Supplementary Materials

CO₂ and CH₄ Adsorption Behavior of Biomass-Based Activated Carbons

Deneb Peredo-Mancilla*, Imen Ghouma, Cecile Hort, Camelia Matei Ghimbeu, Mejdi Jeguirim and David Bessieres

Figure S1: Adsorption and desorption of Nitrogen (N₂) at 77K on the Olive stones activated carbons [1].

Figure S2: Pore size distribution (PSD) of the olive stones activated carbons obtained by means of density functional theory (DFT) [1].

Figure S3: Emmited CO₂ during temperature programmed desorption-mass spectroscopy (TPD-MS) of the olive stones activated carbons [1].

Figure S4: Emmited CO during temperature programmed desorption-mass spectroscopy (TPD-MS) of the olive stones activated carbons [1].

References

[1] I. Ghouma *et al.*, "The potential of activated carbon made of agro-industrial residues in NOx immissions abatement," *Energies*, vol. 10, no. 12, 2017.