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Abstract: A numerical study of ferromagnetic-fluid flow and heat transfer in a square porous
cavity under the effect of a magnetic field is presented. The water-magnetic particle suspension is
treated as a miscible mixture and, thus, the magnetization, density and viscosity of the ferrofluid
are obtained. The governing partial-differential equations were solved numerically using the
cell-centered finite-difference method for the spatial discretization, while the multiscale time-splitting
implicit method was developed to treat the temporal discretization. The Courant–Friedrichs–Lewy
stability condition (CFL < 1) was used to make the scheme adaptive by dividing time steps as
needed. Two cases corresponding to Dirichlet and Neumann boundary conditions were considered.
The efficiency of the developed algorithm as well as some physical results such as temperature,
concentration, and pressure; and the local Nusselt and Sherwood numbers at the cavity walls are
presented and discussed. It was noticed that the particle concentration and local heat/mass transfer
rate are related to the magnetic field strength, and both pressure and velocity increase as the strength
of the magnetic was increased.
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1. Introduction

Ferromagnetic fluids are smart fluids [1,2], composed of magnetized nanoparticles suspended in
a liquid-based medium, such as oil and water. Ferromagnetic fluids have been used in different
engineering and environmental applications, such as enhanced oil recovery (EOR). The idea of
using ferrofluids, such as iron oxide, Fe2O3, and zinc oxide, ZnO, under an external magnetic
field is to control the ferrofluids’ movement in porous media [3–5]. Heat transfer in porous media
involves a wide range of applications such as heat exchangers, oil/gas recovery, geophysical systems,
nuclear waste disposal, chemical reactors, thermal insulation of buildings, and drying processes.
Chegenizadeh et al. [6] provided a classification of the most popular nanoparticles under optimal
operational conditions. El-Amin et al. [7,8] conducted some studies on modeling nanoparticle transport
in porous media. Suleimanov et al. [9] and Ryoo et al. [10] conducted an experimental investigation of
using nanoparticles in enhanced oil recovery application.
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Flows in cavities have many technological applications, such as heat exchangers, cooling systems
for electronic equipment, and environmental flows. Sheremet and Pop [11] investigated the steady
laminar mixed convection inside a lid-driven square cavity filled with a water-based nanofluid.
Chalambaz et al. [12] studied the heat and mass transfer in a square porous cavity with differential
temperature and concentration at the sidewalls, and they found that the heat transfer of the mixture
and the mass transfer of the other phase can be maximized for specific values of the Lewis number of
one phase. Carvalho and de Lemos [13] presented the problem of laminar free convection within a
square porous cavity filled with a saturated fluid. Javed et al. [14] presented a numerical study for
free convection through a square enclosure filled with a ferrofluid-saturated porous medium under a
uniform magnetic field.

Numerical simulation is an important tool enabling engineers and scientists to predict the
transport phenomena, test, and optimize an appropriate intervention strategy for heat transfer [15].
The time-stepping method has been presented for the problems of fluid dynamics by using implicit-type
time-marching procedures to resolve transients [16]. Martinez [17] solved the shallow water equations
by using the time-splitting technique. The time viscosity-splitting method was used for the Boussinesq
problem by Zhang and Qian [18]. A time-splitting Fourier spectral method has been developed
for approximating singular solutions of the Gross–Pitaevskii equation [19]. El-Amin et al. [20–23]
used a multiscale time-splitting strategy to manage different time-step sizes for different physics.
In this research, a multiscale adaptive time-splitting scheme is introduced to simulate the problem
of magnetic-field effects on ferrofluids and heat transfer with a single-phase flow in a porous cavity
considering variation of the nanoparticle concentration.

2. Problem Definition

The problem of a single-phase flow with ferromagnetic fluid flow and heat transfer in a
square porous cavity under the effect of an external magnetic field is considered in this study.
The ferromagnetic fluids gain properties of both liquid and magnetized solid particles. If the
ferromagnetic fluid is subjected to an external magnetic field, it flows toward the magnetic field,
and the flow resistance increases. In the absence of the magnet, nearby ferrofluids act as normal liquid.
Figure 1 shows the schematic diagram of the 2D square porous cavity of Cases 1 and 2. In Case 1,
the cavity walls are kept at a low temperature/concentration, T0, C0, except the inlet at the center
of the left wall is kept at a higher temperature/concentration Th, Ch (Dirichlet boundary condition).
Initially, the cavity was filled with a pure water, then the ferrofluid suspension injection begins.
The flow boundary condition of the inlet is defined by the existing velocity, ux,in. Above and below
inlet, the no-flow boundary condition, ∂p

∂x = 0, is assumed, as circulation may exist close to the inlet.
However, far away from the inlet region, the circulation is expected to vanish, and a constant pressure
boundary condition, p0, is assumed. In Case 2, the walls are assumed adiabatic ( ∂C

∂x = 0, ∂C
∂y = 0),

( ∂T
∂x = 0, ∂T

∂y = 0) as indicated in Figure 1b. The constant pressure, p0, is assumed to represent the
flow boundary condition. The inlet is kept at high temperature, Th, high concentration, Ch, velocity
ux,in. Above and below inlet are kept at low temperature Tc, concentration, Cc, and no-flow ( ∂p

∂x = 0)
boundary condition.
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Figure 1. Schematic diagram of the 2D square porous cavity—(a) Case 1: cavity walls are kept at a 

low temperature/concentration except the inlet at center of the left wall is kept at a higher 

temperature/concentration (Dirichlet boundary condition) and inlet velocity (Neumann boundary 

condition); (b) Case 2: the cavity walls are adiabatic and isothermal with constant pressure (Dirichlet 

boundary condition), except that the inlet at center of the left wall is kept at a high 

temperature/concentration and the upper/lower of left wall is kept at a low 

temperature/concentration with no-flow Neumann boundary condition. The z-axis of the local 

magnet coordinate system is set perpendicular to the poles, the x-y plane. 

3. Mathematical Modeling 

The external permanent magnetic field produces attractive forces on the fluid. The external 

magnetic force with a variable concentration, and hence density, acts as a body force per unit volume, 
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Figure 1. Schematic diagram of the 2D square porous cavity—(a) Case 1: cavity walls are kept
at a low temperature/concentration except the inlet at center of the left wall is kept at a higher
temperature/concentration (Dirichlet boundary condition) and inlet velocity (Neumann boundary
condition); (b) Case 2: the cavity walls are adiabatic and isothermal with constant pressure
(Dirichlet boundary condition), except that the inlet at center of the left wall is kept at a high
temperature/concentration and the upper/lower of left wall is kept at a low temperature/concentration
with no-flow Neumann boundary condition. The z-axis of the local magnet coordinate system is set
perpendicular to the poles, the x-y plane.

3. Mathematical Modeling

The external permanent magnetic field produces attractive forces on the fluid. The external
magnetic force with a variable concentration, and hence density, acts as a body force per unit volume,
Fmag [4,24]:

Fmag = −∇

µ0

H∫
0

(
∂M
∂V

)
H,T

dH

+ µ0 M∇H (1)
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where µ0 is the magnetic permeability. The specific volume, V, is defined by:

∂V = ∂

(
1
ρ

)
= − 1

ρ2 ∂ρ

Therefore, Equation (1) can be rewritten as:

Fmag = µ0ρ2∇

 H∫
0

(
∂M
∂ρ

)
H,T

dH

+ µ0 M∇H (2)

Such that: (
∂M
∂ρ

)
H,T

=

(
∂M
∂a1

)
b1,H,T

∂a1

∂ρ
+

(
∂M
∂b1

)
a1,H,T

∂b1

∂ρ

The quantities ∂a1
∂ρ and ∂b1

∂ρ may be approximated around the points (a1,0, b1,0) = (0, 0), which
represent the non-magnetized case, as:

∂a1

∂ρ
≈ a1 − a1,0

ρ− ρ0
=

a1

ρ− ρ0

∂b1

∂ρ
≈ b1 − b1,0

ρ− ρ0
=

b1

ρ− ρ0

The magnetization M is a function of the magnetic field strength H:

M = a1 tan−1 (b1H) (3)

The two parameters a1 and b1 depend on the type of the ferromagnetic material and controlled both
the initial susceptibility and the saturation magnetization. Therefore, Equation (1) can be written as:

Fmag =
µ0ρ2

ρ− ρ0
M∇H +

µ0ρ2

ρ− ρ0

a1b1H
1 + b2

1 H2
∇H + µ0 M∇H (4)

The resulting magnetic induction (B) is a sum of the magnetic field strength (H) and the
magnetization (M), i.e., they are related by the following linear relationship:

B = µ0 (H + M) (5)

Equation (5) is expressed in a scalar formulation, such that B, H, and M are scalars representing
vector magnitudes. In this study, there is no free electric charge flow, so the Maxwell equations are
reduced to the second Gauss law:

∇·B = 0 (6)

which means that the magnetic field induction is divergence-free. Ampere’s law is reduced to the form:

∇× H = 0 (7)

which means that the magnetic field is vorticity-free.
Assuming that the medium is free of ferromagnetic materials and a permanent magnet is the

source of the magnetic field, we can use the simple Equations (8) and (9), to calculate the components
of H directly [4]. This assumption decouples the calculation of the external magnetic field from the
ferrofluid distribution. At a given location the gradient of H can be calculated by simple first-order
differencing in each of the coordinate directions. The z-axis of the local magnet coordinate system is set
perpendicular to the poles, and the magnet is located at the upper right corner as indicated in Figure 1.
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The flow simulation is in the x-y plane of the coordinate system (Equations (8) and (9) represent Hx

and Hy in the x-axis and y-axis, respectively). The 2D magnetic field strength is given by [4]:

Hx

= Br
4πµ0

(
ln

[
y+b+

√
(y+b)2+(x−a)2

y−b+
√
(y−b)2+(x−a)2

y−b+
√
(y−b)2+(x+a)2

y+b+
√
(y+b)2+(x+a)2

]

− ln

[
y+b+

√
(y+b)2+(x−a)2+L2

p

y−b+
√
(y−b)2+(x−a)2+L2

p

y−b+
√
(y−b)2+(x+a)2+L2

p

y+b+
√
(y+b)2+(x+a)2+L2

p

]
)

(8)

Hy

= Br
4πµ0

(
ln

[
x+a+

√
(y−b)2+(x+a)2

x−a+
√
(y−b)2+(x−a)2

x−a+
√
(y+b)2+(x−a)2

x+a+
√
(y+b)2+(x+a)2

]

− ln

[
x+a+

√
(y−b)2+(x+a)2+L2

p

x−a+
√
(y−b)2+(x−a)2+L2

p

x−a+
√
(y+b)2+(x−a)2+L2

p

x+a+
√
(y+b)2+(x+a)2+L2

p

]
)

(9)

where Lp is the distance between the poles of the magnet, and Br is the residual magnetization.
If the ferromagnetic materials are heated to temperatures above the critical point (Curie temperature
TC), they become paramagnetic, whereas, below TC, spontaneous magnetization occurs. The Curie
temperature TC for ferrofluids is high (e.g., for Fe2O3 is 948 K). The temperature dependence of the
spontaneous magnetization at low temperatures, which is the case in this study, is given by Bloch’s
law [25]:

M(T) = M0

(
1−

(
T
TC

) 3
2
)

(10)

where M0 = M(T = 0) is the spontaneous magnetization at absolute zero. In fact, there are several
other mechanisms of temperature influence on the resulting magnetization of the magnetic fluid.
One of the most significant models is the Langevin model which takes into consideration the role of
the thermal fluctuations of the magnetic moments of the particles. The Langevin model is considered
one the simplest cases, which can be written as:

M(T) = M0φ

(
cth ξ − 1

ξ

)
(11)

such that:
ξ =

µ0ρH
kT

(12)

The thermal fluctuations of the magnetic moments are related to the Brownian diffusion by the
second fluctuation-dissipation theorem, which will be ignored in this study for simplicity.

The magnetization increases linearly with the ferrofluid mass fraction, C [4]:

M (C) = M(C = 1) C (13)

Combining Equations (10) and (13), one may write:

M(T, C) = M(T = 0, C = 1)

(
1−

(
T
TC

) 3
2
)

C (14)

It is assumed that the volumes of pure water and ferrofluid are additive; therefore, the mixture
density is defined as [4,24,26]:

1
ρ

=
1− C

ρw
+

C
ρ f

(15)
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where ρw is the density of the pure water component, and ρ f is the density of ferromagnetic-particle
component. The viscosity of the water–magnetic-particle mixture is calculated by the following linear
relationship [4]:

µ = µw(1 + 1.35C) (16)

where µw is the viscosity of the pure water. At a Reynolds number greater than 10, the inertial effect
becomes significant. The inertial term, which is known as the Forchheimer term, can account for the
nonlinear behavior of the pressure difference versus flow. Momentum conservation in porous media is
represented by the extended non-Darcy’s law [27]:

u +
F
√

K
ν
|u|u = −K

µ

(
∇p− Fmag + gρ0(1− β(T − Tr)− β∗(C− C0))∇z

)
(17)

where F is the inertia parameter, and ν is kinematic viscosity. In the above equation, the second term on
the left-hand side represents the inertial term in Darcy’s equation. The magnetic field effect on the fluid
flow acts as a body force in the extended Darcy’s law. Although this is an unsteady problem, however,
the momentum (Darcy’s law) has no time derivative term which is experimentally based. Actual fluid
velocity varies throughout the pore space, due to the connectivity and geometric complexity of that
space. This variable velocity can be characterized by its mean or average value. The convective flows
are caused by the temperature difference in terms of the Boussinesq approximation, in which the
density of the body force term is calculated by:

ρ = ρ0(1− β(T − T0)− β∗(C− C0)), β = − 1
ρ0

∂ρ

∂T
, β∗ = − 1

ρ0

∂ρ

∂C

The mass conservation equation is represented by:

∇·u = 0 (18)

The energy conservation equation in porous media can be represented as [23]:

∂
[
(1− ϕ)ρscp,s + ϕρcp

]
T

∂t
+ ρu·∇T = ∇·[(1− ϕ)hs + ϕh]∇T (19)

The concentration (solute transport) equation may be represented as [26]:

ϕ
∂C
∂t

+∇·(uC− D∇C) = 0 (20)

In the above equations, C is the concentration, C0 is the initial concentration, cp is the heat capacity,
D is the diffusion-dispersion tensor, g is the gravitation acceleration, h is the thermal conductivity of
the fluid, hs is the thermal conductivity of the solid, K is the permeability, T is the temperature, T0 is
the initial temperature, p is the fluid pressure, u is the fluid velocity vector, β is the thermal expansion
coefficient, β∗ is the solute expansion coefficient, ϕ represents the porosity of the porous media, ρ is the
density of the fluid mixture, ρs is the density of the solid phase, and µ is the fluid viscosity. Substituting
Equation (16) into Equation (18), one may obtain:

∇·u = −∇· K

µ
(

1 + F
√

K
ν |u|

)(∇p− Fmag + gρ0(1− β(T − Tr)− β∗(C− C0))
)
= 0 (21)

Calculating the heat transfer rate at boundaries/surfaces within fluids is of great interest in
industrial and technological applications. The Nusselt number (Nu), a dimensionless number, is the
ratio of convective to conductive heat transfer across the boundary. Unlike in other studies in the
literature, the local Nusselt number was calculated on the wall instead of the average Nusselt number,
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because it gives the direct heat transfer rate between the wall and the adjacent fluid. The local Nusselt
number measures the competition between convection and conduction heat flows and is defined by:

Nux =
qxL

(Tin − T0)kT
= − L

(Tin − T0)

∂T
∂x

∣∣∣∣
x=0

(22)

Nuy =
qyL

(Tin − T0)kT
= − L

(Tin − T0)

∂T
∂y

∣∣∣∣
y=0

(23)

where L is the characteristic length; qx, qy are the local surface heat fluxes and defined as:

qx = −kT
∂T
∂x

∣∣∣∣
x=0

(24)

qy = −kT
∂T
∂y

∣∣∣∣
y=0

(25)

where kT is the thermal conductivity of the fluid. Similarly, the local surface mass fluxes, jx, jy maybe
defined as:

jx = −D
∂C
∂x

∣∣∣∣
x=0

(26)

jy = −D
∂C
∂y

∣∣∣∣
y=0

(27)

Therefore, the local Sherwood number which represents the ratio of the convective mass transfer
to the rate of diffusive mass transport and given by:

Shx =
jxL

(Cw − C0)D
= − L

(Cw − C0)

∂C
∂x

∣∣∣∣
x=0

(28)

Shy =
jyL

(Cw − C0)D
= − L

(Cw − C0)

∂C
∂y

∣∣∣∣
y=0

(29)

Initially, the cavity is filled with pure water and, then, the ferrofluid suspension injection begins.
In the following, two cases based on the types of boundary condition are described:

Case 1. All the walls of the square cavity are kept cold at temperature Tc and low concentration
Cc except that the center of the left wall is kept at a high temperature Th and a high concentration Ch,
as shown in Figure 1a. The boundary conditions are described mathematically as follows:

at x = 0, 0 ≤ y ≤ L, T = Tc, C = Cc, ∂p
∂x = 0,

at inlet Tin = Th, Cin = Ch, u = ux,in;
at 0 ≤ x ≤ L, y = 0, T = Tc, C = Cc, p = p0;
at x = 1, 0 ≤ y ≤ L, T = Tc, C = Cc, p = p0;
at 0 ≤ x ≤ L, y = L, T = Tc, C = Cc, p = p0;

where in refers to the injection location (inlet), and the velocity is taken to be zero on all cells (no-flow
boundary conditions, i.e., impermeable wall) except for the central cells. The fluid exits from constant
pressure boundary, p0, which is a kind of exit boundary, as it is smaller than the entire pressure.

Case 2. All the walls of the square cavity are adiabatic and isothermal with constant Dirichlet
pressure, except that the center of the left wall is kept hot at temperature Th and high concentration Ch.
The upper and lower left walls are kept at a cold temperature and a low concentration with no-flow
Neumann boundary condition (impermeable wall), as shown in Figure 1b. The boundary conditions
are described mathematically as follows.
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at x = 0, 0 ≤ y ≤ L, T = Tc, C = Cc, ∂p
∂x = 0,

at inlet Tin = Th, Cin = Ch, u = ux,in.
at 0 ≤ x ≤ L, y = 0, ∂T

∂y = 0, ∂C
∂y = 0, p = p0.

at x = L, 0 ≤ y ≤ L, ∂T
∂x = 0, ∂C

∂x = 0, p = p0.
at 0 ≤ x ≤ L, y = L, ∂T

∂y = 0, ∂C
∂y = 0, p = p0.

4. Numerical Method

The governing equations were discretized numerically using the CCFD method for the spatial
discretization. The CCFD method is considered one of the most commonly used finite-difference
methods for flow and transport in porous media, because it is locally conservative. In the CCFD
method, one uses velocity on edges of the cell, and pressure on the center of the cell (cell-centered).
The permeability is calculated using the harmonic averaging on the center as well.

The backward Euler time discretization was used for the time derivative of equations of temperature
and concentrations, with a time-splitting implicit technique [17,20]. The outer time discretization, which had
a relatively large time step, was used for pressure. The subscript k + 1 represents the current time step,
while the subscript k represents the previous time step. The temperature and concentration had the same
level of time discretization. The following procedures have been considered,

- The total time interval, [0, T], is divided into a number of Np time steps, namely, 0 = t0 < t1 <

. . . < tNp=T , with a time-step of length ∆tk = tk+1 − tk.

- For temperature and concentration, each interval,
(

tk, tk+1
)

, was divided into a number of Np,C

subintervals, i.e.,
(

tk, tk+1
)
= ∪

Np,c−1

l=0

(
tk,m, tk,m+1

)
.

- The Courant–Friedrichs–Lewy stability condition (CFL < 1) is used to accomplish the time
step-size adaptation.

- The time-step size of the pressure was taken to be larger than the time-step sizes of temperature
and concentration.

The algorithm can be stated as:

- Calculating the pressure implicitly by coupling the continuity and momentum equations.
- Compute the velocity explicitly.
- Solve energy and concentration equations implicitly.
- Update porosity, permeability, and density.

Now, let us express the pressure equation as:

−∇· K

µ
(

1 + F
√

K
ν

∣∣uk
∣∣)
(
∇·pk+1 − Fk

mag + gρ0

(
1− β

(
Tk − Tr

)
− β∗

(
Ck − C0

))
∇z
)
= qk+1 (30)

The energy equation is computed implicitly as:

[(1−ϕ)ρscp,s+ϕρ(Tk ,Ck)cp]Tk+1,m+1−[(1−ϕ)ρscp,s+ϕρ(Tk)cp]Tk+1,m

∆t + ρuk+1·∇Tk+1,m+1 = ∇·
[(1− ϕ)hs + ϕh]∇Tk+1,m+1

(31)

Similarly, the concentration equation is computed implicitly as:

ϕ
Ck+1,m+1 − Ck+1,m

∆tm +∇·
[
uk+1Ck+1,m+1 − D∇Ck+1,m+1

]
= 0 (32)
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In order to control the time-step size, the CFL condition (CFL < 1) is used. The CFL condition of
the temperature and concentration equations is expressed as:

CFLx =
ux∆tk,m

x
, CFLy =

uy∆tk,m

∆y
(33)

The numerical stability procedures can be summarized as follows:

- The pressure time-step, ∆tk,0 = ∆tk is taken as an initial time step for both temperature and
concentration equations.

- After that, the conditions CFLx > 1 and CFLy > 1 are examined. If one of them is satisfied,
the temperature/concentration time-step is divided into smaller steps.

- Therefore, the conditions CFLx and CFLy are recalculated based on the new time steps and so on,
until satisfying the conditions CFLx < 1 and CFLy < 1.

5. Results and Discussion

To obtain physical insights, the system of the governing partial differential equations was solved
numerically using the above numerical method. Two different cases were considered based on different
boundary conditions, as in Figure 1a,b. In Case 1, all boundaries were of a Dirichlet type except that
the west boundary was a no-flow boundary condition, which was a Neumann type. The physical and
computational parameters are presented in Table 1. A value for the outer time loop k was selected,
and the step size ∆tk was determined; then, the time-step size ∆tm was calculated based on the CFL
conditions. In our calculation the velocity inlet was taken as 0.4756× 10−8 m/s and the corresponding
Reynolds number is 0.00143, which is suitable for flow in porous media.

Table 1. Physical parameter values.

Parameter Description Value Units

a1 Constant 104–105 m A−1

b1 Constant 10−6–10−5 m A−1

a, b Half of width/height of the magnet 0.02 m
Br Residual magnetization 0:0.2 Tesla
C0 Initial concentration 0 -
Cin Inlet concentration 1 -
cp Heat capacity 800 J/Kg K
D Diffusion coefficient 5 ×10−3 m2/S
hs Thermal conductivity of the solid 0.718 W/(m/K)
h Thermal conductivity of the ferrofluid 0.6 W/(m/K)
g Gravity acceleration 9.81 m/s2

K Permeability 100 md
Lp Distance between poles 2.4 m
Lin Inlet width 0.3 m
L Cavity side length 5 m

md Millidarcy 9.86923 ×10−16 m2

p0 Initial pressure 1 ×106 N/m2

T0 Initial temperature 300 K
Tin Inlet temperature 360 K

ux,in Inlet velocity 0.4756× 10−8 m/s
β Thermal expansion coefficient 0.005 K−1

β∗ Solute expansion coefficient 0.001 K−1

ϕ Porosity 0.3 -
µ Water viscosity 0.001 Pa.s
µ0 Magnetic permeability 1 ×10−7 N·A−2

ρs Solid media density 2500 kg/m3

ρw Pure water density 1000 kg/m3

ρ f Particles density 8933 kg/m3
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Some error estimates are listed in Table 2 to examine the accuracy of the proposed scheme.
The errors were calculated for temperature and concentration at various values of the time-step
iteration, k. The results in Table 2 indicate that the error decreases as the number of time steps increases.
In addition, the temperature error is very small and approaches zero; however, the concentration
error needs bigger time step numbers to reach the desired approximation. Moreover, the calculated
time step size (∆tm) is plotted against its number m in Figure 2. Moreover, concentration profiles for
different spatial grid size nx and ny of Case 1 are plotted in Figure 3 to show the grid independence test.
The spatial discretization, nx × ny, was chosen, respectively, as 50× 50, 100× 100, and 150× 150. It is
clear from Figure 3 that the differences between the three curves are very small, therefore, we choose
the course grid, 50× 50, for the computations in this study.Energies 2018, 11, 3235 10 of 21 
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Table 2. Error estimates for various values of k, Case 2.

k ‖Tk+1,l+1−Tk+1,l‖ Ck+1,m+1−Ck+1,m

50 5.0317 × 10−11 0.0198
100 6.9070 × 10−11 0.0099
300 3.0481 × 10−12 0.0033
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5.1. Results for Case 1

Figure 4a,b illustrates the temperature difference, ∆T = T − T0, contours of Case 1 without the
magnetic-field effect (Br = 0.0) and with the magnetic-field effect (Br = 1.2), respectively. It seems that
the magnetic field slightly enhances the temperature. The differences between of the two cases are
similar, and it seems to be hard to notice the small differences (around 1 K); however, the differences
are shown clearly in Figure 5, which shows the temperature profiles against the x-axis at y = 1 m,
for various values of Br of Case 1. In Figure 6, the concentration profiles are plotted against the x-axis
at y = 1 m, for various values of Br of Case 1. It is clear from Figure 6 that as the parameter Br increases,
the ferrofluid concentration increases.
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Figure 6. Concentration profiles against the x-axis at y = 1 m, for various values of Br of Case 1.

The pressure and velocity magnitude (uw =
√

u2
x + u2

y) profiles are plotted in Figure 7a,b,
respectively, against the x-axis at y = 1 m, for various values of Br of Case 1. These figures show
that, as Br increases, pressure and velocity increase. The maximum differences are located in the inlet
vicinity and gradually decrease far away from it.
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Figure 7. (a) Pressure and (b) average velocity profiles against x-axis at y = 1 m, for various values of
Br of Case 1.

In Figure 8, the local Nusselt numbers are plotted along the left wall, right wall, upper wall,
and lower wall of the porous cavity, for various values of the parameter Br of Case 1. The magnetic
field has no effect on the left wall because the advection effect is much larger than the magnetic effect.
The variation in magnetic-field strength has a small effect on the other walls; however, the differences
are clear. The higher local Nusselt number is located in the center of the left wall, which indicates that
the heat transfer rate is high in that region. Moreover, the heat transfer rate on the right wall has high
values around the center of the wall and decreases gradually in the edge closure. The negative sign
indicates that the heat transfer direction is from the fluid to the solid wall. The behavior of the heat
transfer rate on the upper wall is similar to that on the right wall, but the maximum heat transfer rate
is shifted to the bottom edge. Finally, the local Nusselt number on the lower wall has maximum values
close to the left portion and then decreases gradually near the edges.
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Figure 8. Local Nusselt number distributions along the left wall, right wall, upper wall, and lower wall
for various values of the parameter Br of Case 1.

Figure 9 illustrates the local Sherwood number profiles along the left-, right-, upper-, and lower-walls.
It can be seen from this figure that the local Sherwood number profiles along the left and right walls
are symmetric around the center of y-axis and they decrease gradually far away from the center toward
the upper to the lower corners. The mass transfer rate on the left-wall is high close to the inlet region
and decreases from bottom to top. The negative sign indicates that mass transfer direction is from the
fluid to the solid wall. It also may be noticed that the mass transfer rate on the right-wall is very small.
The local Sherwood number on the upper- and left-walls has a similar behavior and same order of
magnitude with different signs. The local mass transfer rate has maximum values at x ≈ 0.1.
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Figure 9. Local Sherwood number profiles along the left-, right-, upper-, and lower-walls for various
values of the parameter Br; Case 1.

In Figure 10, the transient temperature and concentration profiles are plotted against the x-axis at
y = 4, at different times of the ferrofluid injections. It is interesting to observe from Figure 10a that the
temperature reaches the steady-state after around 2 days of injection, while the concentration reaches
its steady-state after 2000 days of injection as indicated in Figure 10b.
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5.2. Results for Case 2

In Figure 11, the temperature profiles are plotted against the x-axis, for various values of Br of
Case 2. This figure shows that the existence of the external magnetic field increases the temperature.
The lowest temperature values are in the vicinity of the left wall, while the opposite happens at
y = 2.5 m. The magnetic field has a small effect at the centerline as the advection dominates, whereas it
has a clear effect far away from the high advection region (e.g., y = 1 m). As the parameter Br increases,
the temperature increases, which may be interpreted as the magnetic field enhancing the kinetic energy,
which, in turn, enhances the heat energy.
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Figure 11. Temperature profiles against x-axis at y = 1 m, 2.5 m for various values of Br of Case 2.

The concentration profiles are plotted in Figure 12 against the x-axis at y = 4 m, 2.5 m, for various
values of Br of Case 2. At the centerline (y = 2.5 m), the concentration has maximum values close to
the inlet and decreases gradually far away from the inlet, whereas then opposite is true at y = 4 m.
The concentration has minimum values close to the left wall and increases gradually far away from it.
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As the magnetic field pulls the particles toward it based on its strength, the parameter Br increases the
concentration of the ferrofluid.
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Figure 12. Concentration profiles against x-axis at y = 4 m, 2.5 m, for various values of Br of Case 2.

The temperature distribution of Case 2 is shown in Figure 13a. It can be seen from this figure that
the temperature is high around the inlet location. Then it decreases gradually far away from the inlet
because the other walls are adiabatic with a constant pressure. This may be interpreted as the heat
transfer mode changes from the mixed convection region close to inlet to the purely conduction region
far away. Figure 13b shows the concentration distribution of Case 2. The behavior of the concentration
is similar to the temperature distribution which can be interpreted similarly but with respect to mass
transfer and solute convection.
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6. Conclusions

In this study, the effect of a magnetic field on ferromagnetic fluid flow and heat transfer in a square
porous cavity was investigated. A mathematical model which consists of a set of governing equations
and set of axillary algebraic equations, along with initial and boundary conditions, was developed.
Two different cases of boundary conditions were considered. The governing equations were solved
numerically using the multiscale time-splitting implicit method. An adaptive algorithm was built
based on calculation of the Courant–Friedrichs–Lewy stability condition number. Error estimates for
temperature and concentration at various values of iteration number were presented. Also, the grid
independence of spatial discretization was examined. Numerical experiments were carried out to
simulate some physical scenarios. It was found that the magnetic field increases the temperature and
enhances the heat transfer rate. Also, the distribution of the particle concentration is related to the
magnetic field strength. The pressure and velocity increase as the magnetic field strength increases.
Close to the inlet the magnetic field had no effect on the local heat transfer rate because the advection
force is much larger than the magnetic force. Moreover, the magnetic field strength had a small effect
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on the local heat transfer rate at the other cavity walls. The highest local Nusselt number occurs in the
center of the left wall. Similar conclusions can be drawn for the mass transfer rate behavior under the
effect of the magnetic field.
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Nomenclature

A [m] half of width of the magnet,
a1, b1 [A m−1] constants depend on the type of the ferromagnetic material,
b [m] half of height of the magnet,
Br [Tesla] residual magnetization,
C [m m−3] ferrofluid concentration,
C0 [m m−3] ferrofluid initial concentration,
cp [J Kg−1 K−1] heat capacity,
D [m2 s−1] diffusion coefficient,
Fmag [N] external magnetic force,
g [m s−2] gravitation acceleration,
h [J K−1m−1s−1] thermal conductivity,
H [A m−1] magnetic field strength,
K [m2] permeability of the porous medium,
L [m] distance between the poles of the magnet,
Nu [-] Nusselt number,
T [K] temperature,
Tr [K] reference temperature,
p [Pa] fluid pressure,
q [kg s−1] external mass flow rate,
Qc [m3s−1] rate of change of particle volume of a source/sink term,
Qt [m3s−1] heat source term,
u [m s−1] fluid velocity vector,
x, y [m] Cartesian coordinates,
β [K−1] thermal expansion coefficient,
β∗ solutal expansion coefficient,
∆tk [s] time step for the loop k,
∆tl [s] time step for the loop l,
∆tm [s] time step for the loop m,
ϕ [-] porosity of porous media,
ρ [Kg m−3] density of fluid mixture,
ρw [Kg m−3] density of pure water component,
ρ f [Kg m−3] density of ferro-particles component,
ρs [Kg m−3] density of solid phase,
µ [m s−2] viscosity of water-magnetic-particles mixture,
µw [m s−2] viscosity of water,
µ0 [N A−2] magnetic permeability.
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