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Abstract: Long-term energy supplies hinder the application of the low-power unmanned ocean
devices to the deep sea. Ocean wave energy is a renewable resource with amount stores of enormous
and high density. The wave energy converter (WEC) could be miniaturized so that it can be
integrated into the devices to make up the power module. In this paper, a small novel heaving
point absorber of energy supply for low-power unmanned ocean devices is developed based
on the counter-rotating self-adaptive mechanism. The floating body as an important part of the
heaving point absorber, the geometric parameters is optimized to increase the efficiency of power
production. Through constructing the constitutive relation between the geometric parameters, the wave
force, the motion displacement, the motion velocity, and the capture width ratio of the floating body,
the energy efficiency characteristics of the multi-type floating bodies are calculated, and the optimal
shape is selected. On the other hand, in the calculation process of the wave force, the Froude-Krylov
method is an effective method to accurately calculate the wave excitation force. Meanwhile, nonlinear
static and dynamic Froude-Krylov force effectively overcomes the inaccuracy of the linear models and
reduces the time consumed to simulate. Finally, the wave force, heaving velocity, heaving displacement,
and capture width ratio of the three floating bodies are compared and analyzed, and the results show
that the cylindrical floater that is vertically placed on the wave surface is more suitable for the novel
heaving wave energy point absorber.

Keywords: unmanned ocean device; wave energy; multi-type floating bodies; nonlinear
Froude-Krylov force; energy efficiency

1. Introduction

Low-power unmanned ocean device, such as unmanned surface/under water vehicles,
ocean robots, and ocean buoys are widely used in unmanned combat, deep-sea exploration, and marine
communications, and so on [1–5]. With the continuous development of deep sea and offshore strategies,
the scope of work of low-power unmanned ocean devices continues to expand [6]. Long-term, stable,
and reliable energy supply is the basis for the rapid development of low-power unmanned ocean
device [7]. Currently, the common energy supply technology is a battery. However, its energy density
is low and it is necessary to carry multiple batteries to meet the requirements. The device space is
limited, which limits the amount of battery that is carried [8]. Therefore, it is difficult for the battery to
meet the requirements of the long-range and long-life capability of the current low-power unmanned
ocean device. Therefore, studying the energy supply technology of high energy density and improving
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the long range and long battery life of the ocean device is the fundamental guarantee for effectively
solving the application of low-power unmanned ocean device to the deep sea [9].

The ocean covers about 70% of the Earth’s surface, making it the world’s largest solar collector
and energy storage system [10]. There are many types of renewable resources for ocean storage, such
as Wave Power, Tidal Power and Tidal Current Energy, Ocean Thermal Energy Conversion (OTEC),
and Salinity Gradient Energy. We can convert them into electricity by means of a power generator [11].
Wind blowing over the surface of the ocean creates waves that can be harvested for energy and creates
uninterrupted, continuous wave energy in the Ocean’s surface [12]. The amount of wave power that is
stored by the ocean is enormous and high density. Theoretically, the global wave power resource is
2.11 ± 0.05 TW, of which 4.6% is extractable with the chosen WEC configuration [13,14]. Therefore,
wave energy is the most ideal resource for a low-power unmanned ocean device.

The utilization of wave energy goes far back in time—people using wave push water mill taken
place in the 1200 s. The world’s first wave energy technology patent is filed by Frenchman Girard and
his son in 1799 [15]. In 1910, the Frenchman Pocec-Plesic built the world’s first wave energy converter
(WEC) on the coast, namely air turbine private power station with a capacity of 1kW [10]. Salter of
the University of Edinburgh successfully developed a duck-type WEC, and first published an article
entitled “Wave Power” in Nature in 1974 [16]. However, due to the unsolved technical problems,
such as the economy and stability of WEC, the research progress of wave energy technology was
slower in the 1980s and early 1990s. In the last 20 years, with the emergence of problems, such as
energy depletion, environmental pollution, and the greenhouse effect, the development of green and
renewable energy has become the mainstream [7]. Wave energy has regained rapid growth under the
guidance of the government, especially in some mariner countries, such as Ireland, Denmark, Norway,
and UK [17–20].

WEC’s are generally categorized by the method that is used to capture the energy of the waves,
by location and by the power take-off (PTO) system [10,21]. Locations are shoreline, near shore,
and offshore. Types of power take-off include: hydraulic ram, elastomeric hose pump, pump-to-shore,
hydroelectric turbine, air turbine, and linear electrical generator. In addition, WEC’S can also be
categorized by the energy transfer method, namely point absorber, surface attenuators, oscillating water
columns, and overtopping devices.

Comparative and analytic research on the working principle of current WEC’s, the point absorber
is the best choice for the power supply of low-power unmanned ocean device [7]. However, the research
on point absorber is mainly focused on large-scale grid-connected generation in shore and near shore,
and the dimension of the device is larger, and the power generation operation is more complicated [10].
At present, typical point absorber includes Power Buoy [22], Wave bob [23], Sea Based [24], Fred Olsens
Lifesaver [25], and Carnegies CETO [26]. The shape dimension of them is very large, such as Power
Buoy, where the diameter of the buoy is about 3 m and the overall height about 14 m. As the
characteristics, such as concealment, camouflage, small dimension, wide and far working area of
low-power unmanned ocean device, and the huge dimension of the above point absorbers, makes it
still difficult to provide a satisfactory power source for it.

Considering the technical requirements of the power supply for the low-power unmanned ocean
device and the current research state of power generation technology, we developed a small novel
heaving point absorber that is based on the counter-rotating self-adaptive mechanism, with the
advantages of small space device and a stable and reliable energy conversion process [7]. It is an ideal
WEC of power supply for the low-power unmanned ocean device, so as to increase their working
hours and improve independent operation ability.

Previous work shown that the influence law of the blade angel on the impeller speed was obtained
and the model prototype was trial produced base on the study of the blade angle and the relative
speed of the upper and lower impellers for the Underwater PTO [7].The adjustment of the blade
angle in impellers is passive action. The move displacement of the floating body and the Underwater
PTO affects the deflection angle. The locking devices of the impellers limit the angle. In addition,
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previous works show that the maximum blade deflection angles between 35◦ and 55◦ are the best
efficiency characteristics [7]. In order to increase the power production of the novel heaving point
absorber, it is necessary to increase the elevation of the Underwater PTO in the vertical direction,
that is, increase the heave amplitude of the floating body. Because the displacement of the body is
performed by its immersion depth, shape, and dimension, so the geometric parameters of the body are
optimized, which is of great significance for increasing the power production of the novel heaving
point absorber.

The floating body dynamics of the WEC have been investigated by many researchers. For example,
Black et al. [27] comparatively analyzed the wave radiation forces and scattering forces for horizontal
rectangular and vertical circular cylinders using the Haskind’s theorem. Mohapatra and Guedes
Soares [28] studied the wave forces on a two-dimensional rectangular floating structure based on
linearized Boussinesq. Rodriguez et al. [29] investigated the numerical nonlinear heave response of a
rectangular box concerning the importance of the relative body dimensions. Islam et al. [30] analyzed
the wave radiation of a heaving box-type floating structure based on CFD simulations with a volume
of fluid method. Yeung et al. [31] and Sabuncu et al. [32] discussed the added mass and damping of a
vertical cylinder in finite depth water. Calisal et al. [33] presented an efficient method of hydrodynamic
coefficients calculation for vertical composite cylinders at finite depth. Mansour et al. [34] analyzed
the diffraction of linear waves by a uniform vertical cylinder with cosine-type radial perturbations.
Bhata et al. [35] studied scattering and radiation problems for a cylinder on nonlinear wave loading at
finite depth. Kim [36] researched the hydrodynamic coefficients of the floater with elliptical cylinder
and ellipsoid on a free surface. Bihs et al. [37] simulated a horizontal cylinder in heave motion and the
motion of a freely floating rectangular barge in waves using the CFD model and compared the results
with experimental data. Koh et al. [38] used Matched Eigenfunction Expansion Method (MEEM) to
solving the radiation problem of the heaving circular cylinder in the context of linear potential theory.
Wang sheng [39] discussed the added mass and damping of an ellipsoid in infinite and finite depth
water. Finnegan et al. [40] determined an analytical approximation for the wave excitation forces on a
floating truncated vertical cylinder in water of infinite depth and solved the appropriate boundary
value using the method of separation of variables. Ghadimi et al. [41] presented a detailed analytical
solution for the boundary value problem to evaluate the wave loads for the cylinder with heave and
pitch motions in water of finite depth in the presence of an incident wave. Although the floating body
dynamics of the WEC are more researched, the energy efficiency of multi-type floating bodies in the
heaving wave energy point absorber is poorly studied. Furthermore, in the above paper, the separation
variable method and the eigenfunction expansion method is usually used for the calculation of the
radiation force and diffraction force of the buoy base on the potential flow theory. However, it is
difficult to solve their analytical solutions and is often time consuming to calculate.

Under the Airy’s wave theory, the Froude-Krylov approximation method is implemented
to solve the wave force when the device dimension is considerably smaller than the wave
length [42]. Froude-Krylov approximation method [33–45] is assumed that the original wave pressure
distribution of the incident wave does not change due to the presence of the floating body. Therefore,
wave excitation force is the product of the force of the undisturbed incident wave pressure on the
floating body (dynamic Froude-Krylov force) and the diffraction correction coefficient. The diffraction
coefficients reflect the attached mass effect and diffraction effects, which is determined by the model
test. Although this method is an approximation method, it is simple to calculate and it is a very
practical method for estimating the wave force. Moreover, because the method is built on model tests,
accurate calculations can be obtained [42]. Falnes and Perlin [46,47] analyze the oscillating bodies
in low-amplitude waves and obtain that the diffraction is negligible when the device dimension
is considerably smaller than the wave length. Clement and Ferrant [48] described a method for
the computation of free surface flows generated by submerged bodies, and obtain that radiation
nonlinearities are negligible for floating bodies that are small as compared to the wave length.
Merigaud et al. [43] added specific nonlinear terms to hydrodynamic models for wave energy devices,
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to improve the validity of such models across the full operational spectrum, showing that the response
of the device is mainly affected by nonlinear FK forces, while nonlinear radiation and diffraction forces
have minor effects on the system dynamics.

The focuses of the paper is on the novel heaving point absorber operating in the power production
region, using the Froude-Krylov method to optimal shape design and maximize energy capture of
the floating body for the power supply of the low-power unmanned ocean device. The remainder
of this paper is organized as follows: Section 2 introduces the structure model of the novel heaving
point absorber. Section 3 gives the mathematical model of the floating body of the novel absorber.
Section 4 presents the algebraic solution of the wave excitation force in the vertical direction of floating
bodies and nonlinear Froude-Krylov force integral. The numerical simulation and simulation analysis
for the wave force, heaving velocity, heaving displacement, and capture width ratio of the multi-type
floating bodies are in Sections 5 and 6. Some conclusions and final remarks are presented in Section 7.

2. Structure Model

The waves are generally generated by wind blowing across the surface of the ocean. The motion
of waves is regular and periodic on the water surface, with the amplitude decreasing exponentially
with depth. When the depth to be greater than half the wavelength, the wave-induced motions is
only approximately 4% of those at the surface and thus could be considered to be insignificant [10].
Therefore, this depth range is defined as the hydrostatic layer, in which the motion of waves is hardly
perceived as the depth increases. Based on the above characteristics of wave motions, a novel heaving
wave energy point absorber is designed, which can be used as a power module for the low-power
unmanned ocean device [7]. Figure 1 shows the working scene of this point absorber. First, when the
low-power unmanned ocean device is working on the ocean surface, the value of the battery energy is
decreasing from the maximum to the lowest safe. Secondly, utilizing the release mechanism of the
low-power unmanned ocean device, the novel heaving point absorber is released. The Underwater
PTO subsystem of this absorber converts the captured wave energy into electricity. The value of the
battery energy reaches the highest energy. Finally, utilizing the recovery mechanism of the ocean
device, the absorber is recovered. The above process cycles back and forth, of which ensures the energy
supply of unmanned ocean device for long-range and long-term work.
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Figure 1. The working scene of the novel heaving wave energy point absorber.

The system configuration and working principle of the novel heaving point absorber are illustrated
in Figure 2. The absorber mainly includes two parts, a floating body and an Underwater PTO, which are
connected with each other by a steel cable. The floating body floats on the ocean surface and the
Underwater PTO suspends the hydrostatic layer at a depth of about 40 m. The Underwater PTO mainly
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consists of a power generator, upper impeller, lower impeller, steady blade, and transmission shaft and
planet-gear increaser. The impellers are mainly composed of blades, connecting rods, locking devices,
center wheels, and external fixation rings. The center wheel and the external fixation ring are connected
by eight radials arranged in connecting rods. Eight fan-shaped blades are fixed on corresponding
connecting rods with locking devices and are arranged in a centrally symmetric circumferential array.
In addition, the steel cable not only acts as dragging the Underwater PTO, but also transmissions
electricity and control signals.
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Figure 2. The system configuration and working principle of the novel heaving point absorber.
(a) Rising state; and, (b) Sinking state.

The working principle of the novel heaving point absorber is shown in Figure 2. (1) During
the movement of the floating body from the wave trough to the wave crest, the Underwater PTO
is pulled up by the steel cable. The upper surface of the blade is impacted by the water flow and
the blade adaptively swings downward, as shown in Figure 2a. Due to the limitation of the locking
devices, the blade then stops swinging and is in a slanted state after reaching the maximum angle
of inclination. The water flow continues to impact the slanted blades and propel the blade forward.
The circumferential array of the blades enables the impeller to be subjected to circumferential thrust.
Since the blades of the upper and lower impellers are arranged in opposite directions, the upper
impeller is clockwise rotated by the water flow and the lower impeller is anticlockwise rotated by the
water flow, and they are relatively reversed. The upper and lower impellers are fixedly connected
with the stator and rotor of the generator, respectively, and then drive the generator to generate
electricity. (2) During the movement of the floating body from the wave crest to the wave trough, the
Underwater PTO sinks under the influence of gravity. The lower surface of the blade is impacted by
the water flow and the blade adaptively swings upward, as shown in Figure 2b. Due to the limitation
of the locking devices, the blade then stops swinging and it is in a slanted state after reaching the
maximum angle of inclination. Since the direction of the water flow impinging on the blade does not
change, the water flow continues to impact the slanted blades and propel the blade forward. The upper
impeller is continuously clockwise rotated by the water flow and the lower impeller is continuously
anticlockwise rotated by the water flow. Therefore, the direction of rotation of the generator does not
change and it continues to generate electricity. According to the different impact directions of water
flow, the impellers’ blades adaptively adjust the blade deflection. The upper and lower impellers act as
components that interact directly with the water flow and they provide continuous rotational motion
to the generator during rising and sinking of the Underwater PTO.
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3. Mathematical Model

The floating body is an important part of the novel heaving wave energy point absorber and is
in direct contact with the waves on the ocean surface. In order to increase the energy harvesting of
floating body, it is necessary to increase the heave amplitude, heave velocity, and wave force in the
vertical direction. It can increase the rising and sinking amplitude of the Underwater PTO and the
relative rotational speed of the upper and lower impellers. Moreover, the power production of the
novel heaving point absorber can also be increased. This section analysis of the force of the floating
body, establishes its motion equation, and solves its wave excitation force and the Underwater PTO
damping force. Also, this section derives the model of energy conversion efficiency between the
floating body and the wave energy, and calculates its energy conversion efficiency.

The hydrodynamics model and energy efficiency model of the floating body is established to
calculate the wave force and the conversion efficiency: Section 3.1 considers nonlinear Froude-Krylov
force in the vertical direction and Underwater PTO damping force for the force analysis of the floating
body in micro-wave amplitude. Section 3.2 presents the capture width ratio of the floating body for
the energy efficiency analysis.

3.1. Hydrodynamics Model of the Floating Body

We consider that the floating body of the novel heaving point absorber floats freely in water of
uniform depth. Under the action of linear regular waves, the floating body does micro amplitude
heave motion. The fluid is assumed inviscid and the incident flow irrotational and incompressible.
Figure 3 is the coordinates and force analysis of the floating body. The right-handed inertial reference
frame is centered at the hydrostatic equilibrium position of the body. X is the vertical distance from
the reference fluid surfaces to the body waterline (positive downwards). Y is the vertical distance from
the reference fluid surface to the fluid surface (positive downwards). Y = r cos ϕt, where r is the wave
amplitude and ϕ is the wave angular frequency. Z is the vertical distance from the reference fluid
surface to any point in the fluid (positive downwards). D is the waterline depth of the floating body.
Newton’s second law can be used to describe the system dynamics, as follows:

m
..
X(t) = G−

x

S(t)

P(t)ndS−Q− I + FPTO(t) (1)

where, m is the mass of the novel heaving point absorber, X is the heaving displacement of the body
from its hydrostatic equilibrium position,

..
X is the heaving acceleration of the body, G the gravity force,

S the submerged surface, P the pressure, n a vector normal to the surface, Q the viscous damping
force, I the inertia force of attached mass effect, and FPTO the Underwater PTO damping force.

The pressure P can be derived from the incident flow applying Bernoulli’s equation:

P(t) = −ρgz(t)− ρ
∂φ(t)

∂t
− ρ
|∇φ(t)|2

2
(2)

where, ρ the water density, g the acceleration of gravity, Pst = −ρgz, hydrostatic pressure and φ the
potential flow, which can be decomposed as the sum of the undisturbed incident flow potential φI,
the diffraction potential φD, and the radiation potential φR:

φ = φI + φD + φR (3)

The Airy’s wave theory assumes that the motion of the floating body is a small amplitude.
The solution of Equation (1) is solved around the equilibrium position of the buoy. Under the
linear assumption, the wetted surface is constant. However, the nonlinear of Froude-Krylov forces
to be considered in the actual calculation process. Thus, the wetted surface is exactly instantaneous,
namely integrating the fluid pressure over the actual submerged portion of the buoy, as it moves



Energies 2018, 11, 3282 7 of 20

through the water. Froude-Krylov forces include the static and dynamic forces. They depend on the
instantaneous wetted surface, which depends both on the incident wave elevation and the displacement
of the buoy. Froude-Frylov force can be written as:

FFK = FFKst + FFKdy =
x

S(t)

(
Pst(t) + Pdy(t)

)
ndS (4)

where, FFKst is the static Froude-Krylov force, given as the balance between the gravity force and the
Archimedes force, and FFKdy is the dynamic Froude-Krylov force.

FFKst =
x

S(t)

Pst(t)ndS = −
x

S(t)

ρgzdS (5)

FFKdy =
x

S(t)

Pdy(t)ndS (6)

where, Pdy = −ρ
∂φI
∂t − ρ

|∇φI |2
2 is the dynamic pressure.
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The time-dependence annotation will be omitted for brevity hereafter. Equation (1) can be
rewritten as [42]:

m
..
X = G + FFK + FD + FR + FPTO (7)

where, FD is the diffraction force and FR is the radiation force.
Note that, since the fluid is assumed to be inviscid, irrotational, and incompressible, no viscous

force and inertia force appears in Equation (7). In addition, due to Froude-Krylov force already includes
the inertia force that is caused by the attached mass effect, the inertia force also does not appear in
this Equation.



Energies 2018, 11, 3282 8 of 20

Wave excitation force is the force of wind blows the waves to disturb the motion of the floating
body on the ocean surface. This force can be written as:

Fex = CFFKdy + FD (8)

where, C is the diffraction correction coefficient.
The linear approach assumes that radiation and diffraction forces are linear. Therefore, the radiation

and diffraction potential is negligible when the floating body dimension is considerably smaller than
the wave length [43–48]. When combining Equations (4)–(8), Equation (1) can be rewritten as:

m
..
X = C

x

S(t)

PdyndS + FPTO (9)

The algebraic calculation of the integral in Equation (9) requires the explicit definition of the
dynamic pressure Pdy, the infinitesimal surface element ndS, and the limits of integration. Under the
Airy’s wave theory for deep water waves, the dynamic pressure at any point on the floating body in
the local coordinate system can be written as:

Pdy =
ρgH

2
chkz
chkd

cos(kx−ωt) (10)

where, H is wave height, x is the direction of wave propagation in the local coordinate system, z is the
vertical displacement of the floating body in the local coordinate system (positive upwards), and d
is water depth and ω is the wave circular frequency. Wave Number k is defined by the dispersion
equation ktanh(kd) = ω2/g.

During the motion of the novel heaving point absorber on the ocean surface, the coordinates at
any point on the floating body in the global coordinate system can be written as: x

y
z

 =

 X0

Y0

Z0

+ [T]

 x
y
z

 (11)

where, (X0, Y0, Z0) is the coordinates of the center of gravity on the floating body in the global
coordinate system and (x, y, z) is the coordinates at any point on the floating body in the local
coordinate system. [T] is coordinate transformation matrix between the local coordinate system
and global coordinate system.

Therefore, the dynamic pressure at any point on the floating body in the global coordinate system
can be written as:

Pdy =
ρgH

2
chk(d− z)

chkd
cos(k(x + x)−ωt) (12)

where, x is the direction of wave propagation in the global coordinate system and z is the vertical
displacement of the floating body in the global coordinate system (positive upwards).

Furthermore, the force components of the wave excitation force in the vertical direction can be
written as the following:

Fz
ex = CV

x

S(t)

PdynzdS (13)

where, nz is the projection of the normal for the wetted surface of the floating body in the vertical
direction and CV is the diffraction correction coefficient in the vertical direction.

Under the movement of the novel heaving point absorber on the ocean surface, the heave motion
of the floating body does work by overcoming the damping of the water. The Underwater PTO
subsystem of this absorber converts the captured wave energy of the body into electricity. In the
motion model of this absorber under the Airy’s wave theory, the linear damping model is used to
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analyze the damping force of the Underwater PTO system. Thus, the Underwater PTO damping force
can be written as:

FPTO = BPTO
.

X (14)

where, BPTO is the Underwater PTO damping coefficient and
.

X is the heaving velocity of the
floating body.

3.2. Energy Efficiency Model of the Floating Body

In the researches of the WEC, the performance of power production of the device is mainly
concentrated on the energy harvesting and energy conversion. Using the capture width ratio [49,50]
of the floating body as an evaluation index to measure the characteristic of energy harvesting and
conversion efficiency for the novel heaving point absorber. The capture width ratio is that the ratio of
the average power of the energy harvesting to the wave energy of the incident wave within the width
of the body, namely the efficiency of energy harvesting in the WEC. It can be written as the following:

η =
PWEC

P0
(15)

where, PWEC is the average power of the floating body to harvests wave energy and P0 is the wave
energy of the incident wave within the width of the body.

The average power of the energy harvesting is that the instantaneous power is integrated in a
period and it solves the average value. It can be written as:

PWEC =
1
T

∫ T

0
Fwave ·VWECdt (16)

where, Fwave is the wave force, VWEC is the velocity of the floating body, and T is the wave period.
The average power of the energy harvesting in the vertical direction of the floating body can be

written as:

Pz
WEC =

1
T

∫ T

0
(Fz

ex + Fz
PTO)Xdt =

1
T

∫ T

0
((CV

x

S(t)

PdynzdS + Bz
PTOX)X)dt (17)

where, Fz
PTO is the Underwater PTO damping force in the vertical direction and Bz

PTO is the Underwater
PTO damping coefficient in the vertical direction.

The wave energy of the incident wave within the width of the floating body can be written as
the following:

P0 = ρgH2 ω

16k

[
1 +

2kd
sh(2kd)

]
· B (18)

where, B is the heading wave width of the floating body.

4. Algebraic Solution

The characteristic parameters, such as profile parameters, immersion depth, and wetted surface
distribution, play an important role in the performance analysis, structural design, manufacture,
and employment of the floating body. These parameters affect the motion amplitude, motion velocity,
wave force, and wave energy harvesting of the floating body. Therefore, selects the profile parameters
and solves the algebraic solution of the wave force is critical. Geometry shapes of floating body are
two types of axisymmetric and unaxisymmetric. The axisymmetric body is a curved surface body
formed by a generatrix rotating around a fixed vertical axis. The shape of the axisymmetric body
is dependent on the shape of generatrix and relative position of the generatrix and the fixed axis.
The axisymmetric bodies include cylinder, cone, sphere, and so on. The unaxisymmetric body is
formed by a non-rotating curved surface. This body consists of rectangular, trapezoid, polyprism,
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and so on. In this paper, three kinds of shapes are selected for the floating body, such as rectangular,
cylinder, and sphere. This section mainly solves the algebraic solution of the wave force of the above
shape. Table 1 show that the algebraic solutions of the wave excitation force in the vertical direction
of multi-type floating bodies. The geometric parameters of the axisymmetric body are described in
cylindrical coordinates [42]. The axisymmetric bodies are described in rectangular coordinates.

Table 1. The algebraic solutions of the wave excitation force in the vertical direction of multi-type
floating bodies.

The Geometry Shapes of
Floating Bodies

The Coordinates of
Floating Bodies

The Parameters of Profiles
and Coordinates

The Wave Excitation Force in the Vertical
Direction of Floating Bodies

Unaxisy-mmetric Horizontal
rectangular
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5. Numerical Results

Based on the above analysis of the hydrodynamic performance and energy conversion
characteristic for the multi-type floating bodies of the novel heaving wave energy point absorber,
the wave force, heaving velocity, heaving displacement, and capture width ratio of the multi-type
floating bodies were numerically simulated and comparatively analyzed.

During the numerical simulation, the parameters of the multi-type floating bodies are as follows:
the length of horizontal rectangular a is 0.3 m, the length along the wave direction of horizontal
rectangular b is 0.3 m, the height of horizontal rectangular c is 0.5 m, the radius of vertical cylinder R is
0.3 m, the height of vertical cylinder l is 0.5 m, the radius of sphere R is 0.3 m, the mean immersion
depth is 0.15 m, the Underwater PTO damping coefficient in the vertical direction Bz

PTO is 20 KNs/m,
and the mass of the novel heaving point absorber m is 10 kg. According to the model test results of
previous research [51–53], the diffraction correction coefficient in the vertical direction CV of horizontal
rectangular, vertical cylinder, and sphere can be obtained, respectively.

In this study, three reference sea states are used for evaluation the energy efficiency of the novel
heaving wave energy point absorber. Sea state 1: the significant wave height HS is 0.1 m, the peak
wave period TP is 2 s; Sea state 2: the significant wave height HS is 0.3 m, the peak wave period
TP is 3.5 s; and, Sea state 3: the significant wave height HS is 0.5 m, the peak wave period TP is 5 s.
The first sea state covers HS values from 0.0 to 0.1 m, the second sea state covers HS values from 0.1
to 0.3 m, and the third sea state covers HS values from 0.3 to 0.5 m. The combination of HS and TP is
representative for the same wave tank, the wave climate date come from the simulation test. The model
scales of the novel heaving point absorber, as follows: the Underwater PTO’s diameter is 410 mm, the
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distance between the upper and lower impeller is 400 mm, and the overall height of the Underwater
PTO is about 560 mm. The scale between the dimensions of the tested heaving point absorber and the
full scale device is 1:5. Another, the significant wave height HS is about 2.5 m in the real wave climate
with the full scale device. The considered reference water depth d is 50 m. In addition, the incident
wave is the linear regular wave, the angle between the direction of the linear regular wave and the
direction of the novel heaving point absorber is 0◦. According to the above parameters of the incident
wave, the working scene of the novel heaving point absorber is the deep-water waves. Therefore, the
other parameters of the incident wave are obtained, including wavelength, wave velocity, and velocity
of water particles. These parameters are as follows: the wavelength is 6.2/19/39 m, the wave velocity
is 3.1/5.5/7.8 m/s, and the velocity of water particles is 0.16/0.27/0.31 m/s.

The results of numerical simulation are shown in Figures 4–11. The wave force, heaving velocity,
heaving displacement, and capture width ratio of the multi-type floating bodies in the second sea state
is shown in Figures 4–7, respectively. Figures 8–11 show that the above parameters for comparison in
the three reference sea states and the values obtained from the numerical simulation.
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6. Discussion

As shown in Figures 4–6, the vibration frequency curve of the wave force, heaving velocity,
and heaving displacement are less of the same for the vertical cylinder buoy and the sphere buoy.
However, as to the former, the curve of the wave force and the heaving displacement is steeper,
the heaving velocity is faster, wave follower is better, and the generated energy is higher. Nevertheless,
the wave force and heaving displacement of the horizontal rectangular floating body are smaller than
those two types of floating bodies. Therefore, the generated energy and wave follower is weaker by
this one less than those two types of floater bodies. In Figure 7, the capture width ratio of the vertical
cylinder floating body is higher and more stable than the sphere floating body. While, the horizontal
rectangular floating body is much more less than those two types of floating bodies.

In addition, as shown in Figures 8–11, the wave force, heaving velocity, heaving displacement,
and capture width ratio of the floating bodying is affected by the peak wave period and the wave
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height at a certain sea state. The above parameters are become higher when the sea state increases.
Another, the vertical cylinder floating body outperforms the other floating body in the three reference
sea states. As shown in Figure 11, the curve of the capture width ratio is steeper and the value of this
parameter is higher when the sea state big changes.

In summary, with the linear regular wave, the cylindrical floater vertically placed in the wave
surface is the first optional shape for the novel heaving point absorber and follower is the sphere
floater, which can increase the quality of power extracting and the efficient of the WEC system design.
At last, the horizontal rectangular floating body is carefully selected.

7. Conclusions

This paper presents a small novel heaving point absorber of energy supply for low-power
unmanned ocean devices that are based on the counter-rotating self-adaptive mechanism, with the
advantages of small space device, stability, and reliable energy conversion process. For improving
the efficiency of this absorber’s power production, the wave force and energy efficiency are analyzed
by the Froude-Krylov method and the optimal floating body is selected, the following conclusions
are drawn:

(1) The structure model and working principle of the novel heaving point absorber are feasible.
Based on the optimal power supply strategy, the design of the release and recovery mechanism can
improve the concealment, release, and recovery rate of the unmanned ocean devices. Under the
different directions of water flows, the design of the upper and lower impeller with opposite
rotation directions can provide continuous relative rotational motion to the generator during
rising and sinking of the Underwater PTO. The design of the locking devices and impellers’
blades with circumference array can achieve the adaptively adjust the blade deflection in the
heaving motion and the relative rotation of the impellers. The design of the steady blade can
balance the motion of Underwater PTO and makes it not limited by the motion of heaving.

(2) The energy efficiency of the novel heaving point absorber is greatly affected by the geometric
parameters, the wave force, the motion displacement, the motion velocity, and the capture width
ratio of the floating body. The constitutive relation of the above parameters of the floating
body is constructed. In order to calculate the above parameters, the Froude-Krylov method is
used, which effectively overcomes the inaccuracy of the linear models and reduces the time
consuming to simulate. The algebraic solution of wave excitation force for the axisymmetric and
unaxisymmetric floating body is obtained and validated by the numerical simulation.

(3) The wave force, heaving velocity, heaving displacement, and capture width ratio of the three
floating bodies are compared and analyzed by the numerical simulation. Under the same working
condition, mass and mean immersion depth, the type of vertical cylindrical floater’s slopes of the
wave force and the steeper amplitude, faster speed of heave motion, larger amplitude of heave
motion, better follow wave, larger energy produced, as well as, higher conversion efficiency.
Therefore, with the linear regular wave, the cylindrical floater vertically placed on the wave
surface is the first optional shape for the novel heaving point absorber and follower is the
sphere floater, which can increase the quality of power extracting and the efficient of the WEC
system design.

The study that was carried out in this paper focuses on the energy generation efficiency of the novel
heaving point absorber for the supply power of the low-power unmanned ocean devices. Moreover,
the multi-type floating bodies are optimized base on the Froude-Krylov method. Although a series of
numerical analyses above has been conducted in this paper, research on the novel absorber and floating
body is still not thorough enough. Therefore, a further step toward is that the verification experiments
of wave tank will be done in the power production region for the novel absorber. In addition,
the geometric parameters of the vertical cylinder floater will be optimized for increasing the conversion
efficiency of the floating body.
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Abbreviations

WEC Wave energy converter
PTO Power take-off
B Heading wave width of the floating body (m)
BPTO Underwater PTO damping coefficient (KNs/m)
Bz

PTO Underwater PTO damping coefficient in the vertical direction (KNs/m)
C Diffraction correction coefficient (-)
CV Coefficient of wave diffraction in the vertical direction (-)
D Waterline depth of floating body (m)
d Water depth (m)
FD Diffraction force (N)
FR Radiation force (N)
FFKst Static Froude-Krylov force (N)
FFKdy Dynamic Froude-Krylov force (N)
FPTO Underwater PTO damping force (N)
Fwave Wave force (N)
Fz

PTO Underwater PTO damping force in the vertical direction (N)
G Gravity force (N)
g Acceleration of gravity (m/s2)
H Wave height (m)
I Inertia force of attached mass effect (N)
k Wave Number (-)
m Mass of the heaving point absorber (kg)
n Vector normal to the surface (-)

nz
Projection of the normal for the wetted surface of the floating body in the
vertical direction (-)

P Pressure (Pa)
Pst Hydrostatic pressure (Pa)
Pdy Dynamic pressure (Pa)
PWEC Average power of the floating body to harvests wave energy (Pa)
P0 Wave energy of the incident wave within the width of the body (Pa)
Q Viscous damping force (N)
r Wave amplitude (m)
S Submerged surface (m2)

[T]
Coordinate transformation matrix between local coordinate system and global coordinate
system (-)

T Wave period (s)
VWEC Velocity of the floating body (m/s)
(X0, Y0, Z0) Coordinates of the center of gravity on the floating body in the global coordinate system
(x, y, z) Coordinates at any point on the floating body in the local coordinate system
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X Vertical distance from the reference fluid surface to the body waterline (m)
x Direction of wave propagation in the global coordinate system (-)
x Direction of wave propagation in the local coordinate system (-)
X Heaving displacement of the body from its hydrostatic equilibrium position (m)
.
X Heaving velocity of the floating body (m/s)
..
X Heaving acceleration of the body (m/s2)
Y Vertical distance from the reference fluid surface to the fluid surface (m)
Z Vertical distance from the reference fluid surface to any point in the fluid (m)
z Vertical displacement of the floating body in the global coordinate system (m)
z Vertical displacement of the floating body in the local coordinate system (m)
ϕ Wave angular frequency (rad/s)
φ Potential flow
φI Undisturbed incident flow potential
φD Diffraction potential
φR Radiation potential
ρ Water density (kg/m3)
ω Wave circular frequency (rad/s)
η Capture width ratio (-)

Appendix A

The calculation of wave excitation forces in the vertical direction of multi-type floating bodies.

Appendix A.1 Horizontal Rectangular Floating Body

The wave excitation forces in the vertical direction of the horizontal rectangular floating body is

Fz
ex = Cv

s

s
pzds = Cva

∫ x1+b
x1

ρgH
2

chk(d−λ(t))
chkd cos(kx−ωt)dx

= Cva ρgH
2

chk(d−λ(t))
chkd

∫ x1+b
x1

cos(kx−ωt)dx

= Cva ρgH
2k

chk(d−λ(t))
chkd [sin(k(x1 + b)−ωt)− sin(kx1 −ωt)]

= Cv
aρgH

k
chk(d−λ(t))

chkd cos(kx1 −ωt + kb
2 ) sin kb

2

(A1)

Appendix A.2 Vertical Cylinder Floating Body

The relationship between any point (x, y, z) on the curved surface element ds and the cylinder coordinate [54]
(r, α, z) is  x = R cos α

y = R sin α
z = z

(A2)

Then, the above equation can be written in the global coordinate system is x = R cos α + x1 + R
y = R sin α + y1
z = z

(A3)

Let α = π
2 + ϕ, the dynamic pressure at any point on the cylinder surface at this time in the global coordinate

system can be written as:
Pdy =

ρgH
2

chkz
chkd cos(k(R cos α + x1 + R)−ωt)

=
ρgH

2
chkz
chkd [cos(kR sin ϕ) cos(kx1 + kR−ωt)

+ sin(kR sin ϕ) sin(kx1 + kR−ωt)]
(A4)

According to the properties of the Bessel function [55] is as follows:

cos(kR sin ϕ) = J0(kR) + 2∑m=∞
m=1 J2m(kR) cos(2mϕ)

sin(kR sin ϕ) = 2∑m=∞
m=1 J2m−1(kR) sin(2m− 1)ϕ

}
(A5)
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When m = 1, and then:
cos(kR sin ϕ) = J0(kR) + 2J2(kR) cos 2ϕ
sin(kR sin ϕ) = 2J1(kR) sin ϕ

}
(A6)

Combining above equation, we can obtain the following equation:

Pdy =
ρgH

2
chkz
chkd [(J0(kR) + 2J2(kR) cos 2ϕ) cos(kx1 + kR−ωt)

+(2J1(kR) sin ϕ) sin(kx1 + kR−ωt)]
(A7)

where, J0(kR) is the first kind zero-order Bessel function, J1(kR) is the first kind one-order Bessel function, J2(kR)
is the first kind two-order Bessel function. In order to convenient calculation, let Jm(kR) = Jm.

The wave excitation forces in the vertical direction of the vertical cylinder floating body is

Fz
ex = Cv

s

S
pzds = 2Cv

∫ d
d−λ(t)

∫ π
0 pzRdαdz = 2Cv

∫ d
d−λ(t)

∫ π
2
− π

2
pzRdϕdz

= Cv · RρgH
chkd ·

∫ d
d−λ(t) chkzdz ·

∫ π
2
− π

2

{
(J0 + 2J2 cos 2ϕ) cos(kx1 + kR−ωt)
+(2J1 sin ϕ) sin(kx1 + kR−ωt)

}
dϕ

= Cv
RρgπHJ0(kR)

k
shkd−shk(d−λ(t))

chkd cos(kx1 + kR−ωt)

(A8)

Appendix A.3 Sphere Floating Body

The relationship between any point (x, y, z) on the curved surface element ds and the spherical coordinate [54]
(r, θ, α) is  x = R sin θ sin α

y = R sin θ cos α
z = R cos θ

(A9)

Then, the above equation can be written in the global coordinate system is x = R sin θ sin α + x1 + R
y = R sin θ cos α + y1 + R
z = R cos θ + d + R− λ(t)

(A10)

Let α = π
2 + ϕ, the dynamic pressure at any point on the spherical surface at this time in the global coordinate

system can be written as:

Pdy =
ρgH

2
chk(R cos θ+d+R−λ(t))

chkd cos(k(R sin θ sin α + x1 + R)−ωt)

=
ρgH

2
chk(R cos θ+d+R−λ(t))

chkd

{
cos(kR sin θ sin ϕ) cos(kx1 + kR−ωt)
+ sin(kR sin θ sin ϕ) sin(kx1 + kR−ωt)

}
(A11)

According to the properties of the Bessel function [55] is as follows:

cos(kR sin θ sin ϕ) = J0(kR sin θ) + 2∑m=∞
m=1 J2m(kR sin θ) cos(2mϕ)

sin(kR sin θ sin ϕ) = 2∑m=∞
m=1 J2m−1(kR sin θ) sin(2m− 1)ϕ

}
(A12)

When m = 1, and then:

cos(kR sin θ sin ϕ) = J0(kR sin θ) + 2J2(kR sin θ) cos 2ϕ
sin(kR sin θ sin ϕ) = 2J1(kR sin θ) sin ϕ

}
(A13)

Combining above equation, we can obtain the following equation

Pdy =
ρgH

2
chk(R cos θ + d + R− λ(t))

chkd

{
(J0(kR sin θ) + 2J2(kR sin θ) cos 2ϕ) cos(kx1 + kR−ωt)

+(2J1(kR sin θ) sin ϕ) sin(kx1 + kR−ωt)

}
(A14)

where, J0(kR sin θ) is the first kind zero-order Bessel function, J1(kR sin θ) is the first kind one-order Bessel function,
J2(kR sin θ) is the first kind two-order Bessel function. In order to convenient calculation, let Jm(kR sin θ) = Jm.
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The wave excitation forces in the vertical direction of the sphere floating body is

Fz
w = 2Cv

∫ π

π−arccos( R−λ(t)
R )

∫ π
0 pz cos θR2 sin θdαdθ

= Cv · R2ρgH
chkd ·

∫ π

π−arccos( R−λ(t)
R )

∫ π
2
− π

2
chk(R cos θ + d + R− λ(t))

·
{

(J0 + 2J2 cos 2ϕ) cos(kx1 + kR−ωt)
+2J1 sin ϕ sin(kx1 + kR−ωt)

}
· cos θ sin θdϕdθ

= Cv · πR2ρgH
chkd · (I1(kR)− I2(kR)) · cos(kx1 + kR−ωt)

(A15)

where, I1(kR) =
∫ π

π−arccos( R−λ(t)
R )

ch(kR cos θ)chk(d + R− λ(t)) · J0(kR sin θ) · cos θ sin θdθ,

I2(kR) =
∫ π

π−arccos( R−λ(t)
R )

sh(kR cos θ)shk(d + R− λ(t)) · J0(kR sin θ) · cos θ sin θdθ.
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3. Zoss, B.M.; Mateo, D.; Kuan, Y.K.; Tokić, G.; Chamanbaz, M.; Goh, L.; Vallegra, F.; Bouffanais, R.; Yue, D.K.
Distributed system of autonomous buoys for scalable deployment and monitoring of large waterbodies.
Auton. Robots 2018, 11, 1–21. [CrossRef]

4. Banazadeh, A.; Seif, M.S.; Khodaei, M.J.; Rezaie, M. Identification of the equivalent linear dynamics and
controller design for an unmanned underwater vehicle. Ocean Eng. 2017, 139, 152–168.

5. Venkatesan, R.; Sannasiraj, S.A.; Ramanamurthy, M.V.; Senthilkumar, P.; Dhinesh, G. Development and
performance validation of a cylindrical buoy for deep-ocean tsunami monitoring. IEEE J. Ocean. Eng. 2018,
99, 1–9. [CrossRef]

6. Danovaro, R.; Aguzzi, J.; Fanelli, E.; Billett, D.; Gjerde, K.; Jamieson, A.; Ramirez-Llodra, E.; Smith, C.R.;
Snelgrove, P.V.R.; Thomsen, L.; et al. An ecosystem-based deep-ocean strategy. Science 2017, 355, 452–454.
[CrossRef] [PubMed]

7. Sun, C.; Luo, Z.; Shang, J.; Lu, Z.; Zhu, Y.; Wu, G. Design and Numerical Analysis of a Novel Counter-Rotating
Self-Adaptable Wave Energy Converter Based on CFD Technology. Energies 2018, 11, 694. [CrossRef]

8. Mendez, A.; Leo, T.J.; Herreros, M.A. Current state of technology of fuel cell power systems for autonomous
underwater vehicles. Energies 2014, 7, 4676–4693. [CrossRef]

9. Wang, X.; Shang, J.; Luo, Z.; Tang, L.; Zhang, X.; Li, J. Reviews of power systems and environmental energy
conversion for unmanned underwater vehicles. Renew. Sustain. Energy Rev. 2012, 16, 1958–1970. [CrossRef]

10. Dhanak, M.R.; Xiros, N.I. Handbook of Ocean Engineering; Springer: New York, NY, USA, 2016.
11. Astariz, S.; Iglesias, G. The economics of wave energy: A review. Renew. Sustain. Energy Rev. 2015, 45,

397–408. [CrossRef]
12. Cruz, J. Ocean Wave Energy; Springer: Berlin, Germany, 2008; Volume 144, pp. 2451–2460.
13. Gunn, K.; Stock-Williams, C. Quantifying the global wave power resource. Renew. Energy 2012, 44, 296–304.

[CrossRef]
14. Saprykina, Y.; Kuznetsov, S. Analysis of the Variability of Wave Energy Due to Climate Changes on the

Example of the Black Sea. Energies 2018, 11, 2020. [CrossRef]
15. Clément, A.; McCullen, P.; Falcão, A.; Gardner, F.; Hammarlund, K.; Lemonis, G.; Lewis, T.; Nielsen, K.;

Petroncini, S.; Pontes, M.-T.; et al. Wave energy in Europe: Current status and perspectives. Renew. Sustain.
Energy Rev. 2002, 6, 405–431. [CrossRef]

16. Salter, S.H. Wave power. Nature 1974, 249, 720–724. [CrossRef]
17. O’Hagan, A.M.; Huertas, C.; O’Callaghan, J.; Greaves, D. Wave energy in Europe: Views on experiences and

progress to date. Int. J. Mar. Energy 2016, 14, 180–197. [CrossRef]
18. Rusu, E.; Onea, F. Estimation of the wave energy conversion efficiency in the Atlantic ocean close to the

European islands. Renew. Energy 2016, 85, 687–703. [CrossRef]

http://dx.doi.org/10.1109/JOE.2018.2802019
http://dx.doi.org/10.1016/j.oceaneng.2018.04.018
http://dx.doi.org/10.1007/s10514-018-9702-0
http://dx.doi.org/10.1109/JOE.2018.2819238
http://dx.doi.org/10.1126/science.aah7178
http://www.ncbi.nlm.nih.gov/pubmed/28154032
http://dx.doi.org/10.3390/en11040694
http://dx.doi.org/10.3390/en7074676
http://dx.doi.org/10.1016/j.rser.2011.12.016
http://dx.doi.org/10.1016/j.rser.2015.01.061
http://dx.doi.org/10.1016/j.renene.2012.01.101
http://dx.doi.org/10.3390/en11082020
http://dx.doi.org/10.1016/S1364-0321(02)00009-6
http://dx.doi.org/10.1038/249720a0
http://dx.doi.org/10.1016/j.ijome.2015.09.001
http://dx.doi.org/10.1016/j.renene.2015.07.042


Energies 2018, 11, 3282 19 of 20

19. Kalogeri, C.; Galanis, G.; Spyrou, C.; Diamantis, D.; Baladima, F.; Koukoula, M.; Kallos, G. Assessing the
European offshore wind and wave energy resource for combined exploitation. Renew. Energy 2017, 101,
244–264. [CrossRef]

20. Stegman, A.; Andres, A.D.; Jeffrey, H.; Johanning, L.; Bradley, S. Exploring marine energy potential in the
UK using a whole systems modeling approach. Energies 2017, 10, 1251. [CrossRef]

21. Aderinto, T.; Li, H. Ocean wave energy converters: Status and challenges. Energies 2018, 11, 1250. [CrossRef]
22. Chen, B.; Bruce, T.; Greated, C.A.; Kang, H. Dynamic behavior of a wave power buoy with interior on-board

linear generator. Ocean Eng. 2017, 129, 374–381. [CrossRef]
23. Weber, J.; Costello, R.; Mouwen, F.; Ringwood, J.; Thomas, G. Techno-economic WEC system optimization

methodology applied to Wavebob system definition. In Proceedings of the 3th International Conference on
Ocean Energy, Bilbao, Spain, 6–8 October 2010; Volume 10, p. 6.

24. Chatzigiannakou, M.A.; Dolguntseva, I.; Leijon, M. Offshore deployments of wave energy converters by
Seabased industry AB. J. Mar. Sci. Eng. 2017, 5, 15. [CrossRef]

25. Fred Olsen’s Lifesaver Buoy. Available online: http://boltseapower.com/company/ (accessed on
25 November 2018).

26. Moskvitch, K. News briefing: In num6ers: CETO 6 Carnegie wave energy. Eng. Technol. 2016, 11, 12–13.
[CrossRef]

27. Black, J.L.; Mei, C.C.; Bray, C.G. Radiation and Scattering of Water Waves by Rigid Bodies. J. Fluid Mech.
1971, 46, 151–164. [CrossRef]

28. Mohapatra, S.C.; Guedes Soares, C. Wave forces on a floating structure over flat bottom based on Boussinesq
formulation. In Renewable Energies Offshore; Taylor & Francis Group: London, UK, 2015; pp. 335–342.

29. Rodriguez, M.; Spinneken, J.; Swan, C. Nonlinear loading of a two-dimensional heaving box. J. Fluids Struct.
2016, 60, 80–96. [CrossRef]

30. Islam, H.; Mohapatra, S.C.; Guedes, S.C. Comparisons of CFD, experimental and analytical simulations of
a heaving box-type floating structure. In Progress in Maritime Technology and Engineering; Taylor & Francis
Group: London, UK, 2018; Volume 5, pp. 633–639.

31. Yeung, R.W. Added Mass and Damping of a Vertical Cylinder in Finite Depth Waters. Appl. Ocean Res. 1981,
3, 119–133. [CrossRef]

32. Sabuncu, T.; Calisal, S. Hydrodynamic Coefficients for Vertical Circular Cylinder at Finite Depth. Ocean Eng.
1981, 8, 25–63. [CrossRef]

33. Calisal, S.; Sabuncu, T. Hydrodynamic Coefficients for Vertical Composite Cylinders. Ocean Eng. 1984, 11,
529–542. [CrossRef]

34. Mansour, A.M.; WiUliam, A.N.; Wang, K.H. The diffraction of linear waves by a uniform vertical cylinder
with cosine-type radial perturbations. Type Radial Perturbations. Ocean Eng. 2002, 29, 239–259. [CrossRef]

35. Bhatta, D.; Rahman, M. On Scattering and Radiation Problem for a Cylinder in Water of Finite Depth. Int. J.
Eng. Sci. 2003, 41, 931–967. [CrossRef]

36. Kim, W.D. On the Harmonic Oscillations of a Rigid Body on a Free Surface. J. Fluid Mech. 1965, 21, 427–451.
[CrossRef]

37. Bihs, H.; Kamata, A.; Lu, Z.J.; Arntsen, I.A. Simulation of Floating Bodies using a Combined Immersed
Boundary with the Level Set Method in REEF3D. In Proceedings of the VII International Conference on
Computational Methods in Marine Engineering, Nantes, Frances, 15–17 June 2017.

38. Koh, H.J.; Cho, I.H. Heave motion response of a circular cylinder with the dual damping plates. Ocean Eng.
2016, 125, 95–102. [CrossRef]

39. Wang, S. The Hydrodynamic Forces and Pressure Distributions for an Oscillating Sphere in a Fluid of Finite Depth;
M.I.T. Department of Naval Architecture and Marine Engineering: Cambridge, MA, USA, 1966.

40. Finnegan, W.; Meere, M.; Goggins, J. The wave excitation forces on a truncated vertical cylinder in water of
infinite depth. J. Fluids Struct. 2013, 40, 201–213. [CrossRef]

41. Ghadimi, P.; Bandari, H.P.; Rostami, A.B. Determination of the Heave and Pitch Motions of a Floating
Cylinder by of the Effects of Geometric Parameters on its Dynamics in Regular Waves. Int. J. Appl. Math. Res.
2012, 1, 611–633. [CrossRef]

42. Giorgi, G.; Ringwood, J.V. Computationally efficient nonlinear froude–krylov force calculations for heaving
axisymmetric wave energy point absorbers. J. Ocean Eng. Mar. Energy 2017, 3, 21–33. [CrossRef]

http://dx.doi.org/10.1016/j.renene.2016.08.010
http://dx.doi.org/10.3390/en10091251
http://dx.doi.org/10.3390/en11051250
http://dx.doi.org/10.1016/j.oceaneng.2016.11.050
http://dx.doi.org/10.3390/jmse5020015
http://boltseapower.com/company/
http://dx.doi.org/10.1049/et.2016.0415
http://dx.doi.org/10.1017/S0022112071000454
http://dx.doi.org/10.1016/j.jfluidstructs.2015.11.001
http://dx.doi.org/10.1016/0141-1187(81)90101-2
http://dx.doi.org/10.1016/0029-8018(81)90004-4
http://dx.doi.org/10.1016/0029-8018(84)90040-4
http://dx.doi.org/10.1016/S0029-8018(01)00003-8
http://dx.doi.org/10.1016/S0020-7225(02)00381-6
http://dx.doi.org/10.1017/S0022112065000253
http://dx.doi.org/10.1016/j.oceaneng.2016.07.037
http://dx.doi.org/10.1016/j.jfluidstructs.2013.04.007
http://dx.doi.org/10.14419/ijamr.v1i4.396
http://dx.doi.org/10.1007/s40722-016-0066-2


Energies 2018, 11, 3282 20 of 20

43. Merigaud, A.; Gilloteaux, J.C.; Ringwood, J.V. A Nonlinear Extension for Linear Boundary Element Methods
in Wave Energy Device Modeling. In Proceedings of the International Conference on Ocean, Offshore and
Arctic Engineering, Rio de Janeiro, Brazil, 1–6 July 2012.

44. Penalba, M.; Mérigaud, A.; Gilloteaux, J.C.; Ringwood, J.V. Influence of nonlinear Froude Krylov forces on
the performance of two wave energy points absorbers. J. Ocean Eng. Mar. Energy 2017, 3, 209–220. [CrossRef]

45. Rodrigues, J.M.; Soares, C.G. Froude-krylov forces from exact pressure integrations on adaptive panel meshes
in a time domain partially nonlinear model for ship motions. Ocean Eng. 2017, 139, 169–183. [CrossRef]

46. Falnes, J.; Perlin, M. Ocean waves and oscillating systems: Linear interactions including wave-energy
extraction. Appl. Mech. Rev. 2003, 56, 286. [CrossRef]

47. Falnes, J. Ocean Waves and Oscillating Systems; Cambridge University Press: Cambridge, UK, 2002.
48. Clement, A.; Ferrant, P. Superharmonic Waves Generated by the Large Amplitude Heaving Motion of a

Submerged Body. In Nonlinear Water Waves; Springer: Berlin/Heidelberg, Germany, 1988; pp. 423–433.
49. Yu, H.; Zhang, Y.; Chen, W. Effect of Power Take-off System on the Capture Width Ratio of a Novel

Wave Energy Converter. In Proceedings of the Asian Wave & Tidal Energy Conference, Singapore,
24–28 October 2016.

50. Chen, T.X.; Wu, B.J.; Li, M. Flume experiment study on capture width ratio of a new backward bent duct
buoy with a pentagon buoyancy cabin. Ocean Eng. 2017, 141, 12–17. [CrossRef]

51. Herbich, J.B. Offshore Pipeline Design Elements; M. Dekker: New York, NY, USA, 1981.
52. Standing, R.G. Use of potential theory in evaluating wave forces on offshore structures. In Power from Sea

Waves, Conference Institute of Mathematics and its Applications; Academic Press: London, UK, 1980; Volume 1,
pp. 175–212.

53. Garrison, C.J.; Rao, V.S. Interaction of waves with submerged objects. J. Waterw. Harb. Coast. Eng Div. 1971,
97, 259–277.

54. Korn, G.A.; Korn, T.M. Mathematical Handbook for Scientists and Engineers; McGraw-Hill: New York, NY, USA, 1968.
55. Watson, G.N. Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1962.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s40722-017-0082-x
http://dx.doi.org/10.1016/j.oceaneng.2017.04.041
http://dx.doi.org/10.1115/1.1523355
http://dx.doi.org/10.1016/j.oceaneng.2017.06.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Structure Model 
	Mathematical Model 
	Hydrodynamics Model of the Floating Body 
	Energy Efficiency Model of the Floating Body 

	Algebraic Solution 
	Numerical Results 
	Discussion 
	Conclusions 
	
	Horizontal Rectangular Floating Body 
	Vertical Cylinder Floating Body 
	Sphere Floating Body 

	References

