connection point index with the upstream network
PV Photovoltaic farm index
s Scenario index
t Time (in hours) index
ta Arrival time index
τ Linear partitions index in the linearization process
U Power Index (U ∈ PV, WF, PCC, DG)
WF Wind farm index
CDG

tn Unit generation cost
CeEV EV battery charging efficiency (%)
CEV EV battery capacity (kW)
Creg

t , Csreg
t Regulation cost in the day-ahead and real-time markets

d Daily distance traveled by EV (km)
∆Stnn′ Upper limit in quadratic flow discretization (kVA)
E f f EV EV driving efficiency (km/kWh)
Imax
nn′ Maximum current capacity in the line

LDAct
tn , LDRct

tn Planned active and reactive power, respectively
MCPt Market compensation price
PEV EV power charging (kW)
probs Probability of each scenario

PU, max
tn Maximum power capacity of each U

reg, regs Day-ahead, and real-time markets regulation, respectively
Rnn′ , Xnn′ Distribution line resistance and inductance, respectively
Vmax, Vmin, Vnom Maximum, minimum and nominal voltage, respectively

I, I2, (Is, I2s)
Current flow, and quadratic current flow, for the day-ahead and
real-time markets, respectively (A)

P−, Q−,
(

Ps−, Qs−
) Active and reactive power that flows in upstream direction in the

day-ahead and real-time markets, respectively (kW)
P, Ps Active power in the day-ahead and real-time markets, respectively

P+, Q+,
(

Ps+, Qs+
) Active and reactive power that flows in downstream direction in the

day-ahead and real-time markets, respectively (kW)
Q, Qs Reactive power in the day-ahead and real-time markets, respectively
SOCEV EV state-of-charge
θ Power factor

V, V2, (Vs, V2s)
Voltage, and quadratic voltage, for the day-ahead and real-time markets,
respectively (V)
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