

Article Supplementary Materials:

Improved Microbial Electrolysis Cell Hydrogen Production by Hybridization with a TiO₂ Nanotube Array Photoanode

Ki Nam Kim^{1,‡}, Sung Hyun Lee^{1,‡}, Hwapyong Kim¹, Young Ho Park¹ and Su-II In^{1,*}

- ¹ Department of Energy Science and Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Republic of Korea; kaizer1354@dgist.ac.kr (K.N.K.); mattlee@dgist.ac.kr (S.H.L.); khp911@dgist.ac.k (H.K.); nano.e.park@dgist.ac.k (Y.H.P.)
- * Correspondence: insuil@dgist.ac.kr; Tel.: +82-053-785-6417
- + These authors contributed equally to this work.

Received: 30 August 2018; Accepted: 10 November 2018; Published: date

Figure S1. Schematic illustration of the MFC for preparing matured bioanode.

Figure S2. Photocurrent dependent time of the TNT array photoanode under simulated solar light for 60 hours.

Figure S3. (a) Power density, I-V polarization, and (b) electrode potential curves for hybrid MEC under illumination and MEC under dark for checking reproducibility. Each color operated on the same reactor.