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Abstract: The energy model of belt conveyors plays a key role in the energy efficiency optimization
problem of belt conveyors. However, the existing energy models and parameter identification
methods are mainly limited to single-motor-driven belt conveyors and require speed sensors. This
paper will present an energy model and a parameter identification method for dual-motor-driven belt
conveyors whose speed sensors are not available. Firstly, a new energy model of dual-motor-driven
belt conveyors is established by combining the traditional energy model with the dynamic model
of a dual-motor-driven system. Then, a parameter identification method based on an extended
Kalman filtering algorithm and recursive least square approach is proposed. Finally, the feasibility
and effectiveness of the method are demonstrated by simulation experiments.
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1. Introduction

Belt conveyors play an important role in continuous bulk material transport in the mining industry,
chemical production, power plants, and so on [1,2]. As shown in Figure 1, a belt conveyor is mainly
composed of a belt, drive motor, drive pulley, roller, and take-up device [1]. The drive pulley is
powered to rotate the belt and move the materials on the belt forward [2]. The traditional control for
belt conveyors can only make belt conveyors run at a constant speed [2,3], and the average utilization
of a belt is less than the design capacity [4], which may lead to a large amount of energy wastage.
According to standard DIN 22101, considerable energy savings can be achieved by adjusting the belt
speed in accordance with a change in material feed rate [5]. However, the relationship among the
energy consumption, feed rate, and belt speed is complex, and the energy consumption is also closely
related to the working environment and the operational condition of the drive motors [6]. Therefore,
it is of great importance to study the energy model and parameter identification methods for belt
conveyors, which have been concerns for many scholars [7–10].
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The existing energy models of belt conveyors can be mainly divided into two categories: data-
driven energy models [11,12] and analytical energy models [7,13–16]. The accuracy of data-driven
energy models is affected by experimental data greatly. Thus these models are not conducive to
formulate and solve the EEO (energy efficiency optimization) problems. For EEO problems, analytical
energy models are more reasonable.

The classical analytical energy models originated from ISO 5048, DIN 22101 and CEMA (Conveyor
Equipment Manufacturers Association) are based on resistance calculation. But they involve too many
parameters and can hardly be used for EEO problems. According to JIS B 8805 and FDA (Fenner Dunlop
Australia), an alternative analytical energy model is established by energy conversion methodology.
This energy model uses fewer parameters but usually results in large errors. Combining with the
advantages of the above two methods, an energy model which can be expressed as (1) was established
in [6].

PT = θ1VT2 + θ2V + θ3
T2

V
+ θ4T +

V2T
3.6

(1)

where θ1, θ2, θ3 and θ4 are determined by the structural parameters and operation parameters of the
belt conveyors. PT is the mechanical power of the belt conveyors (kW), V is the belt speed (m/s), and T
is the feed rate (t/h). In practice, many reasons probably make a belt conveyor different to its design
condition. Hence, θ1, θ2, θ3, and θ4 should be identified through experiments instead of being derived
from design parameters [17]. However, PT is difficult to measure directly, which poses a challenge to
the parameter identification of the energy model (1). Based on the relationship among the power and
the efficiency of the drive motor and the mechanical power of the belt conveyor, an offline parameter
identification method based on least square and an online parameter identification method based
on recursive least square were proposed in [17]. However, for a dual-motor-driven belt conveyor,
the relationship between the efficiency and the mechanical power of the belt conveyor cannot be
determined directly. Therefore, the above parameter identification methods cannot be extended to
dual-motor-driven belt conveyors directly. An alternative method was proposed by [14], where an
energy model was established by combining the energy model with a dynamic model of the drive motor,
and a parameter identification method was proposed based on an adaptive observer. In [18], an energy
model of belt conveyors driven by rigidly connected dual motors was established by connecting the
dynamic model of the drive motors with the energy model of belt conveyors. Meanwhile, a parameter
identification method based on recursive least square was proposed. However, drive motors must
be equipped with speed sensors in this method. In practice, however, the drive motors may not
be equipped with speed sensors and the reasons are as follows: Firstly, speed sensors will increase
the size and cost of systems unnecessarily [19]. Furthermore, the reliability of the motors will be
influenced [20]. Secondly, the working environment of the drive motors is complex and harsh, so the
speed sensors are prone to failure and their maintenance is very difficult. Thirdly, it is also not suitable
for installing speed sensors in hostile environments [21]. Additionally, in some extreme cases, there
is no place for installing speed sensors. Furthermore, the speed sensor hinders the development
of the motor to achieve a higher speed and miniaturized direction [22,23]. Therefore, this paper
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will study the problems of energy modeling and parameter identification of dual-motor-driven belt
conveyors without speed sensors. The contributions of this paper are as follows: (1) a new energy
model of dual-motor-driven belt conveyors is established by combining the classical energy model
and the dynamic model of the dual-motor-driven system; (2) a parameter identification method for
dual-motor-driven belt conveyors without speed sensors is proposed based on the extended Kalman
filtering algorithm and recursive least square. The flowchart of the research is shown in Figure 2.
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The rest of this paper is organized as follows: In Section 2, the energy model of belt conveyors
based on the dynamic model of the dual-motor-driven system is established. In Section 3, the state
observer of the two drive motors is established. EKF (extended Kalman filtering) is adopted to realize
the simultaneous estimation of the speed and load torque. Then, a parameter identification method
based on RLS (recursive least square) is proposed. In Section 4, simulation results are presented.
The last section concludes the paper.

2. Energy Model

This section will establish a new energy model for dual-motor-driven belt conveyors. To do this,
the dynamic model of the dual-motor system will be discussed first. Consider that the drive pulley
of belt conveyors is driven by two squirrel cage asynchronous motors rigidly connected by a gear
transmission system, as shown in Figure 3.
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Figure 3. Dual-motor-driven transmission system.

The motion equation of the gear transmission system can be expressed as follows [24]

Tg = Bgωg + TL + JL
dωg

dt
(2)

where Tg is the torque of girth gear, Bg is the friction coefficient of girth gear, ωg is the angular velocity
of girth gear, TL is the load torque and JL is the load rotating inertia.

The motion equation of the motor is [25]

Te − TL =
J

np

dω

dt
+

B
np

ω (3)

where Te is the electromagnetic torque, B is the friction coefficient of motor and np is the number of
pole-pairs. The angular velocity of two motors and the angular velocity of the girth gear meet the
following relation.

ω1 = ω2 =
Rn
r

ωg (4)

where R is the radius of girth gear, r is the radius of pinion and n is the gearbox reduction ratio.
The motion equation of dual-motor-driven system can be expressed as follows [24]

dω1

dt
=

np1

J1

{
Te1 −

B1

np1
ω1 −

[
rn
R
(Bgωg + TL + JL

dωg

dt
)− (Te2 −

J2

np2

dω2

dt
− B2

np2
ω2)

]}
(5)

Then according to (4), we have

dω1

dt
=

np1

J1

{
Te1 −

B1

np1
ω1 −

[
rn
R
(Bg

r
Rn

ω1 + TL + JL
r

Rn
dω1

dt
)− (Te2 −

J2

np2

dω1

dt
− B2

np2
ω1)

]}
(6)

Then we have,
J1

np1

dω1

dt
= g1

(
Te1 + Te2 −

rn
R

TL

)
− g1g2ω1 (7)

where
g1 =

J1R2np2
J1np2R2+np1np2 JLr2+J2np1R2

g2 = B1
np1

+
Bgr2

R2 + B2
np2

(8)

Because the motors are rigidly connected by gear transmission system, we use ω to express the
speeds of two motors. We use np to express the number of pole-pairs. Simplifying (7), yields

J1

np

dω

dt
= g1

(
Te1 + Te2 −

rn
R

TL − g2ω
)

(9)
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In accordance with Flux Orientation Control strategy, the mathematical model of an asynchronous
motor oriented by rotor flux can be expressed as follows [25]

J dω
dt = np(Te − TL)

dψr
dt = − 1

Tr
ψr +

Lm
Tr

isd
disd
dt = Lm

σLs LrTr
ψr − RsL2

r+RrL2
m

σLsL2
r

isd + ωsisq +
usd
σLs

disq
dt = − Lm

σLs Lr
ωψr − RsL2

r+RrL2
m

σLsL2
r

isq −ωsisd +
usq
σLs

(10)

where Lm is the mutual induction, Lr is the self-induction of the rotor, and Ls is the self-induction of
the stator; isd and isq are the components of the stator currents, respectively; Rs is the stator phase
resistance and Rr is the rotor phase resistance; ψr is the rotor flux; usd and usq are the components
of stator voltages, respectively; σ is the coefficient of the leakage inductance which is determined
by σ = 1− Lm

2/(LrLs); Tr is the rotor time constant which is determined by Tr = Lr/Rr; ωs is the
synchronous speed and it is accurately calculated using ωs = ω + (Lmisq)/(Trψr).

The first equation of (10) is the motion equation of motor, and the load is assumed to be a slowly
time-varying value, then the torsional elastic torque and damping torque can be ignored. Hence, the
electromagnetic torque Te can be expressed as follows

Te =
npLm

Lr
isqψr (11)

In accordance with Flux Orientation Control strategy, the stator current is decomposed into
excitation current and torque current. The rotor flux produced only by excitation current, and the
electromagnetic torque is proportional to the product of rotor flux and torque current. Hence,
the components between torque and magnetic field of stator current are decoupled.

Therefore, the dynamic model of dual-motor-driven system is given by

J1
np

dω
dt = g1

(
Te1 + Te2 − rn

R TL − g2ω
)

dψr1
dt = − 1

Tr1
ψr1 +

Lm1
Tr1

isd1
disd1

dt = Lm1
σ1Ls1Lr1Tr1

ψr1 − Rt1
σ1Ls1

isd1 + ωs1isq1 +
usd1

σ1Ls1
disq1

dt = − Lm1
σ1Ls1Lr1

ωψr1 − Rt1
σ1Ls1

isq1 −ωs1isd1 +
usq1

σ1Ls1
dψr2

dt = − 1
Tr2

ψr2 +
Lm2
Tr2

isd2
disd2

dt = Lm2
σ2Ls2Lr2Tr2

ψr2 − Rt2
σ2Ls2

isd1 + ωs2isq2 +
usd2

σ2Ls2
disq2

dt = − Lm2
σ2Ls2Lr2

ωψr2 − Rt2
σ2Ls2

isq2 −ωs2isd2 +
usq2

σ2Ls2

(12)

where Rt is time constant and can be expressed as

Rt =
RsL2

r + RrL2
m

L2
r

(13)

For a belt conveyor, the load torque TL can be expressed as follows

TL = FURb (14)

where FU is the total resistance of the belt conveyors, Rb is the radius of the drive pulley.
According to [6], the total resistance FU of the belt conveyors can be calculated by

FU = VT
3.6 + T2

6.48ρb2
1
+
{

g f Q
[

L cos δ + L(1− cos δ)
(

1− 2QB
Q

)]
+ k3 + CFt

}
+k1

T2

V2 +
(

gL sin δ+g f L cos δ
3.6 + k2

)
T
V

(15)
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The belt speed can be accurately calculated by V = cω, and c = Rbr/Rn. ρ is the bulk density of
material (kg/m3) and b1 is the width between the skirt boards (m). f is the artificial friction factor. L is
the center-to-center distance (m). CFt is a constant. Q is the mass of the moving parts of the equipment
(kg/m); it can be expressed as Q = QRO + QRU + 2QB. QRO is the unit mass of the rotating parts of
the carrying idler rollers (kg/m), QRU is the unit mass of the rotating parts of the return idler rollers
(kg/m), and QB is the unit mass of the belt (kg/m). k1, k2, and k3 are the constants which relate to the
structural parameters of the belt conveyor.

Combining (14) and (15), we have

TL =
cωTRb

3.6
+ ψT(T, ω)θ (16)

where
ψ(T, ω) =

[
T2Rb Rb

T2Rb
c2ω2

TRb
cω

]T
(17)

θ =
[

θ1 θ2 θ3 θ4

]T
θ1 = 1

6.48b2
1ρ

θ2 = g f Q
[

L cos δ + (1− cos δ)(1− 2QB
Q )
]
+ k3 + CFt

θ3 = k1

θ4 = gL sin δ+g f L cos δ
3.6 + k2

(18)

Then incorporating ω into TL according to (9) and (16), we have

TL =

(
cRbT + 3.6 R

rn g2

)
ω

3.6
+ ψT(T, ω)θ (19)

As a result, the energy model of dual-motor-driven belt conveyors can be expressed as follows

J1
np

dω
dt = g1

[
Te1 + Te2 − rn

R

(
(cRbT+3.6 R

rn g2)ω

3.6 + ψT(T, ω)θ

)]
dψr1

dt = − 1
Tr1

ψr1 +
Lm1
Tr1

isd1
disd1

dt = Lm1
σ1Ls1Lr1Tr1

ψr1 − Rt1
σ1Ls1

isd1 + ωs1isq1 +
usd1

σ1Ls1
disq1

dt = − Lm1
σ1Ls1Lr1

ωψr1 − Rt1
σ1Ls1

isq1 −ωs1isd1 +
usq1

σ1Ls1
dψr2

dt = − 1
Tr2

ψr2 +
Lm2
Tr2

isd2
disd2

dt = Lm2
σ2Ls2Lr2Tr2

ψr2 − Rt2
σ2Ls2

isd1 + ωs2isq2 +
usd2

σ2Ls2
disq2

dt = − Lm2
σ2Ls2Lr2

ωψr2 − Rt2
σ2Ls2

isq2 −ωs2isd2 +
usq2

σ2Ls2

(20)

The advantage of this energy model is that the dynamic model of the dual-motor-driven system
is involved, which is convenient for parameter identification. The model proposed in this section can
be used for an energy model of dual-motor-driven belt conveyors.

The vector θ is determined by the structural parameters of the belt conveyor, which are difficult
to measure. Hence θ is the parameter to be identified.

Remark 1. The energy model of dual-motor-driven belt conveyors is established by combing the classical
energy model (1) with the dynamic model of the dual-motor-driven system (12). Compared with the data-driven
energy model in [11], the proposed model (20) is more convenient to formulate the energy optimization problem
of belt conveyors. From the view point of parameter identification, the proposed model (20) is applicable to
dual-motor-driven belt conveyors, while the analytical energy model in [14] and [17] can only be applied to
single-motor-driven belt conveyors.
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3. Parameter Identification

In this section, a new parameter identification method will be proposed for the energy model
of dual-motor-driven belt conveyors without speed sensors. The basic idea is as follows: firstly,
the linearized state space model of the system will be established. Then, the EKF algorithm is used to
estimate the speed and total load torque of the belt conveyors [26–28]. Finally, the RLS algorithm is
adopted to identify the energy model parameters. The scheme of identification is shown in Figure 4.
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Tr1
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− Lm1
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Tr2
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0
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1
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0 1
σ1Ls1

0 0
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0 0 1

σ2Ls2
0

0 0 0 1
σ2Ls2




usd1

usq1

usd2
usq2



We rewrite (21) as
pI = A(t)I + B(t)V (22)

where p is the differential operator. In the process of implementing the EKF algorithm, the continuous
system needs to be discretized. Equation (22) can be expressed as follows

pI =
I(k + 1)− I(k)

ts
(23)

where ts is the sampling time, the recurrence formula of matrix I can be obtained by combining (22)
and (23) as follows

I(k + 1) = I(k) + ts[AI(k) + BV(k)] = F(k)I(k) + M(k)V(k) (24)
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where

F(k) =



1− 1
Tr1

ts
Lm1
Tr1

ts 0 0 0 0
a1
Tr1

b1 ωs1ts 0 0 0
−a1ω −ωs1ts b1 0 0 0

0 0 0 1− 1
Tr2

ts
Lm2
Tr2

ts 0
0 0 0 a2

Tr2
b2 ωs2ts

0 0 0 −a2ω −ωs2ts b2


,

I(k) =



ψr1(k)
isd1(k)
isq1(k)
ψr2(k)
isd2(k)
isq2(k)


, V(k) =


usd1(k)
usq1(k)
usd2(k)
usq2(k)

,

M(k) =



0 0 0 0
1

σ1Ls1
ts 0 0 0

0 1
σ1Ls1

ts 0 0
0 0 0 0
0 0 1

σ2Ls2
ts 0

0 0 0 1
σ2Ls2

ts


(25)

with ai =
Lmi

σi Lsi Lri
ts, bi = 1− Rti

σi Lsi
ts, (i = 1, 2). The state variables are denoted as follows

X(k) =
[

ψr1(k) isd1(k) isq1(k) ψr2(k) isd2(k) isq2(k)
]T

U(k) =
[

usd1(k) usq1(k) usd2(k) usq2(k)
]T

Y(k) =
[

isd1(k) isq1(k) isd2(k) isq2(k)
]T

(26)

Then, we have {
X(k + 1) = F(k)X(k) + M(k)U(k) + w(k)
Y(k) = CX(k) + v(k)

(27)

C =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (28)

where w(k) is the interference and v(k) is the measurement noise caused by inaccurate measurement.
In general, w(k) and v(k) are assumed to be Gaussian white noise with zero mean.

3.2. Extended State Equation of the Energy Model

Selecting ω and TL as state variables, the extended state equation of the energy model (27) is as
follows {

X(k + 1) = A(k)X(k) + B(k)U(k) + w(k)
Y(k) = EX(k) + v(k)

(29)

where x(k) is the extended state matrix which can be expressed as

X(k) =
[

ψr1(k) isd1(k) isq1(k) ψr2(k) isd2(k) isq2(k) ω(k) TL(k)
]T

,
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A(k) =



1− 1
Tr1

ts
Lm1
Tr1

ts 0 0 0 0 0 0
a1
Tr1

b1 ωs1ts 0 0 0 0 0
−a1x7(k) −ωs1ts b1 0 0 0 0 0

0 0 0 1− 1
Tr2

ts
Lm2
Tr2

ts 0 0 0
0 0 0 a2

Tr2
b2 ωs2ts 0 0

0 0 0 −a2x7(k) −ωs2ts b2 0 0
n2

pLm1x3(k)g1
Lr1 J1

ts 0 0
n2

pLm2x6(k)g1
Lr2 J1

ts 0 0 1 −npg1rn
J1R ts

0 0 0 0 0 0 0 1


, (30)

B(k) =


0 ts

σLs1
0 0 0 0 0 0

0 0 ts
σLs1

0 0 0 0 0
0 0 0 0 ts

σLs2
0 0 0

0 0 0 0 0 ts
σLs2

0 0


T

, E =


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


Equation (29) can be rewritten as follows{

x(k + 1) = f {x(k), u(k), k}
y(k) = h{x(k)}

(31)

Then, we have 

f1[x(k), u(k), k] = ψr1(k + 1)
f2[x(k), u(k), k] = isd1(k + 1)
f3[x(k), u(k), k] = isq1(k + 1)
f4[x(k), u(k), k] = ψr2(k + 1)
f5[x(k), u(k), k] = isd2(k + 1)
f6[x(k), u(k), k] = isq2(k + 1)
f7[x(k), u(k), k] = ω(k + 1)
f8[x(k), u(k), k] = TL(k + 1)

(32)

A linearized model of (32) will be used in the sequel. So we define H(k) and G(k) as follows

H(k) =
∂h(·)

∂x

∣∣∣∣
x=x̂(k/k)

=


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 (33)

G(k) =
∂ f (·)

∂x

∣∣∣∣
x=x̂(k/k)

=


∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x8

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x8

...
...

...
∂ f8
∂x1

∂ f8
∂x2

· · · ∂ f8
∂x8

 (34)
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Combining (32) and (34), we have

f1 = (1− 1
Tr1

ts)ψr1(k) +
Lm1
Tr1

tsisd1(k)
f2 = Lm1ts

σ1Ls1Lr1Tr1
ψr1(k) + (1− Rt1ts

σ1Ls1
)isd1(k) + ωs1tsisq1(k) + 1

σLs1
tsusd1(k)

f3 = − Lm1tsω
σ1Ls1Lr1

ψr1(k)−ωs1tsisd1(k) + (1− Rt1ts
σ1Ls1

)isq1(k) + 1
σLs1

tsusq1(k)
f4 = (1− 1

Tr2
ts)ψr2(k) +

Lm2
Tr2

tsisd2(k)
f5 = Lm2ts

σ2Ls2Lr2Tr2
ψr2(k) + (1− Rt2ts

σ2Ls2
)isd2(k) + ωs2isq2(k) + 1

σLs2
tsusd2(k)

f6 = − Lm2tsω
σ2Ls2Lr2

ψr2(k)−ωs2tsisd2(k) + (1− Rt2ts
σ2Ls2

)isq2(k) + 1
σLs2

tsusq2(k)

f7 =
n2

pLm1isq1(k)g1ts
Lr1 J1

+
n2

pLm2isq2(k)g1ts
Lr2 J1

ψr2(k) + ω(k)− npg1rnts
J1R TL(k)

f8 = TL(k)

(35)

Furthermore,

G(k) =

1− 1
Tr1

ts
Lm1
Tr1

ts 0 0 0 0 0 0
a1
Tr1

b1 ωs1ts 0 0 0 0 0
−a1x7(k) −ωs1ts b1 0 0 0 −a1x3(k) 0

0 0 0 1− 1
Tr2

ts
Lm2
Tr2

ts 0 0 0
0 0 0 a2

Tr2
b2 ωs2ts 0 0

0 0 0 −a2x7(k) ωs2ts b2 −a2x6(k) 0
c1x3(k) 0 0 c2x6(k) 0 0 1 − npg1rnts

J1R
0 0 0 0 0 0 0 1


(36)

where ci =
n2

pLmig1ts
Lri J1

, (i = 1, 2).
Then combining (29)–(36), the extended discrete state space model is established as follows{

X(k + 1) = G(k)X(k) + B(k)U(k) + Q(k)
Y(k) = H(k)X(k) + R(k)

(37)

where Q(k) and R(k) are the covariance matrix of w(k) and v(k), respectively.

3.3. Parameter Identification of the Energy Model Based on EKF and RLS

Based on (37), EKF can be used to estimate ω and TL. The scheme of EFK is shown in Figure 5.
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1. Prediction of state:
x̂(k + 1/k) = A(k)x̂(k/k) + B(k)U(k) (38)

where x̂(k/k) is the estimated state at tk, x̂(k + 1/k) is the predicted state at tk+1.
2. Estimation of error covariance matrix:

P(k + 1/k) = G(k)P(k/k)GT(k) + Q (39)

where P(k/k) is the state error covariance at tk. P(k + 1/k) is the predicted state error covariance.
Q is the assumed process noise covariance.

3. Computation of the Kalman filter gain:

K(k + 1) = P(k + 1/k)HT
{

HP(k + 1/k)HT + R
}−1

(40)

4. State Estimation:

x̂(k + 1/k + 1) = x̂(k + 1/k) + K(k + 1)[y(k + 1)− H(x̂(k + 1/k))] (41)

where y(k + 1) is the output measurement of system at tk+1, H(x̂(k + 1/k)) is the predicted
Jacobian matrix at tk.

5. Update of the error covariance matrix:

P(k + 1/k + 1) = [1− K(k + 1)H]P(k + 1/k) (42)

The relationship among the motor speed, material feed rate, load torque and the parameters of
energy model can be expressed as follows

TL −

(
cRbT + 3.6 R

rn g2

)
ω

3.6
= ψT(T, ω)θ (43)

Combining (20) and (43), we have

TL −
(cRbT+3.6 R

rn g2)ω

3.6 = ψT(T, ω)θ
dψr1

dt = − 1
Tr1

ψr1 +
Lm1
Tr1

isd1
disd1

dt = Lm1
σ1Ls1Lr1Tr1

ψr1 − Rt1
σ1Ls1

isd1 + ωs1isq1 +
usd1

σ1Ls1
disq1

dt = − Lm1
σ1Ls1Lr1

ωψr1 − Rt1
σ1Ls1

isq1 −ωs1isd1 +
usq1

σ1Ls1
dψr2

dt = − 1
Tr2

ψr2 +
Lm2
Tr2

isd2
disd2

dt = Lm2
σ2Ls2Lr2Tr2

ψr2 − Rt2
σ2Ls2

isd1 + ωs2isq2 +
usd2

σ2Ls2
disq2

dt = − Lm2
σ2Ls2Lr2

ωψr2 − Rt2
σ2Ls2

isq2 −ωs2isd2 +
usq2

σ2Ls2

(44)

Because speed and load torque of the dual-motor-driven system can be estimated by EKF
algorithm. So we define

x = ψ(T, ω) (45)

y = TL −

(
cRbT + 3.6 R

rn g2

)
ω

3.6
(46)

Therefore, combining with the estimated results, the basic form of least square method for the
energy model of the dual-motor-driven belt conveyors can be written as follows

y(k) = θx(k) (47)
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In order to avoid calculating the matrix inversion in the identification process, the recursive least
square method is adopted in this paper, the algorithm is implemented by the following equations [29].

θ̂(m + 1) = θ̂(m) + λ(m + 1)[y(m + 1)− xT(m + 1)θ̂(m)]

λ(m + 1) = P(m)x(m+1)
1+xT(m+1)P(m)x(m+1)

P(m + 1) = P(m)− λ(m + 1)xT(m + 1)P(m)

(48)

Remark 2. The proposed parameter identification method for the energy model consists of EKF and RLS. EKF is
adopted to estimate the motor speed and load torque, and RLS is used to identify the parameters of the energy
model base on the estimated value of the motor speed and load torque. Compared with the existing parameter
identification methods of energy models [14,17,18], the advantages of this method are as follows: 1) speed
sensors are not required; 2) the method is applicable to dual-motor-driven belt conveyors and can be extended to
multi-motor-driven belt conveyors.

4. Simulation Study

In this section, the obtained parameter identification method for the energy model of
dual-motor-driven belt conveyors without speed sensors will be illustrated. We set the parameters of
energy model as θ1 = 2.3733× 10−4, θ2 = 8566.3, θ3 = 0.0031 and θ4 = 51.6804 [17]. Load is added at
0.04 s, and T is set to be as follows [14]

T = 4.5[8 + sin(10t + 1) + 2 cos(−5t + 2) + sin(20t)]
+ 15[8.6 + 2 cos(−5t + 2) + sin(15t + 0.4 )
+ sin(20t)+ 4 sin t]× 50|sin(4t + 0.5 )|, (t/h)

The state vectors of the state observer are as follows

X(k) =
[

ψr1(k) isd1(k) isq1(k) ψr2(k) isd2(k) isq2(k) ω(k) TL(k)
]T

Table 1 gives the parameters of the motors, and sampling time ts is taken as ts = 1e− 5(s).

Table 1. Motors parameters list.

Parameter Value Parameter Value

Lm1 0.069 H Lm2 0.070 H
Lr1 0.071 H Lr2 0.073 H
Ls1 0.079 H Ls2 0.080 H
Tr1 0.087 H/Ω Tr2 0.088 H/Ω
Rs1 0.435 Ω Rs2 0.437 Ω
Rr1 0.816 Ω Rr2 0.815 Ω
J1 0.19 (N·m·s2) J2 0.192 (N·m·s2)
np 2
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After multiple simulations, the matrices P, Q and R are respectively taken as follows

P =



10−5 0 0 0 0 0 0 0
0 10−5 0 0 0 0 0 0
0 0 10−5 0 0 0 0 0
0 0 0 10−5 0 0 0 0
0 0 0 0 10−5 0 0 0
0 0 0 0 0 10−5 0 0
0 0 0 0 0 0 10−5 0
0 0 0 0 0 0 0 10−5



Q =



10−4 0 0 0 0 0 0 0
0 10−4 0 0 0 0 0 0
0 0 10−6 0 0 0 0 0
0 0 0 10−4 0 0 0 0
0 0 0 0 10−4 0 0 0
0 0 0 0 0 10−6 0 0
0 0 0 0 0 0 10−6 0
0 0 0 0 0 0 0 5× 10−2



R =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The estimated results of the state variables are given as follows. The EKF algorithm was introduced

to estimate ω and TL. The estimated speed is displayed in Figure 6, where we can see that the EKF
algorithm can estimate the motor speed. The estimated load torque is shown in Figure 7. The figure
shows that the estimated load torque can track the time-varying load.Energies 2018, 11, x FOR PEER REVIEW  15 of 18 
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The RLS algorithm is used for identifying the parameters of the energy model, and the results
of identification are shown in Figure 8. We can see that the identified values achieve a steady value
after approximately 50,000 times recursion, and the identified values of the parameters are obtained.
Table 2 shows the comparison between the identified values and the true values. The identification
error is less than 4%, and it can be seen that the identified results are acceptable when motor speed
and load torque cannot be obtained directly. In the simulation process, the results of the parameter
identification based on RLS are influenced by the accuracy of the estimated motor speed and load
torque. In addition, the accuracy of the estimated motor speed is greatly influenced by the set values
of the EKF algorithm.Energies 2018, 11, x FOR PEER REVIEW  16 of 18 
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Table 2. The results of parameter identification and true values.

Parameters θ1 θ2 θ3 θ4

Identified value 2.3733× 10−4 8566.3 0.0031 51.6804
True value 2.4446× 10−4 8550.9 0.0032 51.2986

error 3% 0.18% 3.23% 0.74%

5. Discussion

This paper established an energy model and proposed a parameter identification method for
dual-motor-driven belt conveyors without speed sensors, which lays a foundation for the energy
optimization of belt conveyors. The main contributions are twofold. Firstly, the traditional energy
model of belt conveyors is combined with the dynamic model of a dual-motor-driven system to build
a new energy model of dual-motor-driven belt conveyors. Secondly, the speed and load torque of the
dual-motor-driven system are estimated by using the EKF algorithm to identify the parameters of
the energy model. In addition, the identified results of the new parameter identification method are
acceptable when the motor speed and load torque cannot be obtained directly.

Based on the electric power of the motor, belt speed, and the feeding rate, a parameter
identification method was proposed in [17]. However, this method needs power meters, speed
sensors, and electronic belt scales. Furthermore, this method is only applicable to the belt conveyors
driven by a single drive motor. So, comparing with the method proposed in [17], the parameter
identification method proposed in this paper can be applicable to dual-motor-driven belt conveyors
which need not power meters and speed sensors. In [18], based on the measurements of motor current,
speed, and feed rate, a parameter identification method is derived by using flux linkage observer
and recursive least square. However, drive motors must be equipped with speed sensors in this
method. Therefore, the proposed parameter identification method in this paper can compensate for the
deficiencies of the above two methods. This means that our method is more applicable in the mining
industry, chemical production, power plants, and other complex industrial environments.

The energy modeling method designed in this paper is limited to a rigidly connected gear
transmission system. Hence, the energy model of flexible coupling dual-motor-driven belt conveyors
needs to be studied in the future. The relationship between the parameters of the energy model and the
mechanical parameters of belt conveyors is complex, and the parameters change with the state of belt
conveyors. Therefore, it is necessary to design a fast and adaptive method of parameter identification to
identify parameters online. Based on the proposed parameter identification method, the energy model
of dual-motor-driven belt conveyors without speed sensors can be identified. Thus the relationship
among the energy consumption, feed rate, and belt speed will be established. Based on the obtained
energy models, the problem of energy optimization of dual-motor-driven belt conveyors can be
formulated and studied in the future. The resulted methods can adjust belt speed in accordance with
the change in material feed rate to save energy.

Author Contributions: Conceptualization, C.Y.; Data curation, J.L.; Formal analysis, H.L. and L.Z.; Funding
acquisition, C.Y.; Investigation, J.L.; Methodology, C.Y.; Project administration, H.L.; Software, J.L.; Supervision,
L.Z.; Writing—original draft, J.L. and H.L.; Writing—review & editing, C.Y., H.L. and L.Z.

Funding: This work was supported by the Fundamental Research Funds for the Central Universities under
Grant 2017XKQY055.

Acknowledgments: The authors would like to express their gratitude to all those who helped them during
the writing of this paper. And the authors would like to thank the reviewers for their valuable comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2018, 11, 3313 16 of 17

References

1. Song, W. General Belt Conveyor Design, 1st ed.; China Machine Press: Beijing, China, 2006; pp. 1–2.
ISBN 7-111-18415-7.

2. Pang, Y.S. Intelligent Belt Conveyor Monitoring and Control, 1st ed.; TU Delft: Delft, The Netherlands, 2010;
pp. 1–2. ISBN 978–90-5584-134-9.

3. Ristic, L.B.; Jeftenic, B.I. Implementation of fuzzy control to improve energy efficiency of variable speed bulk
material transportation. IEEE Trans. Ind. Electron. 2012, 59, 2959–2969. [CrossRef]

4. He, D.J.; Pang, Y.S.; Lodewijks, G. Speed control of belt conveyors during transient operation. Powder Technol.
2016, 301, 622–631. [CrossRef]

5. Hiltermann, J.; Lodewijks, G.; Schott, D. A methodology to predict power savings of troughed belt conveyors
by speed control. Part. Sci. Technol. 2011, 29, 14–27. [CrossRef]

6. Zhang, S.R.; Xia, X.H. A new energy calculation model of belt conveyor. In Proceedings of the IEEE 2009
Green Innovation for African Renaissance, Nairobi, Kenya, 23–25 September 2009.

7. Mathaba, T.; Xia, X. A parametric energy model for energy management of long belt conveyors. Energies
2015, 8, 13590–13608. [CrossRef]

8. Marx, D.J.L.; Calmeyer, J.E. A case study of an integrated conveyor belt model for the mining industry.
In Proceedings of the 7th Africon Conference in Africa, Gaborone, Botswana, 15–17 September 2004.

9. Luo, J.; Huang, W.J.; Zhang, S.R. Energy cost optimal operation of belt conveyors using model predictive
control methodology. J. Clean. Prod. 2015, 105, 196–205. [CrossRef]

10. Halepoto, I.A.; Khaskheli, S. Modeling of an integrated energy efficient conveyor system model using belt
loading dynamics. Indian J. Sci. Technol. 2016, 9, 47. [CrossRef]

11. Zhang, Y. Belt Conveyor Energy-Saving Control System Technology Research. Master’s Thesis, Xi’an University
of Science and Technology, Xi’an, China, 2014.

12. Sun, W.; Wang, H.; Yang, H.Q. Research of energy-saving control system with frequency-conversion
speed-regulation for belt conveyor. Ind. Mine Autom. 2013, 39, 98–101. [CrossRef]

13. Xia, X.H.; Zhang, J. Control systems and energy efficiency from the POET perspective. In Proceedings of the
IFAC Conference on Control Methodologies and Technology for Energy Efficiency, Vilamoura, Portugal,
29–31 March 2010.

14. Shen, Y.J.; Xia, X.H. Adaptive parameter estimation for an energy model of belt conveyor with DC motor.
Asian J. Control 2014, 16, 1122–1132. [CrossRef]

15. Middelberg, A.; Zhang, J.; Xia, X. An optimal control model for load shifting—With application in the energy
management of a colliery. Appl. Energy 2009, 86, 1266–1273. [CrossRef]

16. Hiltermann, J.; Lodewijks, G.; Rijsenbrij, J.C. Reducing the power consumption of troughed belt conveyors by
speed control. In Proceedings of the 6th International Conference for Conveying and Handling of Particulate
Solids, Queensland, Australia, 3–7 August 2009.

17. Zhang, S.R.; Xia, X.H. Modeling and energy efficiency optimization of belt conveyors. Appl. Energy 2011, 88,
3061–3071. [CrossRef]

18. Yang, C.Y.; Li, H.; Che, Z.Y. Energy consumption modeling and parameter identification for double-motor
driven coal mine belt conveyers. Control Theor. Appl. 2018, 35, 335–341. [CrossRef]

19. Barut, M.; Bogosyan, S.; Gokasan, M. EKF based sensorless direct torque control of IMs in the low speed
range. In Proceedings of the IEEE International Symposium on Industrial Electronics, Dubrovnik, Croatia,
20–23 June 2005.

20. Maes, J.; Melkebeek, J.A. Speed-sensorless direct torque control of induction motors using an adaptive
flux observer. IEEE Trans. Ind. Appl. 2000, 36, 778–785. [CrossRef]

21. Kubota, K.; Matsuse, K. Speed sensorless field oriented control of induction motor with rotor resistance adaptation.
In Proceedings of the Industry Applications Society Meeting, Ontario, TO, Canada, 2–8 October 1993.

22. Wang, J. Study on the Speed Sensorless Vector Control of PMSM. Master’s Thesis, Huazhong University of
Science and Technology, Wuhan, China, 2013.

23. Barut, M.; Bogosyan, S.; Gokasan, M. Speed-sensorless estimation for induction motors using extended
Kalman filters. IEEE Trans. Ind. Electr. 2007, 54, 272–280. [CrossRef]

http://dx.doi.org/10.1109/TIE.2011.2169639
http://dx.doi.org/10.1016/j.powtec.2016.07.004
http://dx.doi.org/10.1080/02726351.2010.491105
http://dx.doi.org/10.3390/en81212375
http://dx.doi.org/10.1016/j.jclepro.2014.09.074
http://dx.doi.org/10.17485/ijst/2015/v8i1/108658
http://dx.doi.org/10.7526/j.issn.1671-251x.2013.04.027
http://dx.doi.org/10.1002/asjc.776
http://dx.doi.org/10.1016/j.apenergy.2008.09.011
http://dx.doi.org/10.1016/j.apenergy.2011.03.015
http://dx.doi.org/10.7641/CTA.2017.70335
http://dx.doi.org/10.1109/28.845053
http://dx.doi.org/10.1109/TIE.2006.885123


Energies 2018, 11, 3313 17 of 17

24. Christopoulos, G.A.; Safacas, A.N.; Zafiris, A. Energy savings and operation improvement of rotating
cement kiln by the implementation of a unique new drive system. IET Electr. Power Appl. 2015, 10, 101–109.
[CrossRef]

25. Ruan, Y.; Chen, B.S. Control Systems of Electric Drives-Motion Control Systems, 4th ed.; China Machine Press:
Beijing, China, 2012; pp. 179–180. ISBN 978–7-111-27746-0.

26. Alsofyani, I.M.; Idris, N.R.N.; Jannati, M. Using NSGA II multiobjective genetic algorithm for EKF-based
estimation of speed and electrical torque in AC induction machines. In Proceedings of the Power Engineering
and Optimization Conference, Langkawi, Malaysia, 24–25 March 2014.

27. Barut, M.; Bogosyan, S.; Gokasan, M. Experimental evaluation of braided EKF for sensorless control of
induction motors. IEEE Trans. Ind. Electr. 2008, 55, 620–632. [CrossRef]

28. Liu, Y.; Sun, Z. EKF-based adaptive sensor scheduling for target tracking. In Proceedings of the International
Symposium on Information Science and Engineering, Shanghai, China, 20–22 December 2008.

29. Qiang, M.H.; Zhang, J.E. RLS parameter identification and emulate based on matlab/simulink.
Autom. Instrum. 2008, 6, 4–5. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/iet-epa.2015.0063
http://dx.doi.org/10.1109/TIE.2007.911956
http://dx.doi.org/10.3969/j.issn.1001-9227.2008.06.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Energy Model 
	Parameter Identification 
	State Space Model of the Energy Model 
	Extended State Equation of the Energy Model 
	Parameter Identification of the Energy Model Based on EKF and RLS 

	Simulation Study 
	Discussion 
	References

