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Abstract: A stable power supply is very important in the management of power infrastructure.
One of the critical tasks in accomplishing this is to predict power consumption accurately, which
usually requires considering diverse factors, including environmental, social, and spatial-temporal
factors. Depending on the prediction scope, building type can also be an important factor since the
same types of buildings show similar power consumption patterns. A university campus usually
consists of several building types, including a laboratory, administrative office, lecture room, and
dormitory. Depending on the temporal and external conditions, they tend to show a wide variation
in the electrical load pattern. This paper proposes a hybrid short-term load forecast model for an
educational building complex by using random forest and multilayer perceptron. To construct this
model, we collect electrical load data of six years from a university campus and split them into
training, validation, and test sets. For the training set, we classify the data using a decision tree
with input parameters including date, day of the week, holiday, and academic year. In addition,
we consider various configurations for random forest and multilayer perceptron and evaluate their
prediction performance using the validation set to determine the optimal configuration. Then,
we construct a hybrid short-term load forecast model by combining the two models and predict the
daily electrical load for the test set. Through various experiments, we show that our hybrid forecast
model performs better than other popular single forecast models.

Keywords: hybrid forecast model; electrical load forecasting; time series analysis; random forest;
multilayer perceptron

1. Introduction

Recently, the smart grid has been gaining much attention as a feasible solution to the current
global energy shortage problem [1]. Since it has many benefits, including those related to reliability,
economics, efficiency, environment, and safety, diverse issues and challenges to implementing such a
smart grid have been extensively surveyed and proposed [2]. A smart grid [1,2] is the next-generation
power grid that merges information and communication technology (ICT) with the existing electrical
grid to advance electrical power efficiency to the fullest by exchanging information between energy
suppliers and consumers in real-time [3]. This enables the energy supplier to perform efficient energy
management for renewable generation sources (solar radiation, wind, etc.) by accurately forecasting
power consumption [4]. Therefore, for a more efficient operation, the smart grid requires precise
electrical load forecasting in both the short-term and medium-term [5,6]. Short-term load forecasting
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(STLF) aims to prepare for losses caused by energy failure and overloading by maintaining an active
power consumption reserve margin [5]. It includes daily electrical load, highest or peak electrical load,
and very short-term load forecasting (VSTLF). Generally, STLF is used to regulate the energy system
from 1 h to one week [7]. Accordingly, daily load forecasting is used in the energy planning for the
next one day to one week [8,9].

A higher-education building complex, such as a university campus, is composed of a building
cluster with a high electrical load, and hence, has been a large electric power distribution consumer in
Korea [10–12]. In terms of operational cost management, forecasting can help in determining where,
if any, savings can be made, as well as uncovering system inefficiencies [13]. In terms of scheduling,
forecasting can be helpful for improving the operational efficiency, especially in an energy storage
system (ESS) or renewable energy.

Forecasting the electrical load of a university campus is difficult due to its irregular power
consumption patterns. Such patterns are determined by diverse factors, such as the academic schedule,
social events, and natural condition. Even on the same campus, the electrical load patterns among
buildings differ, depending on the usage or purpose. For instance, typical engineering and science
buildings show a high power consumption, while dormitory buildings show a low power consumption.
Thus, to accurately forecast the electrical load of university campus, we also need to consider the
building type and power usage patterns.

By considering power consumption patterns and various external factors together, many machine
learning algorithms have shown a reasonable performance in short-term load forecasting [3,4,6,8,14–17].
However, even machine learning algorithms with a higher performance have difficulty in making
accurate predictions at all times, because each algorithm adopts a different weighting method [18].
Thus, we can see that there will always be randomness or inherent uncertainty in every prediction [19].
For instance, most university buildings in Korea show various electrical load patterns which differ,
depending on the academic calendar. Furthermore, Korea celebrates several holidays, such as Buddha’s
birthdays and Korean Thanksgiving days, called Chuseok, during the semester, which are counted on
the lunar calendar. Since the campus usually remains closed on the holidays, the power consumption
of the campus becomes very low. In such cases, it is difficult for a single excellent algorithm to make
accurate predictions for all patterns. However, other algorithms can make accurate predictions in areas
where the previous algorithm has been unable to do so. For this purpose, a good approach is to apply
two or more algorithms to construct a hybrid probabilistic forecasting model [14]. Many recent studies
have addressed a hybrid approach for STLF. Abdoos et al. [20] proposed a hybrid intelligent method for
the short-term load forecasting of Iran’s power system using wavelet transform (WT), Gram-Schmidt
(GS), and support vector machine (SVM). Dong et al. [21] proposed a hybrid data-driven model to
predict the daily total load based on an ensemble artificial neural network. In a similar way, Lee and
Hong [22] proposed a hybrid model for forecasting the monthly power load several months ahead
based on a dynamic and fuzzy time series model. Recently, probabilistic forecasting has arisen as
an active topic and it could provide quantitative uncertainty information, which can be useful to
manage its randomness in the power system operation [23]. Xiao et al. [18] proposed no negative
constraint theory (NNCT) and artificial intelligence-based combination models to predict future wind
speed series of the Chengde region. Jurado et al. [24] proposed hybrid methodologies for electrical
load forecasting in buildings with different profiles based on entropy-based feature selection with
AI methodologies. Feng et al. [25] developed an ensemble model to produce both deterministic and
probabilistic wind forecasts that consists of multiple single machine learning algorithms in the first
layer and blending algorithms in the second layer. In our previous study [12], we built a daily electrical
load forecast model based on random forest. In this study, to improve the forecasting performance of
that model, we first classify the electrical load data by pattern similarity using a decision tree. Then,
we construct a hybrid model based on random forest and multilayer perceptron by considering similar
time series patterns.
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The rest of this paper is organized as follows. In Section 2, we introduce several previous studies
on the machine learning-based short-term load forecasting model. In Section 3, we present all the steps
for constructing our hybrid electrical load forecasting model in detail. In Section 4, we describe several
metrics for performance a comparison of load forecasting models. In Section 5, we describe how to
evaluate the performance of our model via several experiments and show some of the results. Lastly,
in Section 6, we briefly discuss the conclusion.

2. Related Work

So far, many researchers have attempted to construct STLF using various machine learning
algorithms. Vrablecová et al. [7] developed the suitability of an online support vector regression
(SVR) method to short-term power load forecasting and presented a comparison of 10 state-of-the-art
forecasting methods in terms of accuracy for the public Irish Commission for Energy Regulation (CER)
dataset. Tso and Yau [26] conducted weekly power consumption prediction for households in Hong
Kong based on an artificial neural network (ANN), multiple regression (MR), and a decision tree
(DT). They built the input variables of their prediction model by surveying the approximate power
consumption for diverse electronic products, such as air conditioning, lighting, and dishwashing.
Jain et al. [27] proposed a building electrical load forecasting model based on SVR. Electrical load data
were collected from multi-family residential buildings located at the Columbia University campus in
New York City. Grolinger et al. [28] proposed two electrical load forecasting models based on ANN
and SVR to consider both events and external factors and performed electrical load forecasting by
day, hour, and 15-min intervals for a large entertainment building. Amber et al. [29] proposed two
forecasting models, genetic programming (GP) and MR, to forecast the daily power consumption of
an administration building in London. Rodrigues et al. [30] performed forecasting methods of daily
and hourly electrical load by using ANN. They used a database with consumption records, logged in
93 real households in Lisbon, Portugal. Efendi et al. [31] proposed a new approach for determining the
linguistic out-sample forecasting by using the index numbers of the linguistics approach. They used
the daily load data from the National Electricity Board of Malaysia as an empirical study.

Recently, a hybrid prediction scheme using multiple machine learning algorithms has shown
a better performance than the conventional prediction scheme using a single machine learning
algorithm [14]. The hybrid model aims to provide the best possible prediction performance by
automatically managing the strengths and weaknesses of each base model. Xiao et al. [18] proposed
two combination models, the no negative constraint theory (NNCT) and the artificial intelligence
algorithm, and showed that they can always achieve a desirable forecasting performance compared to
the existing traditional combination models. Jurado et al. [24] proposed a hybrid methodology
that combines feature selection based on entropies with soft computing and machine learning
approaches (i.e., fuzzy inductive reasoning, random forest, and neural networks) for three buildings in
Barcelona. Abdoos et al. [20] proposed a new hybrid intelligent method for short-term load forecasting.
They decomposed the electrical load signal into two levels using wavelet transform and then created
the training input matrices using the decomposed signals and temperature data. After that, they
selected the dominant features using the Gram–Schmidt method to reduce the dimensions of the
input matrix. They used SVM as the classifier core for learning patterns of the training matrix.
Dong et al. [21] proposed a novel hybrid data-driven “PEK” model for predicting the daily total load
of the city of Shuyang, China. They constructed the model by using various function approximates,
including partial mutual information (PMI)-based input variable selection, ensemble artificial neural
network (ENN)-based output estimation, and K-nearest neighbor (KNN) regression-based output
error estimation. Lee and Hong [22] proposed a hybrid model for forecasting the electrical load
several months ahead based on a dynamic (i.e., air temperature dependency of power load) and a
fuzzy time series approach. They tested their hybrid model using actual load data obtained from
the Seoul metropolitan area, and compared its prediction performance with those of the other two
dynamic models.
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Previous studies on hybrid forecasting models comprise parameter selection and optimization
technique-based combined approaches. This approach has the disadvantages that it is dependent on
a designer’s expertise and exhibits low versatility [18]. On the other hand, this paper proposes data
post-processing technique combined approaches to construct a hybrid forecasting model by combining
random forest and multilayer perceptron (MLP).

3. Hybrid Short-Term Load Forecasting

In this section, we describe our hybrid electrical load forecasting model. The overall steps for
constructing the forecasting model are shown in Figure 1. First, we collect daily power consumption
data, time series information, and weather information, which will be used as independent variables
for our hybrid STLF model. After some preprocessing, we build a hybrid prediction model based on
random forest and MLP. Lastly, we perform a seven-step-ahead (one week or 145 h ahead) time series
cross-validation for the electrical load data.
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3.1. Dataset

To build an effective STLF model for buildings or building clusters, it is crucial to collect their
real power consumption data that show the power usage of the buildings in the real world. For this
purpose, we considered three clusters of buildings with varied purposes and collected their daily
power consumption data from a university in Korea. The first cluster is composed of 32 buildings with
academic purposes, such as the main building, amenities, department buildings, central library, etc.
The second cluster is composed of 20 buildings, with science and engineering purposes. Compared to
other clusters, this cluster showed a much higher electrical load, mainly due to the diverse experimental
equipment and devices used in the laboratories. The third cluster comprised 16 dormitory buildings,
whose power consumption was based on the residence pattern. In addition, we gathered other data,
including the academic schedule, weather, and event calendar. The university employs the i-Smart
system to monitor the electrical load in real time. This is an energy portal service operated by the Korea
Electric Power Corporation (KEPCO) to give consumers electricity-related data such as electricity usage
and expected bill to make them use electricity efficiently. Through this i-Smart system, we collected
the daily power consumption of six years, from 2012 to 2017. For weather information, we utilized the
regional synoptic meteorological data provided by the Korea Meteorological Office (KMA). KMA’s
mid-term forecast provides information including the date, weather, temperature (maximum and
minimum), and its reliability for more than seven days.

To build our hybrid STLF model, we considered nine variables; month, day of the month, day
of the week, holiday, academic year, temperature, week-ahead load, year-ahead load, and LSTM
Networks. In particular, the day of the week is a categorized variable and we present the seven
days using integers 1 to 7 according to the ISO-8601 standard [32]. Accordingly, 1 indicates Monday
and 7 indicates Sunday. Holiday, which includes Saturdays, Sundays, national holidays, and school
anniversary [33], indicates whether the campus is closed or not. A detailed description of the input
variables can be found in [12].
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3.2. Data Preprocessing

3.2.1. Temperature Adjustment

Generally, the power consumption increases in summer and winter due to the heavy use of
air conditioning and electric heating appliances, respectively. Since the correlations between the
temperature and electrical load in terms of maximum and minimum temperatures are not that high,
we need to adjust the daily temperature for more effective training based on the annual average
temperature of 12.5 provided by KMA [34], using Equation (1) as follows:

AdjustedTemp =

∣∣∣∣12.5−
MinimumTemp + MaximummTemp

2

∣∣∣∣. (1)

To show that the adjusted temperature has a higher correlation than the minimum and maximum
temperatures, we calculated the Pearson correlation coefficients between the electrical load and
minimum, maximum, average, and adjusted temperatures, as shown in Table 1. In the table, the
adjusted temperature shows higher coefficients for all building clusters compared to other types
of temperatures.

Table 1. Comparison of Pearson correlation coefficients.

Temperature Type
Cluster #

Cluster A Cluster B Cluster C

Minimum temperature −0.018 0.101 0.020
Maximum temperature −0.068 0.041 −0.06
Average temperature −0.043 0.072 −0.018
Adjusted temperature 0.551 0.425 0.504

3.2.2. Estimating the Week-Ahead Consumption

The electrical load data from the past form one of the perfect clues for forecasting the power
consumption of the future and the power consumption pattern relies on the day of the week, workday,
and holiday. Hence, it is necessary to consider many cases to show the electrical load of the past in
the short-term load forecasting. For instance, if the prediction time is a holiday and the same day
in the previous week was a workday, then their electrical loads can be very different. Therefore,
it would be better to calculate the week-ahead load at the prediction time not by the electrical load
data of the coming week, but by averaging the electrical loads of the days of the same type in the
previous week. Thus, if the prediction time is a workday, we use the average electrical load of all
workdays of the previous week as an independent variable. Likewise, if the prediction time is a holiday,
we use the average electrical load of all holidays of the previous week. In this way, we reflect the
different electrical load characteristics of the holiday and workday in the forecasting. Figure 2 shows
an example of estimating the week-ahead consumption. If the current time is Tuesday, we already
know the electrical load of yesterday (Monday). Hence, to estimate the week-ahead consumption of
the coming Monday, we use the average of the electrical loads of workdays of the last week.
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3.2.3. Estimating the Year-Ahead Consumption

The year-ahead load aims to utilize the trend of the annual electrical load by showing the power
consumption of the same week of the previous year. However, the electrical load of the exact same
week of the previous year is not always used because the days of the week are different and popular
Korean holidays are celebrated according to the lunar calendar. Every week of the year has a unique
week number based on ISO-8601 [32]. As mentioned before, the average of power consumptions of all
holidays or workdays of the week are calculated to which the prediction time belongs and depending
on the year, one year comprises 52 or 53 weeks. In the case of an issue such as the prediction time
belongs to the 53rd week, there is no same week number in the previous year. To solve this problem,
the power consumption of the 52nd week from the previous year is utilized since the two weeks have
similar external factors. Especially, electrical loads show very low consumption on a special holiday
like the Lunar New Year holidays and Korean Thanksgiving days [35]. To show this usage pattern,
the average power consumption of the previous year’s special holiday represents the year-ahead’s
special holiday’s load. The week number can differ depending on the year, so representing the
year-ahead’s special holiday power consumption cannot be done directly using the week number of
the holiday. This issue can be handled easily by exchanging the power consumption of the week and
the week of the holiday in the previous year. Figure 3 shows an example of estimating the year-ahead
consumption. If the current time is Monday of the 33rd week 2016, we use the 33rd week’s electrical
load of the last year. To estimate the year-ahead consumption of Sunday of the 33rd week, we use the
average of the electrical loads of the holidays of the 33rd week of the last year.
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3.2.4. Load Forecasting Based on LSTM Networks

A recurrent neural network (RNN) is a class of ANN where connections between units form a
directed graph along a sequence. Unlike a feedforward neural network (FFNN), RNNs can use their
internal state or memory to process input sequences [36]. RNNs can handle time series data in many
applications, such as unsegmented, connected handwriting recognition or speech recognition [37].
However, RNNs have problems in that the gradient can be extremely small or large; these problems
are called the vanishing gradient and exploding gradient problems. If the gradient is extremely
small, RNNs cannot learn data with long-term dependencies. On the other hand, if the gradient is
extremely large, it moves the RNN parameters far away and disrupts the learning process. To handle
the vanishing gradient problem, previous studies [38,39] have proposed sophisticated models of
RNN architectures. One successful model is long short-term memory (LSTM), which solves the
RNN problem through a cell state and a unit called a cell with multiple gates. LSTM Networks use
a method that influences the behind data by reflecting the learned information with the previous
data as the learning progresses with time. Therefore, it is suitable for time series data, such as
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electrical load data. However, the LSTM networks can reflect yesterday’s information for the next
day’s forecast. Since the daily load forecasting of a smart grid aims to be scheduled until after a
week, LSTM networks are not suitable for application to the daily load forecasting because there is a
gap of six days. Furthermore, if the prediction is not valid, the LSTM model method can give a bad
result. For instance, national holidays, quick climate change, and unexpected institution-related events
can produce unexpected power consumption. Therefore, the LSTM model alone is not enough for
short-term load forecasting due to its simple structure and weakness in volatility. Eventually, a similar
life pattern can be observed depending on the day of the week, which in return gives a similar electrical
load pattern. This study uses the LSTM networks method to show the repeating pattern of power
consumptions depending on the day of the week. The input variable period of the training dataset
is composed of the electrical load from 2012 to 2015 and the dependent variable of the training set is
composed of the electrical load from 2013 to 2015. We performed 10-fold cross-validation on a rolling
basis for optimal hyper-parameter detection.

3.3. Discovering Similar Time series Patterns

So far, diverse machine learning algorithms have been proposed to predict electrical load [1,3,6,14].
However, they showed different prediction performances depending on the various factors.
For instance, for time series data, one algorithm gives the best prediction performance on one segment,
while for other segments, another algorithm can give the best performance. Hence, one way to
improve the accuracy in this case is to use more than one predictive algorithm. We consider electrical
load data as time series data and utilize a decision tree to classify the electrical load data by pattern
similarity. Decision trees [26,40] can handle both categorical and numerical data, and are highly
persuasive because they can be analyzed through each branch of the tree, which represents the process
of classification or prediction. In addition, they exhibit a high explanatory power because they can
confirm which independent variables have a higher impact when predicting the value of a dependent
or target variable. On the other hand, continuous variables used in the prediction of values of the time
series are regarded as discontinuous values, and hence, the prediction errors are likely to occur near
the boundary of separation. Hence, using the decision tree, we divide continuous dependent variables
into several classes with a similar electrical load pattern. To do this, we use the training dataset from
the previous three years. We use the daily electrical load as the attribute of class label or dependent
variable and the characteristics of the time series as independent variables, representing year, month,
day, day of the week, holiday, and academic year. Details on the classification of time series data will
be shown in the experimental section.

3.4. Building a Hybrid Forecasting Model

To construct our hybrid prediction model, we combine both a random forest model and multilayer
perceptron model. Random forest is a representative ensemble model, while MLP is a representative
deep learning model; both these models have shown an excellent performance in forecasting electrical
load [5,12,15–17].

Random forest [41,42] is an ensemble method for classification, regression, and other tasks.
It constructs many decision trees that can be used to classify a new instance by the majority vote.
Each decision tree node uses a subset of attributes randomly selected from the original set of attributes.
Random forest runs efficiently on large amounts of data and provides a high accuracy [43]. In addition,
compared to other machine learning algorithms such as ANN and SVR, it requires less fine-tuning of
its hyper-parameters [16]. The basic parameters of random forest include the total number of trees to
be generated (nTree) and the decision tree-related parameters (mTry), such as minimum split and split
criteria [17]. In this study, we find the optimal mTry and nTree for our forecasting model by using the
training set and then verify their performance using the validation and test set. The authors in [42]
suggested that a random forest should have 64 to 128 trees and we use 128 trees for our hybrid STLF
model. In addition, the mTry values used for this study provided by scikit-learn are as follows.
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• Auto: max features = n features.
• Sqrt: max features = sqrt (n features).
• Log2: max features = log2 (n features).

A typical ANN architecture, known as a multilayer perceptron, is a type of machine learning
algorithm that is a network of individual nodes, called perceptrons, organized in a series of layers [5].
Each layer in MLP is categorized into three types: an input layer, which receives features used for
prediction; a hidden layer, where hidden features are extracted; and an output layer, which yields
the determined results. Among them, the hidden layer has many factors affecting performance, such
as the number of layers, the number of nodes involved, and the activation function of the node [44].
Therefore, the network performance depends on how the hidden layer is configured. In particular, the
number of hidden layers determines the depth or shallowness of the network. In addition, if there
are more than two hidden layers, it is called a deep neural network (DNN) [45]. To establish our
MLP, we use two hidden layers since we do not require many input variables in our prediction model.
In addition, we use the same epochs and batch size as the LSTM model we described previously.
Furthermore, as an activation function, we use an exponential linear unit (ELU) without the rectified
linear unit (ReLU), which has gained increasing popularity recently. However, its main disadvantage
is that the perceptron can die in the learning process. ELU [46] is an approximate function introduced
to overcome this disadvantage, and can be defined by:

f(x) =

{
x if x ≥ 0

α(ex − 1) if x < 0
. (2)

The next important consideration is to choose the number of hidden nodes. Many studies have
been conducted to determine the optimal number of hidden nodes for a given task [15,47,48], and we
decided to use two different hidden node counts: the number of input variables and 2/3 of the number
of input variables. Since we use nine input variables, the numbers of hidden nodes we will use are
9 and 6. Since our model has two hidden layers, we can consider three configurations, depending
on the hidden nodes of the first and second layers: (9, 9), (9, 6), and (6, 6). As in the random forest,
we evaluate these configurations using the training data for each building cluster and identify the
configuration that gives the best prediction accuracy. After that, we compare the best MLP model with
the random forest model for each cluster type.

3.5. Time series Cross-Validation

To construct a forecasting model, the dataset is usually divided into a training set and test set.
Then, the training set is used in building a forecasting model and the test set is used in evaluating the
resulting model. However, in traditional time series forecasting techniques, the prediction performance
is poorer as the interval between the training and forecasting times increases. To alleviate this problem,
we apply the time series cross-validation (TSCV) based on the rolling forecasting origin [49]. A variation
of this approach focuses on a single prediction horizon for each test set. In this approach, we use
various training sets, each containing one extra observation than the previous one. We calculate the
prediction accuracy by first measuring the accuracy for each test set and then averaging the results
of all test sets. This paper proposes a one-week (sum from 145 h to 168 h) look-ahead view of the
operation for smart grids. For this, a seven-step-ahead forecasting model is built to forecast the power
consumption at a single time (h + 7 + i − 1) using the test set with observations at several times
(1, 2, . . . , h + i − 1). If h observations are required to produce a reliable forecast, then, for the total T
observations, the process works as follows.

For i = 1 to T − h − 6:

(1) Select the observation at time h + 7 + i − 1 for the test set;
(2) Consider the observations at several times 1, 2, · · · , h + i − 1 to estimate the forecasting model;
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(3) Calculate the 7-step error on the forecast for time h + 7 + i − 1;
(4) Compute the forecast accuracy based on the errors obtained.

4. Performance Metrics

To analyze the forecast model performance, several metrics, such as mean absolute percentage
error (MAPE), root mean square error (RMSE), and mean absolute error (MAE), are used, which are
well-known for representing the prediction accuracy.

4.1. Mean Absolute Percentage Error

MAPE is a measure of prediction accuracy for constructing fitted time series values in statistics,
specifically in trend estimation. It usually presents accuracy as a percentage of the error and can be
easier to comprehend than the other statistics since this number is a percentage. It is known that the
MAPE is huge if the actual value is very close to zero. However, in this work, we do not have such
values. The formula for MAPE is shown in Equation (3), where At and Ft are the actual and forecast
values, respectively. In addition, n is the number of times observed.

MAPE =
100
n

n

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (3)

4.2. Root Mean Square Error

RMSE (also called the root mean square deviation, RMSD) is used to aggregate the residuals into a
single measure of predictive ability. The square root of the mean square error, as shown in Equation (4),
is the forecast value Ft and an actual value At. The mean square standard deviation of the forecast
value Ft for the actual value At is the square root of RMSE. For an unbiased estimator, RMSE is the
square root of the variance, which denotes the standard error.

RMSE =

√
∑n

i=1(Ft − At)
2

n
(4)

4.3. Mean Absolute Error

In statistics, MAE is used to evaluate how close forecasts or predictions are to the actual outcomes.
It is calculated by averaging the absolute differences between the prediction values and the actual
observed values. MAE is defined as shown in Equation (5), where Ft is the forecast value and At is the
actual value.

MAE =
1
n

n

∑
i=1
|Ft − At| (5)

5. Experimental Results

To evaluate the performance of our hybrid forecast model, we carried out several experiments.
We performed preprocessing for the dataset in the Python environment and performed forecast
modeling using scikit-learn [50], TensorFlow [51], and Keras [52]. We used six years of daily electrical
load data from 2012 to 2017. Specifically, we used electrical load data of 2012 to configure input
variables for a training set. Data from 2013 to 2015 was used as the training set, the data of 2016 was
the validation set, and the data of 2017 was the test set.

5.1. Dataset Description

Table 2 shows the statistics of the electric consumption data for each cluster, including the number
of valid cases, mean, and standard deviation. As shown in the table, Cluster B has a higher power
consumption and wider deviation than clusters A and C.
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Table 2. Statistics of power consumption data.

Statistics
Cluster #

Cluster A Cluster B Cluster C

Number of valid cases 1826 1826 1826
Mean 63,094.97 68,860.93 30,472.31

Variance 246,836,473 269,528,278 32,820,509
Standard deviation 15,711.03 16,417.31 5728.92

Maximum 100,222.56 109,595.52 46,641.6
Minimum 23,617.92 26,417.76 14,330.88

Lower quartile 52,202.4 56,678.88 26,288.82
Median 63,946.32 66,996.72 30,343.14

Upper quartile 76,386.24 79,209.96 34,719.45

5.2. Forecasting Model Configuration

In this study, we used the LSTM networks method to show the repeating pattern of power
consumptions depending on the day of the week. We tested diverse cases and investigated the
accuracy of load forecasting for the test cases to determine the best input data selection. As shown
in Figure 4, the input variables consist of four electrical loads from one week ago to four weeks
ago as apart at a weekly interval to reflect the cycle of one month. In the feature scaling process,
we rescaled the range of the measured values from 0 to 1. We used tanh as the activation function
and calculated the loss by using the mean absolute error. We used the adaptive moment estimation
(Adam) method, which combines momentum and root mean square propagation (RMSProp), as the
optimization method. The Adam optimization technique weighs the time series data and maintains the
relative size difference between the variables. In the configuration of the remaining hyper-parameters
of the model, we set the number of hidden units to 60, epochs to 300, and batch size to 12.
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Figure 4. System architecture of LSTM networks.

We experimented with the LSTM model [52] by changing the time step from one cycle to a
maximum of 30 cycles. Table 3 shows the mean absolute percentage error (MAPE) of each cluster for
each time step. In the table, the predicted results with the best accuracy are marked in bold. Table 3
shows that the 27th time step indicates the most accurate prediction performance. In general, the
electricity demand is relatively high in summer and winter, compared to that in spring and autumn.
In other words, it has a rise and fall curve in a half-year cycle, and the 27th time step corresponds to a
week number of about half a year.

We performed similar a time series pattern analysis based on the decision tree through 10-fold
cross-validation for the training set. Among several options provided by scikit-learn to construct a
decision tree, we considered the criterion, max depth, and max features. The criterion is a function for
measuring the quality of a split. In this paper, we use the “mae” criterion for our forecasting model
since it gives the smallest error rate between the actual and the classification value. Max depth is the
maximum depth of the tree. We set max depth to 3, such that the number of leaves is 8. In other words,
the decision tree classifies the training datasets into eight similar time series. Max features are the
number of features to consider when looking for the best split. We have chosen the “auto” option
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to reflect all time variables. Figure 5 shows the result of the similar time series recognition for each
cluster using the decision tree. Here, samples indicate the number of tuples in each leaf. The total
number of samples is 1095, since we are considering the daily consumption data over three years.
Value denotes the classification value of the similar time series. Table 4 shows the number of similar
time series samples according to the decision tree for 2016 and 2017.

Table 3. MAPE results of LSTM networks.

Time Step Cluster A Cluster B Cluster C Average

1 9.587 6.989 6.834 7.803
2 9.169 6.839 6.626 7.545
3 8.820 6.812 6.463 7.365
4 8.773 6.750 6.328 7.284
5 8.686 6.626 6.191 7.168
6 8.403 6.695 5.995 7.031
7 8.405 6.700 6.104 7.070
8 8.263 6.406 5.846 6.839
9 8.260 6.583 5.648 6.830

10 8.286 6.318 5.524 6.709
11 8.095 6.438 5.666 6.733
12 8.133 6.469 5.917 6.840
13 7.715 6.346 5.699 6.587
14 7.770 6.263 5.399 6.477
15 7.751 6.139 5.306 6.399
16 7.561 5.974 5.315 6.283
17 7.411 5.891 5.450 6.251
18 7.364 6.063 5.398 6.275
19 7.466 6.089 5.639 6.398
20 7.510 5.892 5.627 6.343
21 7.763 5.977 5.451 6.397
22 7.385 5.856 5.460 6.234
23 7.431 5.795 5.756 6.327
24 7.870 6.089 5.600 6.520
25 7.352 5.923 5.370 6.215
26 7.335 5.997 5.285 6.206
27 7.405 5.479 5.371 6.085
28 7.422 5.853 5.128 6.134
29 7.553 5.979 5.567 6.366
30 7.569 5.601 5.574 6.248

Table 4. Similar time series patterns.

Pattern
Cluster A Cluster B Cluster C

2016 2017 2016 2017 2016 2017

1 62 62 62 62 62 62
2 14 14 14 14 140 138
3 107 111 107 111 20 20
4 64 58 64 58 25 25
5 14 15 14 15 1 2
6 53 52 53 52 10 9
7 16 16 5 5 99 98
8 36 37 47 48 9 11

Total 366 365 366 365 366 365

The predictive evaluation consists of two steps. Based on the forecast models of random forest
and MLP, we used the training set from 2013 to 2015 and predicted the verification period of 2016.
The objectives are to detect models with optimal hyper-parameters and then to select models with a
better predictive performance in similar time series. Next, we set the training set to include data from
2013 to 2016 and predicted the test period of 2017. Here, we evaluate the predictive performance of the
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hybrid model we have constructed. Table 5 is the prediction result composed of MLP, and MAPE is
used as a measure of prediction accuracy and the predicted results with the best accuracy are marked
in bold. As shown in the table, overall, a model consisting of nine and nine nodes in each hidden layer
showed the best performance. Although the nine and six nodes in each hidden layer showed a better
performance in Cluster A, the model consisting of nine and nine nodes was selected to generalize the
predictive model.
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Table 5. MAPE results of the multilayer perceptron.
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Number of Neurons in Each Layer

9-6-6-1 9-9-6-1 9-9-9-1

Cluster A 3.856 3.767 3.936
Cluster B 4.869 5.076 4.424
Cluster C 3.366 3.390 3.205
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Table 6 shows the MAPE of random forest for each cluster under different mTry and the predicted
results with the best accuracy are marked in bold. Since the input variable is 9, sqrt and log2 are
recognized as 3 and the results are the same. We choose the sqrt that is commonly used [16,43].

Table 6. MAPE results of random forest.

Cluster #
Number of Features

Auto sqrt log2

Cluster A 3.983 3.945 3.945
Cluster B 4.900 4.684 4.684
Cluster C 3.579 3.266 3.266

Figure 6a–c show the use of forests of trees to evaluate the importance of features in an artificial
classification task. The blue bars denote the feature importance of the forest, along with their inter-trees
variability. In the figure, LSTM, which refers to the LSTM-RNN that reflects the trend of day of the
week, has the highest impact on the model configuration for all clusters. Other features have different
impacts, depending on the cluster type.
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Table 7 shows the electrical load forecast accuracy for the pattern classification of similar time
series for 2016. In the table, the predicted results with a better accuracy are marked in bold. For instance,
in the case of Cluster A, while random forest shows a better prediction accuracy for patterns 1 to 4,
MLP shows a better accuracy for patterns 5 to 8. Using this table, we can choose a more accurate
prediction model for the pattern and cluster type.

Table 7. MAPE results of load forecasting in 2016.

2016 Cluster A Cluster B Cluster C

Pattern MLP RF MLP RF MLP RF

1 3.339 3.092 3.705 2.901 2.736 2.475
2 2.199 1.965 4.395 3.602 2.987 2.731
3 2.840 2.712 3.343 2.990 2.853 2.277
4 4.165 3.472 3.794 3.978 3.517 2.568
5 7.624 9.259 8.606 15.728 4.229 10.303
6 4.617 5.272 5.404 6.172 5.159 4.894
7 3.816 4.548 9.199 8.860 3.686 4.718
8 6.108 6.402 5.844 6.768 2.152 2.595

Table 8 shows prediction results of our model for 2017. Comparing Tables 7 and 8, we can see
that MLP and random forest (RF) have a matched relative performance in most cases. There are
two exceptions in Cluster A and one exception in Cluster B and they are underlined and marked in
bold. In the case of Cluster C, MLP and RF gave the same relative performance. This is good evidence
that our hybrid model can be generalized.

Table 8. MAPE results of load forecasting in 2017.

2017 Cluster A Cluster B Cluster C

Pattern MLP RF MLP RF MLP RF

1 2.914 2.709 4.009 3.428 2.838 2.524
2 1.945 2.587 3.313 3.442 2.622 2.474
3 2.682 2.629 3.464 3.258 3.350 2.583
4 5.025 4.211 4.005 5.116 2.694 2.391
5 7.103 11.585 9.640 20.718 3.300 15.713
6 4.503 6.007 5.956 7.272 6.984 6.296
7 3.451 3.517 13.958 12.386 3.835 4.443
8 6.834 6.622 7.131 8.106 2.562 3.722
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5.3. Comparison of Forecasting Techniques

To verify the validness and applicability of our hybrid daily load forecasting model, the predictive
performance of our model should be compared with other machine learning techniques, including
ANN and SVR, which are very popular predictive techniques [6]. In this comparison, we consider eight
models, including our model, as shown in Table 9. In the table, GBM (Gradient Boosting Machine) is a
type of ensemble learning technique that implements the sequential boosting algorithm. A grid search
can be used to find optimal hyper-parameter values for the SVR/GBM [25]. SNN (Shallow Neural
Network) has three layers of input, hidden, and output, and it was found that the optimal number of
the hidden nodes is nine for all clusters.

Tables 9–11 compare the prediction performance in terms of MAPE, RMSE, and MAE, respectively.
From the tables, the predicted results with the best accuracy are marked in bold and we observe that
our hybrid model exhibits a superb performance in all categories. Figure 7 shows more detail of the
MAPE distribution for each cluster using a box plot. We can deduce that our hybrid model has fewer
outliers and a smaller maximum error. In addition, the error rate increases in the case of long holidays
in Korea. For instance, during the 10-day holiday in October 2017, the error rate increased significantly.
Another cause of high error rates is due to outliers or missing values because of diverse reasons, such
as malfunction and surge. Figure 8 compares the daily load forecasts of our hybrid model and actual
daily usage on a quarterly basis. Overall, our hybrid model showed a good performance in predictions,
regardless of diverse external factors such as long holidays.

Table 9. MAPE distribution for each forecasting model.

Forecasting Model
Cluster #

Cluster A Cluster B Cluster C

MR 7.852 8.971 4.445
DT 6.536 8.683 6.004

GBM 4.831 6.896 3.920
SVR 4.071 5.761 3.135
SNN 4.054 5.948 3.181
MLP 3.961 4.872 3.139
RF 4.185 5.641 3.216

RF+MLP 3.798 4.674 2.946

Table 10. RMSE comparison for each forecasting model.

Forecasting Model
Cluster #

Cluster A Cluster B Cluster C

MR 5725.064 6847.179 1757.463
DT 6118.835 7475.188 2351.676

GBM 4162.359 5759.276 1495.751
SVR 3401.812 5702.405 1220.052
SNN 3456.156 4903.587 1236.606
MLP 3381.697 4064.559 1170.824
RF 4111.245 4675.762 1450.436

RF + MLP 3353.639 3894.495 1143.297

Nevertheless, we can see that there are several time periods when forecasting errors are high.
For instance, from 2013 to 2016, Cluster B showed a steady increase in its power consumption due to
building remodeling and construction. Even though the remodeling and construction are finished at
the beginning of 2017, the input variable for estimating the year-ahead consumption is still reflecting
such an increase. This was eventually adjusted properly for the third and fourth quarters by the
time series cross-validation. On the other hand, during the remodeling, the old heating, ventilation,
and air conditioning (HVAC) system was replaced by a much more efficient one and the new system
started its operation in December 2017. Even though our hybrid model predicted much higher power
consumption for the cold weather in the third week, the actual power consumption was quite low due
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to the new HVAC system. Lastly, Cluster A showed a high forecasting error on 29 November 2017.
It turned out that at that time, there were several missing values in the actual power consumption.
This kind of problem can be detected by using the outlier detection technique.

Table 11. MAE comparison for each forecasting model.

Forecasting Model
Cluster #

Cluster A Cluster B Cluster C

MR 4155.572 4888.821 1262.985
DT 3897.741 5054.069 1708.709

GBM 2764.128 3916.945 1122.530
SVR 2236.318 3956.907 898.963
SNN 2319.696 3469.775 919.014
MLP 2255.537 2795.246 910.351
RF 2708.848 3235.855 1063.731

RF+MLP 2208.072 2742.543 860.989
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6. Conclusions

In this paper, we proposed a hybrid model for short-term load forecasting for higher educational
institutions, such as universities, using random forest and multilayer perceptron. To construct our
forecast model, we first grouped university buildings into an academic cluster, science/engineering
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cluster, and dormitory cluster, and collected their daily electrical load data over six years. We divided
the collected data into a training set, a validation set, and a test set. For the training set, we classified
electrical load data by pattern similarity using the decision tree technique. We considered various
configurations for random forest and multilayer perceptron and evaluated their prediction performance
by using the validation set to select the optimal model. Based on this work, we constructed our hybrid
daily electrical load forecast model by selecting models with a better predictive performance in similar
time series. Finally, using the test set, we compared the daily electrical load prediction performance of
our hybrid model and other popular models. The comparison results show that our hybrid model
outperforms other popular models. In conclusion, we showed that LSTM networks are effective for
reflecting an electrical load depending on the day of the week and the decision tree is effective in
classifying time series data by similarity. Moreover, using these two forecasting models in a hybrid
model can complement their weaknesses.

In order to improve the accuracy of electrical load prediction, we plan to use a supervised
learning method reflecting various statistically significant data. Also, we will analyze the prediction
performance in different look-ahead points (from the next day to a week) using probabilistic forecasting.
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