
energies

Article

Prediction of Wind Turbine-Grid Interaction Based on
a Principal Component Analysis-Long Short Term
Memory Model

Yining Wang 1, Da Xie 1,*, Xitian Wang 1 and Yu Zhang 2

1 School of Electronic Information and Electrical Engineering, Shanghai JiaoTong University, Shanghai 200240,
China; wangyining531@gmail.com (Y.W.); x.t.wang@sjtu.edu.cn (X.W.)

2 Shanghai Electric Power Company, Shanghai 200122, China; zhangyu@sh.sgcc.com.cn
* Correspondence: xieda@sjtu.edu.cn; Tel.: +86-21-3420-4298

Received: 26 September 2018; Accepted: 16 November 2018; Published: 20 November 2018 ����������
�������

Abstract: The interaction between the gird and wind farms has significant impact on the power
grid, therefore prediction of the interaction between gird and wind farms is of great significance.
In this paper, a wind turbine-gird interaction prediction model based on long short term memory
(LSTM) network under the TensorFlow framework is presented. First, the multivariate time series
was screened by principal component analysis (PCA) to reduce the data dimensionality. Secondly,
the LSTM network is used to model the nonlinear relationship between the selected sequence of wind
turbine network interactions and the actual output sequence of the wind farms, it is proved that it has
higher accuracy and applicability by comparison with single LSTM model, Autoregressive Integrated
Moving Average (ARIMA) model and Back Propagation Neural Network (BPNN) model, the Mean
Absolute Percentage Error (MAPE) is 0.617%, 0.703%, 1.397% and 3.127%, respectively. Finally,
the Prony algorithm was used to analyze the predicted data of the wind turbine-grid interactions.
Based on the actual data, it is found that the oscillation frequencies of the predicted data from
PCA-LSTM model are basically the same as the oscillation frequencies of the actual data, thus the
feasibility of the model proposed for analyzing interaction between grid and wind turbines is verified.

Keywords: interaction between grid and wind turbine; long short-term memory; wind power
prediction; principal component analysis; deep learning; oscillation

1. Introduction

During the operation of wind turbines, the output power is in a constantly changing state due
to the randomness and intermittency of the wind resource, which brings unpredictable influences to
the operation state of the power system and may lead to system oscillation. Exploring a wind power
prediction method which can relieve the peak load regulation and frequency modulation pressure of
the power system and predict the possible oscillation of the system with a certain accuracy is very
important [1]. The real-time operation data of wind turbines records the actual operation status of
wind turbines, and inevitably contains information on the interaction between wind turbines and
power grids. Therefore, it is necessary to analyze them in depth and apply big data analysis to extract
valuable information.

At present, there are three kinds of forecasting methods that are commonly used: physical
methods, statistical methods, and combinations of the two methods [2]. The purpose of the physical
method is to describe the physical process of converting wind into electricity, and to simulate all
the steps involved, according to the wind turbine background data, such as wind turbine position
and fan parameters, to build the model and estimate the wind speed at the hub height of each wind
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turbine, and finally to obtain the output power through the wind power curve [3]. This method
involves a large number of meteorological theories and geomorphological parameters and is very
difficult to solve. The statistical method aims to establish a nonlinear relationship between wind
power and input variables directly by analyzing the statistical laws of time series, including sequential
extrapolation and artificial intelligence prediction methods. Sequential extrapolation includes time
series method, regression analysis method and Kalman filtering method [4], etc. Artificial intelligence
method includes artificial neural networks (ANN), support vector machines (SVM), deep learning [5]
and so on. A method using Least Squares Support Vector Machine (LSSVM) to predict wind speed and
indirectly predict wind power output is proposed in [6]. In reference [7], an artificial neural network
for wind power prediction is constructed based on Numerical Weather Prediction (NWP) data.

However, wind power data series is a kind of time series with dynamic characteristics, and the
output of the system is not only related to the current time input, but also related to the past input.
Recursive neural networks (RNN) [8,9] can not only use current input information but also historical
information, so RNN has great advantages in processing timing information. As a special RNN model,
LSTM network effectively avoids the problem of gradient disappearance and gradient explosion in the
conventional RNN training process due to its special structural design [10]. LSTM has many nonlinear
transport layers and can be used in complex situations. With enough training data, LSTM model can
explore the information contained in massive data.

Since the large-scale integration of wind power, the interaction between wind turbines and power
grids [11,12] has become one of the topics of widespread concern. Many researches are carried to
handle the process of wind integration with the grid. Reference [13] investigates a renewable power
system by jointly optimizing the expansion of renewable generation facilities and the transmission
grid. It is proved that transmission can reduce cost of electricity when wind capacities and solar
photovoltaics are installed separately. Reference [14] presents a Two-layer nested model considering
the uncertainty in forecasting photovoltaic power. Reference [15] proposes a Mixed-Integer Nonlinear
Programming MINLP model for grid connected solar–wind–pumped-hydroelectricity (PV-WT-PSH),
which combines mixed integer modeling with an ANN model to predict energy flow between a local
balancing area using PV-WT-PSH and the national power system.

At present, the complicated oscillation phenomenon caused by wind power integration includes
sub-synchronous interaction (SSI) and low frequency oscillation [16–18]. SSI mostly shows the
exchange of energy between generator and alternating current at a frequency lower than the rated
frequency of the system. The frequency value of low frequency oscillation is usually between 0.1 and
2.5 Hz, which is caused by the negative damping effect caused by the rapid excitation of the generator.
According to the difference of internal mechanism, SSI can be divided into subsynchronous control
interaction (SSCI) [19] and subsynchronous torque interaction (SSTI) [20]. SSCI is associated with the
series capacitance of the control device and power electronic equipment, and may also occur in the case
of low series compensation. SSTI [21] is related to the mechanical power on the generator shaft system.
Depending on the formation mechanism, this kind of oscillation problem can be subdivided into
subsynchronous oscillation (SSO) [22] and subsynchronous resonance (SSR) at SSTI level. SSR [23,24] is
caused by resonance caused by series compensation capacitance in the power grid, and SSO is caused
by positive feedback caused by defects of the control system itself.

The main contributions of this paper are as follows: (1) The principal component analysis of wind
turbine-grid interaction is studied, and simulations prove the rationality of the selected component
in the prediction of interaction between wind turbine and grid; (2) A prediction model of wind
turbine-grid interaction based on PCA–LSTM is proposed.

The first part of the article puts forward the related factors of wind turbine-grid interaction and
introduces the PCA analysis. In the second part, the prediction model of wind turbine gird interaction
is proposed, and the principle of LSTM network and the design scheme of prediction model are
introduced. The third part introduce the data flow diagram of the model in TensorFlow. The fourth
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part is experimental verification and result analysis, which verifies the accuracy of the proposed model.
Figure 1 shows the flowchart of the methodology used in this paper.
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2. Selection of Related Factors of Wind Turbine Grid Interaction

2.1. Analysis Objects of Wind Turbine Grid Interaction

In this paper, wind output power, phase voltage and phase current are selected as the analysis
objects of wind turbine grid interaction. First, it is necessary to build and train prediction models to
predict power, voltage and current respectively. Too few predictors will lead to missing information
and unable to conduct a comprehensive analysis of data. However, too many prediction factors will
lead to an increase in the calculation amount and a decrease in the generalization ability, so it is
necessary to select input features before prediction.

2.1.1. Voltage/Current

The factors that affect the voltage stability of wind turbines are usually the combination of various
factors, including the scale of wind turbines, the type and size of disturbances, the type of generators
and the operation mode of wind turbines. The harmonic of stator current is affected by stator and
rotor voltages. In addition, the harmonic of stator current may also come from the wind motor itself,
the disturbance of the surrounding environment, etc. Therefore, PCA will be used to select the input
quantity that is related to the voltage and current.

2.1.2. Power

Wind turbine works by converting the kinetic energy in the wind first into rotational kinetic
energy and then electrical energy, which can be supplied via the grid, the rotational kinetic power
produced in a wind turbine is given by:

Pw =
CpSρv3

2
(1)
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In Equation (1), Pw is the output power (kW), Cp is the power coefficient, ρ is air density (kg/m3),
S is blade rolling area (m2), and v is wind speed (m/s). Air density of the wind turbine is given by:

ρ = 3.48
p
T

(
1− 0.378

ϕPb
p

)
(2)

In Equation (2), p represents normal atmospheric pressure level, Pb is saturated vapor pressure,
T is thermodynamic temperature and ϕ is relative air humidity.

According to Equations (1) and (2), for a given wind turbine, the power coefficient and blade
rolling area are constant, so the output power of the wind turbine is closely related to the following
four factors: wind speed, temperature, humidity and pressure. Wind speed is the most important
factor among them since it is a cubic parameter. Some of the above four factors are related to each
other and some are independent of each other. As there is a certain correlation, it is possible to
synthesize information existing in various variables with fewer factors. PCA belongs to this kind of
dimensionality reduction method.

2.2. Principle of Principal Component Analysis

The idea of PCA [25] is to construct new variables formed by linear combination of original
variables and make the new variables reflect as much information of the original variables as possible
on the premise that they are not related to each other. Mapping n-dimensional features to k-dimensional
(k < n), which is a completely new orthogonal feature, is called the main component. Principal
components are reconstructed K-dimensional features, rather than simply removing the remaining
N-K-dimensional features from the N-dimensional features. Each new feature has its own unique
meaning. Data information is mainly reflected in variance. Features with large variance can reflect
that the main information is contained in the original variables, usually measured by cumulative
variance contribution rate. Generally, the dimension whose cumulative contribution rate is about
75~95% is selected.

There is a sample set X = {x1, x2, . . . , xm} assuming that the sample set is centered, that is
∑i xi = 0, assuming that the new coordinate system after projection transformation is {w1, w2, . . . , wd},
where wi is the standard orthogonal basis vector, ‖wi‖2 = 1. The projection of the sample points xi
on the hyperplane in the new space is WTxi. In order for the projection of all the sample points to
be separated as much as possible, the variance of the projected sample points should be maximized,
and the variance of the projected sample points can be expressed as: ∑i WTxixT

i W:

max
w

tr
(

WTXXTW
)

s.t. WTW = 1 (3)

Applying the Lagrange multiplier method:

XXTW = λW (4)

Therefore, it is only necessary to perform eigenvalue decomposition on the covariance matrix
XXT and sort the obtained eigenvalues: λ1 ≥ λ2 ≥ . . . ≥ λm. The number of principal components
selected depends on the cumulative variance contribution rate. Usually, when the cumulative
variance contribution rate is greater than 75~95%, the corresponding previous p principal component
contains most of the information that can be provided by the original variables m, and the number of
principal components is just one. Variance contribution rate and cumulative variance contribution rate
are respectively:

ηi =
100%λi

∑m λi
(5)
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η∑(p) =
p

∑
i

ηi (6)

The solution of PCA is to form W = {w1, w2, . . . , wp} corresponding to the previous eigenvalues.

3. Prediction Model of Analysis Objects in Wind Turbine Grid Interaction

3.1. Long-Term and Short-Term Memory Network Structure

LSTM can be used as a complex nonlinear unit to construct a larger deep neural network, which
can reflect the long-term memory effect. The LSTM network includes an input layer, an output layer,
and multiple hidden layers. The hidden layer is composed of memory tuples, and its basic structure is
shown in Figure 2. The key to LSTM network is cell state. The state of the cells runs directly along
the whole chain like a conveyor belt. In LSTM, cell state information is added or deleted through
the gate structure, and whether information passes through can be selectively determined through
the gate. It consists of a Sigmoid layer and a pair of multiplication operations. The output of gate
structure is 0~1, which defines the degree of information passing through. The tanh layer in Figure 2 is
an activation function that can map a real number input into [−1, 1].
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The LSTM tuple includes three gates, namely, an input gate, a forget gate and an output gate.
The three gates control the flow of information between the tuple and the network. In the following
formula, it, ot, ft represent the state values of input gate, output gate and forgotten gate, respectively.

(1) Forget gate decides to forget information from the old cell state Ct−1, and the input is the input of
the current layer xt and the output of the previous layer ht−1, the cell state output is:

ft = σ
(

W f
1 ·xt + W f

h ·ht−1 + b f

)
(7)

(2) Generate information to be updated and store it in the cell needs two steps: (a) update the
information by the result of the input gate passing through the sigmoid layer; (b) Ct will be
added to the new candidate information by multiplying the old cell state with ft to forget
unnecessary information:

it = σ
(

Wi
1·xt + Wi

h·ht−1 + bi

)
(8)

C̃t = tanh(WC
1 ·xt + WC

h ·ht−1 + bC) (9)

Ct = it ∗ C̃t + ft ∗ Ct−1 (10)
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(3) The output information is determined by the output gate. First, the initial output is obtained
through the Sigmoid layer, the cell state value is scaled between [−1, 1] with the tanh layer, and
the output ht can be easily obtained:

ot = σ(Wo
1 ·xt + Wo

h ·ht−1 + bo) (11)

ht = ot × tanh(Ct) (12)

From Equations (7) to (11), Wi
1, W f

1 , Wo
1 , WC

1 respectively represent the weight matrix of input gate,

forget gate, output gate and tuple input, Wi
h, W f

h , Wo
h, WC

h respectively represent the weight matrix of
input gate, forgetting gate, output gate and tuple input to connect ht−1, and bi, b f , bo, bC respectively
represent the bias vectors of input gate, forget gate, output gate and tuple input. σ represents sigmoid
activation function.

The LSTM model has the same structure as RNN model. It can be seen as multiple replications
of the same neural network, and each neural network module will pass the message to the next one.
After unfolding the loop, the structure is shown in Figure 3.
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The observation objects of wind turbine network interaction and wind speed data is the input
to the LSTM model, and the expression of the prediction model can be derived from the network
structure of Figure 3:

h(t + 1) = f (h(t), h(t− 1), . . . , h(t− n), x(t + 1), x(t), . . . , x(t− n)) (13)

In Equation (13), h(t), . . . , h(t− n) is the historical data, x(t + 1), . . . , x(t− n) is the input
parameter selected by PCA, in this case, it is wind speed.

The topological structure of LSTM model selected in this paper is shown in Figure 4. After the
principal component analysis of the original data, the analysis objects of wind turbine grid interaction
and the selected principal component are chosen as inputs of the prediction model. We have two
hidden layers. And the output layer gives the prediction of wind power, voltage and current in wind
turbine grid interaction.
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3.2. LSTM Prediction Model Design

3.2.1. Data Normalization

When predicting multi-variable time series, due to the different dimensions and numerical
differences among different variables, considering the input and output range of nonlinear activation
function in the model, and in order to equally handle the influence of various variables on wind power,
voltage and current, it is necessary to normalize the raw data between [0, 1]. Normalization is carried
out by MinMaxScaler, the formula is shown in Equation (14):

Xstd =
x− x.min

x.max− x.min
(14)

The predicted wind power, current and voltage data are subjected to inverse normalization
processing to make them have physical significance. The formula is shown in Equation (15):

Xscaler = xstd(x.max− x.min) + x.min (15)

3.2.2. Model Parameter Selection

The establishment of LSTM prediction model requires five hyperparameters, namely, input
dimension, input layer timesteps, number of hidden layers, dimension of each hidden layer and
output dimension.

In an actual neural network, the number of hidden layers and neurons will directly affect the
accuracy of network training and prediction so the number of hidden layers and neurons should be
carefully selected. The network starts from a complex structure, which has many hidden layers and
several hundred of neurons in each layer, then the over fitting problem happens, so that the number of
layers should be reduced and some of the neurons should be dropped off until the generalization ability
of the network is good enough, The best parameters for our model is found after many experiments, the
following hyperparameters can obtain better prediction results: the input shape is 2, 5 time steps, the
number of hidden layers is 2, 50 neurons are defined in the first hidden layer, 100 neurons are defined
in the second hidden layer, and 1 neuron is defined in the output layer to predict the output. Adam
function with random gradient descent is used as the optimization algorithm of the neural network.

3.2.3. Evaluation of Forecast Results

The mean absolute percentage error (MAPE) and root mean square error (RMSE)
are used for evaluation the prediction results, and the error functions are shown in
Equations (16) and (17), respectively:

εMAPE =
1
n

n

∑
i=1

∣∣P̂N(i)− PN(i)
∣∣

PN(i)
× 100% (16)

εRMSE =

√√√√ 1
n

n

∑
i=1

(P̂N(i)− PN(i))
2

(17)

In Equations (16) and (17), PN(i) and P̂N(i) (i = 1, 2, 3, . . . , n) are the actual value and predicted
value of the i th data, n represents the length of the data used for verification.

4. Model Implementation under Tensor Flow Framework

4.1. TensorFlow Framework

TensorFlow [26] is Google’s open source deep learning framework system, which supports a wide
range of models and various types of learning algorithms. It can build deep learning models and can
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flexibly build analysis models as needed. TensorFlow uses data flow diagram to deal with numerical
calculation. The nodes in the data flow diagram represent numerical operations, and the edges between
nodes represent some connection between tensors, where tensors are represented by n dimensional
arrays, flow is based on a data flow diagram, and tensor flow is the calculation process from one end
of the graph to the other.

4.2. Construction of Tensor Flow Flow Diagram of the Model

Data flow diagram is an abstract description of computation. At the beginning of the calculation,
the data flow graph is started in the session, which distributes the operations in the graph to each
computing device while providing the execution method of the operations. These methods calculate
and return tensors according to the calculation relationship of each side. The data flow diagram of the
LSTM model constructed in this paper is shown in Figure 5, where the nodes are numerical operations
and the edges are tensors represented by n dimensional arrays. The data flow diagram of the hidden
layer is shown in Figure 6.
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5. Result and Analysis

5.1. Data Preprocessing

The data used in this paper are collected from an actual wind farm. The sampling started at
13:33 on 6 August 2013 and ended at 14:03 on 6 August 2013. Since we are to research the interaction
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between the grid and wind farms, the sampling frequency should be very high and it is 4 kHz, that is,
the data time interval is 1/4000 s, so there are in total 7,200,000 data items. The original data include
factors such as fan speed, wind speed, wind direction, pressure, temperature, humidity and so on.
If a certain factor is directly ignored, it may bring errors to the prediction. In order to reduce the
dimension of input variables and minimize the errors, PCA is used to determine the minimum number
of variables required and analyze the multivariate prediction factors.

First, the data are normalized to unify the dimensions of each parameter, then principal
component extraction is performed, the covariance matrix of the normalized training data is calculated,
the characteristic root and contribution rate of the covariance matrix are calculated, and principal
components are extracted according to the cumulative contribution rate. The calculation results
are shown in Table 1. Table 1 gives the eigenvalues, variance contribution rate and cumulative
contribution rate of principal components, and Figure 7 is a line chart of variance relative to the
number of components.

Table 1. Eigenvalues and contribution.

Principal Component Eigenvalues Variance Contribution Rate (%) Cumulative Contribution Rate (%)

Z1 11.917 89.273 89.273
Z2 3.208 6.467 95.740
Z3 1.994 2.500 98.240
Z4 1.461 1.342 99.583
Z5 0.669 0.281 99.865
Z6 0.303 0.057 99.922
Z7 0.274 0.047 99.969
Z8 0.166 0.017 99.987
Z9 0.130 0.010 99.997
Z10 0.043 1.19 × 10−5 99.998
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As can be seen from Table 1, the contribution rate of the first component Z1 is 89.273%, indicating
that it basically contains all the information of the original data, and Z1 can be concluded as the
principal component according to the principal component judgment. Another method of selecting
principal components is to check the line chart of variance with respect to the number of components
and select the point where the graph is close to the horizontal. From Figure 7, the graph is close to the
horizontal after the first principal component and the contribution rate of other component variables is
very low, so it is determined that the principal component is Z1. There are 10 input parameters before
processing PCA, and only one principal component is used as a parameter after processing PCA.

As can be seen from the score of component coefficient matrix in Table 2, this first principal
component Z1 is mainly associated with the original parameter variable X8, with the correlation
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coefficient of 0.965, X8 corresponds to the wind speed. Therefore, the result obtained from the PCA is
consistent with the result obtained from Equation (2) that wind speed is the most important influencing
factor. The data preprocessing based on PCA can improve the calculation efficiency of the prediction
model with guaranteed accuracy.

Table 2. Score of Component Coefficient Matrix.

Original Parameter Variable Principal Component Z1

X1 −0.011
X2 0.001
X3 −0.004
X4 1.10 × 10−4

X5 3.99 × 10−5

X6 1.11 × 10−4

X7 −0.089
X8 0.965
X9 −0.011
X10 2.41 × 10−4

5.2. Results of Experimental Results

After implementing PCA, the selected parameters are treated as input to the model. Considering
that the sampling frequency of the data is 4 kHz, to reduce the impact of individual data disturbance,
an average method is adopted. The data used in the prediction is one point per second, that is,
the average value of every 4000 data is taken as the current time value, and the average value is used
for the processing of the output active power and wind speed. The waveforms of output active power,
phase current, phase voltage is shown in Figure 8.Energies 2018, 11, x FOR PEER REVIEW  11 of 20 
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The pre-processed data are divided into training data and test data, where the training rate is
defined as the proportion of training data to the total data. If the training rate is too high, the evaluation
result may not be stable and accurate because the test set is too small. If the training rate is too low,
the difference between the training set and the original data set will be too large to reduce the fidelity
of the evaluation result. Generally, the training rate is set to [2/3, 4/5]. Here, the training rate is set
to 0.72 because it satisfies the above requirements, that is, the data from 13:33 6 August 2013 to 13:54
6 August 2013 are taken as training samples. The target is to forecast the future 10 min’ wind farm
operation data to verify the accuracy of LSTM network. As shown in Figure 9, the predicted results
(a), (b) and (c) are a comparison of predicted and actual values of output power, phase current and
phase voltage respectively. The blue line in the figure represents the predicted output and the green
line represents the actual output.
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From the prediction results in Figure 9a–c, the wind power, phase current and phase voltage
prediction based on PCA-LSTM model have high accuracy and low prediction error. In Figure 9a,
MAPE of wind power is 0.617%, RMSE is 2167.839, MAPE of phase current in Figure 9b is 3.287%,
RMSE is 75.177, MAPE of phase voltage in Figure 9c is 2.383%, RMSE is 35.912. By predicting the
output of the wind turbine, the peak load regulation and frequency modulation pressure of the power
system can be relieved, mechanical failures can be found in time, corresponding measures can be taken
as soon as possible, and the possibility of serious problems in the operation of the wind turbine can
be reduced.

Figure 10a,c,e are the comparison of the prediction results of active power, phase current and
phase voltage between PCA-LSTM model and single LSTM model proposed in this paper. Due to
the large Y axis value, the comparison effect is not obvious enough, so Figure 10b,d,f are the typical
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fragments extracted from Figure 10a,c,e, which show the comparison of the prediction results of the
two models.
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As can be seen from Figure 10, the prediction results of LSTM and PCA-LSTM methods are close
to the actual wind power, phase current and phase voltage curves, respectively, and the prediction
accuracy of PCA-LSTM is higher than that of a single LSTM model, so the role of PCA in this prediction
is very important. As can be seen from Table 3, the RMSE of the PCA-LSTM model proposed in this
paper is 5.533%, 6.887% and 5.098% lower than LSTM model, respectively.
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Table 3. Error analysis of forecasting result.

MAPE (%) RMSE

Active Power
LSTM 0.703 2294.820

PCA-LSTM 0.617 2167.839

Phase Current
LSTM 3.718 80.733

PCA-LSTM 3.287 75.177

Phase Voltage LSTM 2.515 37.841
PCA-LSTM 2.383 35.912

By comparing the prediction results of single LSTM model and PCA-LSTM model, it shows that
the higher the correlation degree with the target variables, the higher the prediction performance
of LSTM model will be. On the contrary, variables with low correlation degree will not only affect
the calculation speed, but may also reduce the prediction performance. This result shows that data
preprocessing based on PCA increases the accuracy by 12.233% compared with the model using all
variables as input parameters. Moreover, the input variables of PCA-LSTM model are much less than
those of single LSTM model, which has the advantage of high computational efficiency in the case of
large amount of data.

5.3. Comparison with Other Models

In this paper, a Relu function is used as activation function of LSTM network. In order to test
performance of the network proposed in this paper, we compare it with classic time series prediction
models such as BPNN model and ARIMA model, the output power is taken as the comparison
object here. BPNN is a multi-layer feed-forward network trained according to back propagation.
And the basic idea is gradient descent method. By analyzing the autocorrelation function and partial
autocorrelation function of the residual, the optimal ARIMA model is determined as ARIMA (1,1,1).
The prediction results are shown in Figure 11, the average absolute error percentage and root mean
square error are shown in Table 3, respectively.
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As can be seen from Figure 11, the predicted value obtained by the PCA-LSTM method proposed
in this paper is closest to the actual value, and the prediction accuracy is higher than that based on
BPNN model and ARIMA model. As can be seen from Table 4, the prediction error of the PCA-LSTM
model is the lowest among the three models, and its MAPE is reduced by 2.510% and 0.780% compared
with BPNN model and ARIMA model, respectively.
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Table 4. Error analysis of forecasting result.

Model MAPE (%) RMSE

ARIMA 1.397 3279.635
BP 3.127 6188.833

PCA-LSTM 0.617 2167.839

5.4. Analysis of the Interaction between Wind Turbine and Power Grid Based on the Predicted Values of
Wind Turbines

In the experiments described in Sections 5.2 and 5.3, it was confirmed that the prediction based
on PCA-LSTM model has high accuracy, so it is reasonable to use the predicted value of the wind
turbine-network interaction observation object as the basis for judging the operation state of the system.

The prediction data and the actual data within a certain time period are selected, and Prony
algorithm is used to analyze the oscillation module. The analysis results are shown in Table 5. In
addition, the oscillation frequency of the turbine-grid interaction is between 0 and 100 Hz, so the
oscillation frequency higher than 100 Hz is eliminated. From the above data, it can be concluded that
subsynchronous control interaction (SSCI), subsynchronous oscillation (SSO) and subsynchronous
resonance (SSR) exist during the actual system operation, and the frequency value and actual value
of the predicted data output by LSTM model are also similar, with subsynchronous oscillation and
subsynchronous resonance as the main oscillation components.

Table 5. The analysis results of the actual value and forecast value based on Prony algorithm.

Analysis Variables
Predicted Values Acutal Values

Amplitude Frequency Amplitude Frequency

Phase Voltage

548.430 49.997 556.963 50.005
15.629 93.446 24.324 97.834
14.565 5.793 21.938 7.165
7.921 57.075 7.962 49.217
5.146 31.684 6.370 31.592
5.060 15.129 6.151 17.050
3.803 29.467 4.814 81.116

12.656 23.524 12.345 26.718
14.672 86.070 10.771 72.889
15.201 99.686 32.395 94.986

Phase Current

536.425 49.982 502.094 49.948
108.699 99.199 218.504 89.113
99.337 92.721 23.097 86.005
44.119 35.084 33.958 35.348
20.349 43.825 39.743 42.536
15.561 79.743 70.394 80.881
12.364 27.780 17.493 25.034
19.438 13.220 47.057 11.331
36.879 25.695 17.541 27.364
32.085 0.7709 16.690 0.5920

Active Power

45,546.265 93.741 11,189.343 97.706
38,424.916 14.442 8693.302 16.870
37,029.951 43.067 3342.516 46.448
20,930.455 68.097 7387.538 81.205
26,593.189 26.526 6691.952 27.803
45,624.802 54.818 1424.351 52.505
43,840.524 48.451 905.538 49.885
25,240.689 64.235 1744.815 70.239
49,782.074 35.610 1375.600 39.525
31,739.939 12.097 2583.231 8.693
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Based on the analysis of the actual operation data of wind turbines, it is found that several
oscillation modes such as low-frequency oscillation, subsynchronous control interaction (SSCI),
subsynchronous oscillation (SSO) and subsynchronous resonance (SSR) exist in the actual system
operation, but due to various factors, the frequency value will be slightly different from the theoretical
calculated characteristic frequency value. The output current, voltage and power of wind turbines
mainly include frequency values of 0.8, 8, 12, 25, 45, 50 and 90 Hz. As shown in Figure 12a–c, the X
axis is the frequency component obtained from the LSTM-PCA model, the Y axis is the frequency
component obtained from the actual active power, and Figure 13 is a hexagonal box diagram drawn
from the above three charts, which more visually depicts the relationship between the predicted
power and the actual power. the darker the hexagon, the more frequent the certain frequency
component appears, so it shows that the frequency component of 12, 25 and 50 Hz appears more often.
From Figure 13, it shows that the frequency value of the predicted data output by PCA-LSTM model is
basically the same as the actual frequency value. Tables 6 and 7 are respectively the oscillation modes
corresponding to the predicted phase current, phase voltage and active power of the wind turbine and
the oscillation modes corresponding to the actual phase current, phase voltage and active power of the
wind turbine.
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Figure 12. Analysis results of the actual value and forecast value of actual phase current, phase voltage
and power based on Prony algorithm (a) Phase voltage; (b) Phase current; (c) Active power.
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Table 6. Analysis of Oscillation Mode of Wind Turbine on Forecasted Phase Current, Phase voltage
and Power.

Observation Object\Oscillation Mode SSO SSR SSCI Low-Frequency Oscillation

Phase Current
Frequency

13.220 25.695 5.793 /
Phase Voltage 15.129 23.524 / 0.771
Active Power 14.442 26.526 / /

Table 7. Analysis of Oscillation Mode of Wind Turbine on Actual Phase Current, Phase voltage
and Power.

Observation Object\Oscillation Mode SSO SSR SSCI Low-Frequency Oscillation

Phase Current
Frequency

11.331 25.034 / 0.592
Phase Voltage 17.050 26.718 7.165 /
Active Power 16.870 27.803 8.693 /

According to Tables 6 and 7, there are many components in subsynchronous oscillation
and subsynchronous resonance of wind turbines, and there is a greater possibility of excitation.
Low-frequency oscillation mainly exists in phase current and phase voltage, and the possibility of
excitation is relatively small. The experiment of the above measured data fully verifies the feasibility
and high accuracy of the analysis of the interaction between the grid and wind turbine based on
the predicted values of phase current, phase voltage and active power of the wind turbine base on
PCA-LSTM model. Based on the predicted values of phase current, phase voltage and active power of
wind turbines, it is possible to control the possible interaction between grid and wind turbine in time
by analyzing the operating state of the system, which is of great significance to the safe operation of
the grid.

6. Conclusions

In this paper, a prediction model of wind turbine-grid interaction based on LSTM network
is proposed under TensorFlow. When selecting the model input variables, PCA is used to select
appropriate input variables, which reduces the data dimension. On the analysis of oscillation mode,
the prediction data of the interaction between wind turbine and grid are analyzed by Prony algorithm.
By analyzing the measured data of a wind turbine, the following conclusions are obtained:

(1) PCA can reduce the dimensions of input variables, reflect the main factors affecting wind power
prediction, and improve the operation speed on the premise of ensuring the prediction accuracy.
Compared with the single LSTM model, the prediction accuracy of PCA-LSTM is obviously
improved. In terms of wind power, phase current and phase voltage prediction, RMSE of
PCA-LSTM model is reduced by 5.533%, 6.887% and 5.098%, respectively, compared with the
LSTM model.

(2) A LSTM network can effectively analyze massive amounts of data. Compared with the traditional
time series prediction method, the deep learning method has the advantages of strong learning
and generalization ability, and the performance increases with the increase of data size. Compared
with other prediction methods, this method has higher accuracy and applicability. Compared
with BPNN model and ARIMA model, its MAPE decreased by 2.510% and 0.780%, respectively.

(3) Based on the actual data and the predicted data of the model, the oscillation modes of the
interaction between the wind turbine and power grid are analyzed by Prony algorithm, which
proves that the oscillation frequency of the predicted data from PCA-LSTM model proposed
in this paper are basically the same as the oscillation frequency of the actual data, and from
the oscillation frequency, it is found that wind turbines have more harmonic components such
as 12, 25 and 50 Hz, that is, there are more sub synchronous oscillations and sub synchronous
resonances, and there is a greater possibility of being stimulated, which verifies the feasibility of
the proposed method for analyzing the interaction between wind turbines and power grid.
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(4) In this paper, the active power, phase current and phase voltage are selected as the related objects
of the interaction between wind turbine and grid. The effectiveness of the method, which based
on the predicted value of the related objects to analyze the amplitude and frequency of the
interaction, is verified by experiment on actual data. Prediction of operational status has laid
a solid foundation for future work, which is the timely management of the interaction between
wind turbine and grid.
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Abbreviations

ANN Artificial neural networks
ARIMA Autoregressive Integrated Moving Average
BPNN Back Propagation Neural Network
LSTM Long short-term memory
LSSVM Least Squares Support Vector Machine
MAPE Mean absolute percentage error
MINLP Mixed-Integer Nonlinear Programming
NWP Numerical Weather Prediction
PCA Long short-term memory
PV-WT-PSH Solar–Wind–Pumped-Hydroelectricity
SVM Support vector machines
RMSE Root mean square error
RNN Recursive neural networks
SSCI Subsynchronous control interaction
SSI Subsynchronous interaction
SSO Subsynchronous oscillation
SSR Subsynchronous resonance
SSTI Subsynchronous torque interaction

Nomenclature

ϕ Relative air humidity
λi Eigenvalue obtain from covariance matrix
ηi Variance contribution rate
σ Sigmoid activation function
ρ Air density(kg/m3)
εMAPE Mean absolute percentage error
εRMSE Root mean square error
bi Bias vectors of input gate
b f Bias vectors of forget gate
bo Bias vectors of output gate
bC Bias vectors of tuple input
ft State values of forgotten gate
ht−1 Output of the previous layer
h(t) Historical data
it State values of input gate
n Length of the data used for verification
ot State values of output gate
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wi Standard orthogonal basis vector
xt Input of the current layer
v Wind speed(m/s)
Ct−1 Old cell state
Ct Current cell state
Cp Power coefficient
P Normal atmospheric pressure level
Pb Saturated vapor pressure
Pw Output power(kW)
PN(i) Actual value of the i th data
P̂N(i) Predicted value of the i th data
S Blade rolling area(m2)
T Thermodynamic temperature
Wi

1 Weight matrix of input gate

W f
1 Weight matrix of forget gate

Wo
1 Weight matrix of output gate

WC
1 Weight matrix of tuple input

Wi
h Weight matrix of input gate connect to ht−1

W f
h Weight matrix of forgetting gate connect to ht−1

Wo
h Weight matrix of output gate connect to ht−1

WC
h Weight matrix of tuple input connect to ht−1

X Sample data set in PCA
Xstd Normalization carried out by MinMaxScaler
Xscaler Inverse normalization
Xi ith original parameter variable
Zi ith principal component
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