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Abstract: Most typical distribution networks are unbalanced due to unequal loading on each of the
three phases and untransposed lines. In this paper, models and methods which can handle three-phase
unbalanced scenarios are developed. The authors present a novel three-phase home energy
management system to control both active and reactive power to provide per-phase optimization.
Simplified single-phase algorithms are not sufficient to capture all the complexities a three-phase
unbalance system poses. Distributed generators such as photo-voltaic systems, wind generators,
and loads such as household electric and thermal demand connected to these networks directly
depend on external factors such as weather, ambient temperature, and irradiation. They are also time
dependent, containing daily, weekly, and seasonal cycles. Economic and phase-balanced operation
of such generators and loads is very important to improve energy efficiency and maximize benefit
while respecting consumer needs. Since homes and buildings are expected to consume a large share
of electrical energy of a country, they are the ideal candidate to help solve these issues. The method
developed will include typical distributed generation, loads, and various smart home models which
were constructed using realistic models representing typical homes in Austria. A control scheme
is provided which uses model predictive control with multi-objective mixed-integer quadratic
programming to maximize self-consumption, user comfort and grid support.

Keywords: three-phase unbalance minimization, model predictive control; home energy
management system

1. Introduction

The Energy Efficiency Directive of the European Commission provides great emphasis on the
need to empower and integrate customers by considering them as key entity towards sustainable and
energy efficient future [1]. Evolving systems such as smart meters are on a road map towards increased
market integration. With the help of such devices, ICT aspects such as data mining, management,
processing, and commutation are gaining lots of traction in smart grid [2].

In recent days, with rigorous funding and investment in renewable energy, large number of
distributed energy resources such as photo-voltaic systems, wind generators, and new loads such
as electric mobility and storage systems are gaining importance. They pose lots of challenges to
the network such as voltage violations and line loading. Most of the typical distribution networks
are unbalanced due to unequal loading on each of the three phases and untransposed lines [3].
Additionally, unbalance is further increased with the high penetration of single-phase distributed
generators. Three-phase unbalance imposes various degrees of stresses on different components in
distribution network. Losses on the lines and distribution transformers increase considerably with
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the increase in phase unbalance [3]. Therefore, it is extremely important to consider three-phase
models. They have strong dependencies on external factors such as weather, ambient temperature,
and irradiation which follows daily, weekly, and seasonal cycles. Photo-voltaic systems inject large
amounts of active power into the network, especially when the solar irradiation is high during midday.
Voltage violations may occur due to partial stochastic power input. Therefore, it is important to include
reactive power in models so that it can be used to performed voltage regulation.

Homes and buildings are projects to consume a large share of total energy production. Therefore,
it makes sense to produce strategies to use them to help mitigate the issues discussed above. Most of
the homes today are not capable of providing any kind of support to the grid. Certain upgrades need
to be made so that they can perform demand response. Loads which can be controlled directly or
indirectly to provide demand response is referred to as demand side management (DSM). DSM is
also referred to as flexibility. DSM can be used to provide number of grid support functionalities
such as shifting the peak load to off-peak hours or curtailing the load to reduce the peak demand [4].
Smart building customers are given the opportunity to schedule the devices on their own to maximize
comfort level and based on this initial schedule, the optimizer maximizes economic return which will
result in demand which is more leveled over time [5]. Additionally, the optimizer will either minimize
payment or maximize comfort based on the consumer needs in which, the user comfort is represented
as a group of linear constraints [6].

2. Related Work

To control various devices in smart homes and all the issues associated with it, the authors in
paper have presented a control scheme using Model predictive control, which is an ideal candidate to
handle dynamic systems with evolving disturbances described in the previous section.

Various implementations of model predictive controller (MPC) in buildings are available in the
literature. The core principle or issue being addressed by bodies of research mentioned below is
dynamic scheduling of various flexibilities in building. Most of the authors below have addressed this
issue using various MPC algorithms, problem formulations and objectives.

After analyzing the large body of work in MPC for buildings, three major categories can be
defined. MPC in buildings is mainly used for demand side and flexibility management, building
temperature control and optimal usage of energy.

2.1. Demand Side and Flexibility Management

A multi-scale stochastic MPC is implemented to schedule heating, ventilation, air conditioning
which is referred to as HVAC systems and controllable loads such as electric vehicles and washer/dryers
is implemented in [7]. In [8], the authors have presented an MPC approach to tackle the load shifting
problem in households equipped with controllable appliances and electric storage units. This approach
used time of day tariff to minimize energy consumption. A decision-making framework for real
time control of load serving entity of flexibilities used to provide ancillary services to the market
is presented in [9]. This paper provides a generalized framework which includes wide array of
flexibilities. An example with electric vehicle charging is provided in detail.

The authors in [10] have proposed a scheme which uses time varying real time pricing to schedule
appliances in buildings in smart grid context. Thermal mass of the building is considered with a
comfort indicator and a model associated with it is presented. Thermal mass storage is used to hedge
against varying prices with a goal to minimize energy costs. Control approach for home energy
management system (HEMS) under forecast uncertainty is presented in [11]. The smart home is
controlled as a grid connected micro-grid with PV generation, battery systems, critical and controllable
loads. Objective of MPC is to maximize the use of renewable energy generation and to minimize
operation costs. It includes predictions of PV, load, and market prices. Various scenarios are considered
with different forecasting accuracies.
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The authors in [12] presented an MPC model for HVAC system in medium sized building with
receding horizon control. It is used to provide demand side flexibilities. Objective is to operate the
building economically while respecting the comfort of dwellers. MPC scheme provided is a robust one
to participate in both reserve and spot markets. Sensitivity of the controller towards economic and
technical constraints are evaluated. The National Electricity Market of Singapore (NEMS) is used as a
study case for grid building integration studies.

In [13], a non-intrusive identification of components in smart home is provided with a sampling
frequency of one hertz. These identified models are used to predict flexibilities. These flexibilities are
shifted in time to minimize energy costs. An MPC technique for energy optimization in residential
appliance is proposed in [14]. Home cooling and heating system control is proposed to analyze the
effect of conventional thermostats. In [15], an MPC EMS system for residential micro grids is furnished.
EMS optimally schedules smart appliances, heating systems, PV generators based on consumer
preferences. Weather and demand forecasts are integrated in it. Mixed-integer linear programming
(MILP) is the core of MPC which minimizes the system costs of this residential micro-grid. At each
sample time, the optimization algorithm adjusts itself to account for updated weather dependent PV
systems and heating units in a receding fashion. This method is coupled with accurate simulation of
micro-grid including energy storage and flexible loads. Emulation of real-world grid conditions on
standard network interface is presented. The authors in [16] have provided a method to maximize
the use of renewable energy resources in islanded grids. PV systems are used to provide energy to
home loads and pico hydro power plant. MPC is used to control the flow valve of hydro plant and to
modulate the energy supply to fulfill the deficit during islanded conditions.

An economic MPC is illustrated in [17]. It includes PV combined heat and electrical storage system.
Uncertainties from thermal behaviors of the building are quantified, formulated and MPC’s capability
to handle it is presented in this research work. An MPC scheme to control loads in residential buildings
are presented in [18]. It also presents a novel load aggregation method using MPC for distribution
networks. This method is tested with 342 bus network with 15,000 buildings. In [19], an MPC
controller to perform demand side management is presented. It uses an ON/OFF PID controller and
MPC to control air conditioning in rooms in houses. It also includes PV systems. Weekly expenses are
calculated for each tariff is compared with control methods.

2.2. Temperature Control

The authors in [20], have presented a method to control temperature in building in a cost-effective
manner. It uses linear programming heuristic to minimize the objective function of electricity cost to
run air conditioning system. In [21], authors have presented models for Heat Recovery Ventilators
connected to single zone building, its potential and nonlinear MPC is implemented to optimize
energy consumption. Three distinct time zones are used namely, slow timescale for temperature of
structural elements, fast timescale for air temperature and intermediate dynamics for recovery systems.
A stochastic optimization technique is provided in [22]. This paper introduces several load classes
such as heating, ventilation, air conditioning which is commonly referred to as HVAC systems. A first
order thermal dynamic model is used with a mixed-integer MPC to generate load schedules. Real data
is coupled with numerical solutions. The authors in [23] have proposed an MPC algorithm to control
temperature in single zone building coupled with renewable energy generators such as solar and
wind. MPC objective is to control temperature within certain permissible limits and optimal amount
of power consumption.

In [24], a temperature control scheme with the consideration of occupants with three comfort
indicators namely, strict, mild, loose levels are provided. It also includes window blind position
control, illumination, and ambient temperature. Weather data such as solar irradiation, illumination,
and ambient temperature is forecasted and used in MPC algorithm. Goal of MPC is to minimize
energy consumption and maintain the desired level of comfort for occupants. Paper [25] focuses on
analysis of MPC application to domestic appliances to optimize them. Relationship between MPC
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weight adjustment and minimization of energy consumption is evaluated. In this context, water heater,
room temperature control by air conditioning system and refrigerators are explored.

In [26], a centralized direct control of on/off thermostats is furnished. Device operation temperature,
on/off status, more importantly, temperature ramps are calculated and communicated to the central
controller. It is observed that, same or better performance can be achieved by communication
of temperature ramps which are essential data points. It also reduces the communication needs
significantly. Right information exchange is essential for better performance and data flow reduction is
the concluding argument of this paper.

An MPC control scheme to provide the best tradeoff between temperature control and energy
cost is described in [27]. It also provides a comparison between PID controller and MPC. The weights
are modified to obtain the best solution to increase quality of various electrical and thermal models.
The authors in [28], have presented an MPC for entire building with a comfort metric to ensure high
priority to user comfort for each of the various zones in the building. Simulation results are provided
for four months showing large percentage of reduction in electrical and thermal energy consumption.

2.3. Optimal Energy Usage

Paper [29] proposes an MPC control strategy in HEMS to optimize energy usage and optimal
operational schedules for input variables. It also provides results which demonstrated revenue from
selling power to the utility. In [30], authors have furnished an MPC approach to obtain savings in
residential households. Impact of local power generation such as roof top PV systems is determined
for off-peak, mid-peak and on-peak periods. Hybrid MPC formulation for buildings is provided
in [31]. It describes the interactions between continuous and discrete systems. It involves a two-level
computation structure. Individual systems are controlled with upper level discrete commands.

In [32], an approach to minimize energy in home and office building is presented with renewable
energy resources such as PV systems. This is done using an MPC technique with mixed-integer
programming to handle switching constraints. This method allows for sufficient performance with
respect to energy regulation and efficiency. It is shown that with various seasons, an annual savings
of about 1.72% can be achieved with this approach. An MPC approach is introduced in [33] which
exploits its capacity to reduce energy consumption and improve efficiency to reduce energy bills.
MPC was trained for two different weight sets which is compared to thermostat control with three
typical household loads.

It is shown that it is necessary to augment control weights to maximize energy cost minimization
potential. In [34], an energy scheduling approach for smart home appliances using stochastic MPC is
presented. It comprises a combination of genetic algorithm and linear programming. It analyzes the
competence of the algorithm proposed with the objective of energy reduction.

An MPC scheme with a sample time of one hour is presented in [35]. It includes hot water
usage, electric vehicle, domestic heating and with an actuator with water tank to use it as heat storage.
Total power and energy cost is minimized. MPC robustness is evaluated using forecasted load profiles
of the household. It is shown that using energy storage, the overall energy consumption of the
household can be minimized.

A comprehensive cost optimal design is presented for a building HVAC system which includes
MPC to generate cost optimal solution is presented in [36] The controller provides an optimal hourly
set point for cooling and heating devices. This method is applied to multi-zone building in Italy. In [37],
a study to minimize the cost of electricity for coordinating houses connected a micro-grid. It uses
multi-objective optimization for micro-grid control which includes a house and an independent local
plant. The control algorithm minimizes losses by power exchanges between the plant and the house.

It can be clearly seen that, three-phase implementation of HEMS is lacking. The papers mentioned
above only use simple single-phase flexibility models and appliances are single phased. Additionally,
reactive power control is not addressed by any of the research work mentioned above. Since three-phase
models are not used, phase unbalance minimization cannot be performed. In this paper, the authors
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present a three-phase unbalanced HEMS in which, three objective functions, maximize user comfort,

self-consumption and grid support is implemented. It also includes control scheme to manage both

active and reactive powers and can handle number of electrical appliances with various configurations.
The contributions in this paper are enlisted below,

1. Various three-phase linear flexibility models are presented in Section 3.

Flexibilities are modeled in both active and reactive power.

3.  Three objective functions are provided in Section 5 along with three objective weights which are
user defined.

4.  Control scheme is described in Section 6 for three-phase HEMS with various chronological events.

5. Simulation results for three-phase unbalanced HEMS with active and reactive power control is
provided in Section 7.

N

3. System Models

HEMS is a platform which enables monitoring and control of various energy appliances in the
household. It allows the deployment of various control strategies to achieve an objective. Smart home
in this paper refers to a home which is fitted with a HEMS. Using this system, various objectives can
be achieved. For example, keeping the room temperature within certain comfortable limits.

3.1. Overview

Smart home models can be segregated into two categories. Namely, thermal and electrical models
coupled by a heat pump. The main reason to use a thermal model is to characterize indoor temperature
due to the thermal inertia of the house, since consumer comfort is paramount. The controller is
formulated to give complete control to the user, a user-centric approach. The models are linear in nature
so that, simple control strategies can be produced. Figure 1 represents a three-phase HEMS. It contains
both single and three-phase components and therefore, it is unbalanced. In this scenario, the heat pump
is three phased, inverters for battery and PV are three phased, controllable, and uncontrollable loads
are single phased. The control scheme provided in this paper can include variety of configurations such
as single-phase—neutral, phase—phase, three-phase star configuration, three-phase star configuration
with neutral, and three-phase delta configuration. This can be done using the constraint imposed on
the grid connection point described in Section 4.4.

Flexibilities Disturbances

-

! ! 1 LI !
Heat Pump Inverter Controllable Uncontrollable Inverter

L] L[] Yoads T T — Loads L1

N _Z \/ Troom  Dinternal \/ N

T —I Twall Yventilation T I—

Electric Storage PV system
| |

| Weather data:
Tambien
Irrediation
(north, south, east, west)

Ghouse

Figure 1. Schematic of three-phase HEMS representing various three-phase interconnections. It can be
observed that, heat pump is the only component which connects thermal and electrical models.

3.2. Smart Home Thermal Model

Various linear single zone models representing single family homes with heat pumps and thermal
parameters of the building are considered. They are based on nonlinear models which were constructed
using data, representing physical behavior of real buildings in Vienna and Salzburg regions in Austria.
Due to consumer privacy, more details about these homes cannot be provided. By generalizing these
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models, four study cases are derived, and their essential distinguishing features are shown in Table 1.
Nonlinear models were created in Dymola [38], which is a modeling and simulation tool, as part
of the project iWPP-Flex [39]. They were linearized using the functions within Dymola and were
mathematically verified.

Table 1. Building study cases which represent typical households in Austria. During the modeling
stage of these houses, they only contained single-phase loads. To perform effective demand response,
they had to be upgraded to include various other flexibilities such as single/three-phase heat pumps,
controllable loads, electric storage, and PV system with three-phase inverters. Some of the important
specifications such as heat demand, control method, and rated capacities which influences the control
scheme are provided in this table.

House Hype Passive House Low-Energy House Existing House Renovated House
Heating demand 15 kWh/(m?a) 45 kWh/(m?a) 100 kWh/(m?a) 75 kWh/(m?a)
Heater Under floor Under floor Radiator Radiator
Heat exchange medium Air-water brine-water brine-water air-water
Power control Variable On/off On/off Variable
Rated capacity 1kW/ 3 kW 12 kKW/5 kW 4 KW /12kW 2.7 KW /7 kW
(Electrical / thermal)

In the context of smart HEMS, the models of smart homes are recommended to be kept sufficiently
simple to maintain generality, so that many building types can be accommodated. Therefore, first
order models are implemented. Additionally, the focus of this work is not to use realistic building
models but rather the control strategy and to minimize the objective function.

As aresult, continuous state space models were generated and are assumed to be ordinary discrete
linear time-invariant and is then discretized with a sampling time step of 15 min which can be observed
in Equation (1).

xroom(t + 1) = Aroom xroom(t) + Biroom ur00m<t) (1)

The state variables x4, of the building model are the room and wall temperature. The later represents
the temperature of wall, floor, and ceiling of the house. Ao and Broon; are the system matrices.

o = ®

Limits on room and wall temperatures are given in Equations (3) and (4)
Tt < Twan(t) < Ty ©
Troom < Troom(t) < Tiog, )

The input quantities for the building are heat flow supplied by the heat pump, ambient temperature,
solar irradiation from all directions, internal gains, and ventilation.

Jroom
Tambient temperature
Lnorth

Least
Uroom = . ©)
south
Lwest

Sinternal gain

ventilation
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Limits on heat flows into the building are provided in Equation (6)

0 < Groom(t) < Groom (6)
3.3. Heat Pump in Residential Building

Heat pump is used to provide the heat flow into the home which is the only controllable variable
in the home model described in Section 3.2. Heat pump is the only coupling element between electrical
and thermal systems as mentioned above.

Equation (7) describes the relationship between heat pump power and heat flows. The model
represented below is that of a single-phase heat pump since it is in a modest home. This can be easily
extended to three-phase by dividing the right-hand side of Equation (7) by 3 for per-phase balanced
active power. Coefficient of performance (cop) is assumed to be constant with respect to time.

_ Groom (t) (7)

Preat pum (t) -
prmp COPheat pump

Where, Pyeat pump 18 the active power and coppeat pump is the coefficient of performance. Low-energy
and existing house contains on-off heat pump. To model this, a binary variable Bt pump with 0 for off
and 1 for on is used.

ted
Pheat pump (t) = Bheat pump Pﬁgﬁ pump (8)

The pump in heat pump consists of an induction motor. This motor is assumed to be lossless
and with constant power factor (p fueat pump) as described in Equation (9), using which reactive power
(Qheat pump) 1s calculated.

Qheat pump (t) = tan(cos‘l (pfheat pump))Pheat pump (t) )

Since only heating period is considered, Preat pump and Qpeat pump = 0. Constraints on heat pump
active power limits.

0< Pheutpump(t) < P;lngfpump (10)

Constraints on heat pump reactive power limits,

0< Qheatpump(t) < Q}Teﬁpump (11)

max max 3 3 1
where, P;% pump and Q'™ pump are the maximum rated power active and reactive powers of head

pump, respectively.

4. Electrical System Constraints

In recent years, lots of smart electrical appliances are becoming popular. It is possible to control
the behavior of these appliances. In this paper, the authors have decided to use the following
electrical appliances.

4.1. Electric Storage Constraints

For the maximal use of intermittent renewable energy generators and self-consumption, electric
batteries are becoming very important in the recent days. Therefore, it is necessary to model and
include them in the HEMS systems. In this paper, only linear battery models are used. Equation (12)
represents the energy balance of electric storage system, a battery.

SOC(t + 1) Cbattery = SOC(t) Cbattery + At Mbattery Pbattery(t) (12)
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It can be seen in Equation (12) that, Ppg,r, takes values both positive and negative. This is a form
of linearization because, the battery charging and discharging efficiencies are different and therefore,
nonlinear. This nonlinearity can be tackled by solving it as is, using a nonlinear solver or by splitting
the Pyttery into Pepgrging and Pjscnarge- The latter is coupled with a binary variable to make it either
charge or discharge, leading to MILP. The authors have chosen to use the linear form and the reasons
for it are provided in Section 4.2.

Constraints on soc limits are given below,

soc™" < soc(t) < soc™* (13)
Constraints on battery charging and discharging power limits are as follows.

min max
battery < Pbattery(ﬂ < Pbattery (14)

4.2. Three-Phase Inverter Constraints

The battery described in the previous section is connected to a three-phase inverter. The inverter
can control active and reactive power flows on each of the phases. The relationship between battery
and inverter is described using simple power balance Equation (15).

(Pbattery(t))z = (Pinverter(t))z + (Qinverter(t))z (15)

Equation (15) is nonlinear. If on the precious section, a binary variable is defined and Ppgytery, is
split into Pparging and Pyischarge, Equation (15) becomes nonlinear and non-convex. One way to deal
with the nonconvexity is to limit the Qjyyerter With a constant power factor as shown in Equation (16).
However, this is still nonlinear.

anverter(t) = tan (COS_l (pﬁnmfﬂe?))pipnverter(t) (16)

where, p is the phase and p € phases(r,s,t). To remedy the nonlinearity, the inverter is only controlled
at unity power factor. In other words, the reactive power is zero. This is represented in Equation (17)

(Pbattery(t))z = (Pinverter(t))z (17)

Individual phase powers are represented as follows,

Pinverter(t) = Pglvgrter(t) (18)
[

4.3. Constraints on Controllable Loads

Simple controllable loads are used with constant power factor operation as described in
Equation (21). Controllable loads have the following constraints. Equations (19) and (20) are the
active and reactive power constraints and Equation (21) is the relationship between them.

0 max

0< Pcontrollable load(t) < Pcontrollableload (19)
o max

0 < Qontrottavie toad () < Qontroliable toad (20)

It is assumed that the power factor is constant with time. Typical power factor for household
loads is between 0.90 to 0.95.

-1
ngntrollable load (t) = tan(cos (pfflm”’o”ﬂble lOQd))Pcpontrollable load (t> (21)
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4.4. Constraints on Grid Connection Point

The grid connection point (point of common coupling) is where the smart home is connected
to the grid. When excess power is fed into the grid, it is referred to as infeed and when power is
drawn, it is referred to as consumption. Since P,y takes both positive and negative values due to
battery linearization, both infeed and consumption is represented by P,;4. It also represents the energy
balance of all the electrical components in the smart home.

Equations (22) and (23) are constraints on limits of active and reactive power at the grid
connection point.

0 _ pP 0 0 0
Pgrid(t> - Pinverter(t) + Pheut pump(t) + Pcontrollable laad(t) + Puncontrollableload (22)
0 — 0OF 0 0
Qgrid(t) - Qheatpump(t) + Qcontrollable load(t) + Quncontrollahle load (23)

4.5. Various Disturbances Applied to HEMS

Various electrical and thermal disturbances are applied to HEMS during simulation which can be
seen in Figure 2.

5 504 —— Active power (kW)
g 25 4 Reactive power (kVAr)
S
0.0 - T T T T T T T T T
01-01 00 01-01 06 01-01 12 01-01 18 01-02 00 01-02 06 01-02 12 01-02 18 01-03 00
Time
)
h
10 -
v —— P_grid_a
5 _gria_
=
@
—
0 5+
Q
OE) T T T T T T T T T
Pt 01-01 00 01-01 06 01-01 12 01-01 18 01-02 00 01-02 06 01-02 12 01-02 18 01-03 00
Time
N B~
£ —— Irrediation north
£
2 00 4 Irrediation south
o —— lIrrediation east
5 g_A —— Irrediation west
S 04 —
© T T T T T T T T T
= 01-01 00 01-01 06 01-01 12 01-0118 01-02 00 01-02 06 01-02 12 01-02 18 01-03 00

Time

10 /\
w —— Internal gains (W/m2)
5 -

Ventilation losses (m3/m?2)

0 T T T T T T T T T
01-01 00 01-01 06 01-0112 01-0118 01-02 00 01-02 06 01-02 12 01-02 18 01-03 00

Time
Figure 2. Profiles of disturbances applied to smart HEMS. On the x-axis, data time format is MM-dd
HH. Data is from 01-01-2018 00:00:00 to 01-02-2018 00:00:00.

Disturbances are forecasted using a convolutional neural network which is not described in this
paper. Uncontrollable loads data is from a smart meter from a real household in Austria. Various
thermal disturbances such as ambient temperature and irradiation data is sourced from weather
stations in Austria, ventilation, and internal gains from the project iWPP-Flex.
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5. Objective Functions

In this paper, three different objectives are considered. These are explained in detail below.

5.1. Improve Self-Consumption

In many countries, with higher share of renewables, it is more economical to self-consume and
therefore, the following objective function in Equation (24) is minimized. Since electricity tariffs only
depend on active power, reactive power is excluded from the objective.

]self consumption — ZZ(Pgrid(t))z (24)
tp

On the other hand, in Austria, it is more economical to feed as mush power into the grid as
possible since power sale tariff is higher than consumption tariffs. It can be done easily by maximizing
equation. It is customary to involve a variable price signal along with Pg,;; which is the electricity tariff
provided by the energy retailer. However, this is neglected for the sake of clarity.

5.2. Improve User Comfort

Since user comfort is paramount, this objective is introduced. It minimizes the difference between
a reference temperature and actual room temperature in smart home. The limits of these temperature
are defined by the user.

Tuser comgfort = Y(Treh " () = Troom (£))? (25)
t

5.3. Improve Grid Support

As mentioned in Section 1, smart homes can provide support to the grid by optimally controlling
its renewable generation and consumption. Therefore, objective in Equation (26) is provided.
It minimizes the difference between reference and actual active, reactive powers at grid connection
point. This reference is generated from a large grid level optimal power flow controller based on a grid
level objective function.

]grid support = ;;(Pgrid reference(t) o ngrid(t))z + (Qgrid reference(t) o Qgrid(t))2 (26)

This paper does not include details or methods to generate this reference profile and instead
uses it as is. If the smart home can follow this reference profile, grid level optimization is achieved.
The objective on the grid can be loss minimization, line loading minimization, operational efficiency,
unit dispatch and so on. In this paper, the reference profiles where generated with an objective
to minimize the three-phase unbalance on the grid level. For this to work, multiple buildings
connected at various locations in the network must follow its own reference profile provided by
the grid controller, simultaneously.

5.4. Complete Objective Function

Complete objective function is provided in Equation (27). Weights S, U and G are introduced
with self-consumption, user comfort and grid support, respectively. By varying these weights, more
importance can be given to the objectives.

minimize | = § ]self consumption +U Juser comfort +9 ]grid support (27)

These weights can be varied on-line and the controller updates it in the next simulation step.
There are the most prominent parameters which the user can determine and can have significant
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influence over the controller and ultimately the optimum. Controllable variables are Pystsery, Preat pump

and Pcontrollable load-

6. Control Scheme

Due to the high intermittency of renewable energy generators, loading in households along with
dependencies on external factors such as weather and solar irradiation, it is extremely important to
choose a controller which makes effective use of available predictions.

Therefore, the authors have chosen to use MPC. MPC control used is receding horizon control.
Figure 3 describes an MPC and data exchange between various devices in smart home. MPC is
responsible to generate optimal set-points to minimize the objective function.

Flexibilities Disturbances
r
s
t [ [ | | [
n | | I | |
Heat Pump Inverter Controllable Uncontrollable  |pyerter
[ 1] [ |1 foad? --- l[oads [ 11
ells Model Predictive Controller
[
P — o *P’Sl'\\/.",\':
a . : 1 A A * profile . —
. ! [ PpQ, _ 1!
Electric Storage ' PQ setpoints : ' profile PV icsysltem
Yy TEEEmEmsms- 1
$ M. : : ! 1
1 ! 1
Qhouse , , , Weather data:
: A ot Troom Ginternal Tambien
VmmmeeeeaooCIIIIIIICN Twall  Qventilation Irrediation
(north, south, east, west)

Figure 3. Schematic of three-phase HEMS with model predictive controller. It shows all the
interconnections with respect to data exchange.

MPC control scheme is illustrated in Figure 4. It describes various functions which need to be
executed within a sample duration.

Receive reference

optimal grid profile
Update sensor User defined Optimal set points
database Objective weights

generated

(t+1)

Sensor data Receive reference

acquisition temperature profile Repeat process

Disturbance
forecasting

Figure 4. Model predictive control scheme for three-phase HEMS. It describes various functions which
are executed for a sample period.

The chronological control functions and events described in Figure 4 are described in detail below.

1. At time f, measure thermal disturbances such as irradiation, ambient temperature, ventilation
losses and internal gains. Additionally, smart meters measures uncontrollable load and
photo-voltaic generation.

2. These sensor data points are acquired by the data acquisition system and sensor database is
updated. Figure 5 illustrates the sensor data acquisition system using in this work.
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3. Disturbances are forecasted for a given prediction horizon using an appropriate forecasting
algorithm. In this paper, using convolutional neural networks.

4. Active and reactive power optimal set-points are received from the grid level controller.

5. Internal temperature reference signals are received.

6. User defined objective weights are received.

7. Objective functions are set up using Equations (24)-(27).

8.  Constraints from Equations (1)—(23) are setup.

9.  Optimal set-points are generated.

10.  The process is repeated for next sample period, (f+1).

AT e Irrediation Ventilation losses
P (north, south, east, west) Internal gains

Uncontrollable load Photo-voltaic
(Active and reactive power) (Active and reactive power)

Sensor data acquisition

Figure 5. Schematic of a sensor data acquisition system use in three-phase HEMS.

The optimization problem is solved by a suitable quadratic programming for passive, renovated
house and mixed-integer quadratic programming for low-energy and existing houses as discussed
in Section 3.3.

7. Simulation Results

In this section, simulation setup and results are provided. As mentioned earlier, the objective
weights, S, U and G are defined by the user, it is difficult to analyze the controller performance due to
large number of combinations of these three variables.

To overcome this, only extreme cases of these weights are considered. This can be observed
in Figure 6. The method of choosing weights in such fashion was inspired from [40] in which,
mixed-integer quadratic programming is introduced with multi-objective optimization. The simulation
is performed for the duration of 48 hours with prediction and control horizon of 24 hours.

S

S

(1,0,0) (0,1,0) (0,0,1)

(1,0,1) (1,1,0)

Figure 6. Objective weights, S, U and G for various extreme cases.
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Simulation parameters are provided in Table 2.

Table 2. Simulation parameters.

Variable Value
Simulation parameters

prediction horizon 24h

control horizon 24 h

simulation duration 48 h
Building model

et 10C

Toall 40C

T 18C

ey 25C

Tinitial 18C

T:gof’enrence 20C

Controllable load model

Pcngzjtcrollable load 2kW
pfcontmlluble load 0.95
Electric Storage model
soc™n 0.3
soc™ex 0.9
Cbattery 20 kWh
nbagtery 0.95
Pl:’;;?ery -10 kW
lefery 10 kW
Heat pump model
cop 3
pfheat pump 0.90
Passive house: P'"¥ prump 1kW
Low-energy house: P;'"¥ pump 1.2 kW
Existing house: P;"7¥ pump 4 kW
Renovated house: P}'7¥ pump 2.7 kW

7.1. Analysis of Results

Due to the large number of combinations of objective weights and controllable variables, results
are analyzed based on the three objective functions. Four scenarios of objective weights are chosen
for analysis. (S, U, G) = (0,0,1), (0,1,0), (1,0,0) and (1,1,1). Additionally, to represent powers,
only phase r is used. The results are plotted using boxplots. More information about it can be seen

in Figure 7.
Interquartile Range
Outliers (IGR) Outliers
v v
OOF——— — 0 O
Minimum ) Maximum
Q1-15 QR qp Medan Q3+ 1.5 IQR
(25th percentile) (75th percentile)

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Figure 7. Boxplot is a standardized method to display data.

7.1.1. Improve Self-Consumption

Figure 8 describes the results for the objective function to minimize self-consumption
(see, Equation (24)). It illustrates Pg,;; for various home types and for given simulation horizon.
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It can be observed that for objective weights (S, U, G) = (1,0,0), the controller is trying to get Pg,4
close to zero which can be perceived from the medians which are at zero for all the house types.
Same can be observed with objective weights (S, U, G) = (1,1,1). Since all three weights are equal,
the results are not as effective as the one from before and S is not dominating other weights.

Objective weight = (0, 0, 1) Objective weight = (0, 1, 0) Objective weight = (1, 0, 0) Objective weight = (1, 1, 1)
3 4

] dnhAA

15 A

§ 1.0 -
~25 054 =
S s s ’L ’L ’l‘ ’L 5 051
< X -5.0 < <
g g g oo g 0o
g .. 2 . 2 2
<D (4 ) [ [
2 2 2 2
g 3 g g 051
< < < <
-10.0 - ~0.5
14 -1.0
° :
-12.5 4
I [ o w018 8 8 8| ]
-15.0 4O _ _
o 8 8 204
T T T T T T T T T T T T T T T T
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
House types House types House types House types
Figure 8. Schematic of Three-Phase HEMS.
7.1.2. Improve User Comfort
s reference s . . . s . .
Objective terms abs(Tyopm — Tyoom) is illustrated in Figure 9. Since the objective weight U is

predominant, (S, U, G) = (0,1,0), the absolute difference between Tlg}{ﬂe"“ and Tyoom is the least.
It can be observed that the temperature median is very close to zero. From this, it can be inferred that
the objective function to improve user comfort is maximized. However, since the building models are
first order, the controller is quiet easily able to achieve similar results with (S, U, G) = (1,1,1).

Objective weight = (0, 0, 1) Objective weight = (0, 1, 0) Objective weight = (1, 0, 0) Objective weight = (1, 1, 1)
2.4 0.175

2.2 A 0.150 0.150
2.2 4

0.125

0.125

0.100

0.075 ’l‘ ’l‘
0.050 0.050
1.4 A
T
1

0.100 +
1.8

0.075 4

Temperature (°C)
Temperature (°C)
Temperature (°C)
Temperature (°C)

_H
—H

0.000 0.000

0.025 0.025
1.2 A 1.2
T
1

T T T T T T T T T T T T T T
2 3 4 1 2 3 4 2 3 4 1 2 3 4

House types House types House types House types

Figure 9. Schematic of Three-Phase HEMS.

7.1.3. Improve Grid Support

Figure 10 illustrates abs(Pgyid reference (t) — Pgria)- With the predominant weight in (S, U, G) =
(0,0,1) is G. Therefore, similar to previous objectives, it can be observed that the controller is able
to minimize the absolute difference between the target profile and the profile at the grid connection
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point. This is also illustrated in Figures 11 and 12 where, both active and reactive power profiles are
presented for phase r.

Objective weight = (0, 0, 1) Objective weight = (0, 1, 0) Objective weight = (1, 0, 0) Objective weight = (1, 1, 1)
4.0 5
o o o ®
5 4 4
301 125 4O
S 25 = fo) o =*7 =
§ § 10.0 2 § 3]
@ @ o ] @
2 2.0 A 2 2 3 3
o o o o
I [ (@) a I
[ [ . [ 1 [
> > > > 2
g 151 8 g B
< < <, <
5.0
1.0 4
14
25 - B _|'
0.5
0.0 - 0.0 0 04
T T T T T T T T T T T T T T T T
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
House types House types House types House types

Figure 10. Schematic of Three-Phase HEMS.

Figures 11 and 12 describes all the parameters for passive house with objective weight scenario
(S,U,G) = (0,0,1) for both active and reactive power. In Figure 11, since the objective weight scenario

is to minimize abs(Pyrig reference (t) — Pria) + abs(Qgrid reference (t) — Qgria), it can be observed that the
Py,iq is trying to closely follow the Poyig e ference-

P_inverter_r
P_heat_pump
P_controllable_load
P_uncontrollable_load

Active Power (kWh)
o
1

5 P_pv_r
P_target_r
4 4 P_grid_r
T T T T T T T
03-01 00 03-01 06 03-0112 03-0118 03-02 00 03-02 06 03-02 12 03-02 18 03-03 00
Time
Phase s

-

Active Power (kWh)
o
1

I 5 S Y R B T I S it
\f "“'“'WGWAWMW‘ UIF.,A,,zvxtu,A‘.r, ‘ggw !mw\'*, i

M
\ Al ' |
-2 4 ! f | ! f | |
Il /] ‘ IR v !
—4
T T T T T T T T T
03-01 00 03-01 06 03-01 12 03-0118 03-02 00 03-02 06 03-02 12 03-02 18 03-03 00
Time
Phase t
= a4 —— P_inverter_charging_t
E 2 — P_pv_t
5 — P_target t
§ 0 — P_grid Y
: A
=1
g -
T T T T T T T T
03-01 00 03-01 06 03-01 12 03-01 18 03-02 00 03-02 06 03-02 12 03-02 18 03-03 00

Time

Figure 11. Per-phase active power controllable and disturbance variables for passive house and weight
scenario (S, U, G) = (0,0,1)
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It is evident from Equation (23) that, there are no direct reactive power controllable variables
for all the phases. This makes it difficult for the controller to actively tract Qgyig e ference Which can be
observed in Figure 12. In phase r, due to the existing single-phase appliances, better reactive control
tracking is possible unlike phase s and .

Phase r
= . L
g Ly p— Q_heat_pump
T 14 —— Q_controllable_load
% od T Q_uncontrollable_load
o — Qpvr I A ~7
% -1 4 —— Q_target r l
® m— Q_grid_r
g —2 1 : NV
T T T T T T T T T
03-01 00 03-01 06 03-01 12 03-0118 03-02 00 03-02 06 03-02 12 03-02 18 03-03 00
Time
Phase s
< 2
>
3
T: ] AN m AA
[
Z o
e ° |
I Q_pv_s
5 —— Q_target_s
@ -2 A == Q_grid
o
T T T T T T T T T
03-01 00 03-01 06 03-01 12 03-0118 03-02 00 03-02 06 03-02 12 03-02 18 03-03 00
Time
Phase t
E
. ‘ ‘
5
2 ] l l I l
GJ
Al y ln HIH y
g T v
S I Q_pv_t
£ | — Qtarget_t
© -2 4 == Q_grid
-4
T
03-01 00 03- 01 06 03- 01 12 03- 01 18 03- oz 00 03- oz 06 03- 02 12 03- 02 18 03- 03 00
Time

Figure 12. Per-phase reactive power controllable and disturbance variables for passive house and
weight scenario (S, U, G) = (0,0,1)

8. Conclusions and Outlook

In this paper, a novel three-phase balancing HEMS was presented along with control strategies
for both active and reactive power. Four linear building models representing typical households
in Austria were described. Various linear three-phase flexibility models were presented in detail.
Three unique conflicting objective functions with three weights which are user defined is described.
Model predictive control scheme was applied to this smart home for various extreme objective weight
scenarios. Active and reactive power set-points were generated for all electrical controllable variables.
Due to the vast number of combinations of objective weights, four extreme cases were chosen for
analysis, (S, U, G) = (0,0,1), (0,1,0), (1,0,0) and (1,1,1). Analysis was done based on three objective
functions. It was shown that the results reflect the chosen objective weights for each of the three
objective functions. In Figures 11 and 12, grid support maximization objective was illustrated for
objective weights (S, U, G) = (0,0,1). In these figures, it was shown that Py;; and Q¢ are indeed
able to track their reference profiles and implications being, the objectives on the grid level controller
(three-phase unbalance minimization) are being met, leading to a grid level optimization.

The models presented in the paper were linear and first order in nature. In reality it makes sense
to use higher order nonlinear models to closely match the real behavior of the smart home. Therefore,
the model needs to be extended to nonlinear ones. Even though the scheme includes reactive power,
it is not given high importance in this paper to keep it linear. Due to high share of renewable generators,
it is interesting to be able to control reactive power in this context. The inverter connected to the
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battery in this paper only works at unity power factor. However, by including reactive power control,
better reactive power tracking can be performed. Additionally, with the power balance equation at the
inverter is non-convex in nature. Therefore, the MPC needs to be extended to be able to solve such
problems using a non-convex solver.

Author Contributions: Conceptualization, B.V.R. and EK.; Formal analysis, M.K.; Investigation, B.V.R., FK. and
M.K,; Methodology, B.V.R. and M.K,; Resources, B.V.R. and FK.; Validation, B.V.R. and M.K.; Visualization, B.V.R.
and EK.
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