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Abstract: The embedded discrete fracture model (EDFM) combines the advantages of previous
numerical models for fractured reservoirs, achieving a good balance between calculation cost and
simulation accuracy. In this work, an integrally embedded discrete fracture model (iEDFM) is
introduced to further improve the simulation accuracy and expand the application of the model.
The iEDFM has a new gridding method that can arbitrarily grid the fractures according to the
requirements rather than finely subdividing fracture elements. Then, with a more precise pressure
distribution assumption inside the matrix blocks, we are able to obtain a semi-analytic calculation
method of matrix-fracture transmissibility applied to iEDFM. Several case studies were conducted to
demonstrate the advantage of iEDFM and its applicability for intersecting and nonplanar fractured
reservoirs, and a 3D case with a modified dataset from a reported seismic survey could be used to
demonstrate the potential application of the iEDFM in real field studies.

Keywords: embedded discrete fracture model; fractured reservoir simulation; matrix-fracture
transmissibility

1. Introduction

Fractured reservoirs are commonly found all over the world. In many geoscience applications,
such as petroleum extraction, the target formations are fractured [1,2]. In these formations, matrix rock
is crossed by several fractures at multiple length scales, behaving as hydraulic conductors.

In order to evaluate the economic feasibility and to manage production, numerical simulation
tools have to be used. However, when modeling flow in fractured reservoirs, the high heterogeneity
caused by complex fractures and complicated matrix-fracture fluid exchange will cause inefficiency
and inaccuracy [3–5].

Research in this area has been advanced significantly over the past several decades. The dual
porosity model (DPM) [6–8] is one of the earliest methods for modelling fractured systems, and is still
widely used in the petrol industry because of its simplicity and practicability. Since then, many other
methods based on a similar concept have been developed to expand the application of DPM, such as
the dual-porosity dual-permeability (DPDK) model [9,10], multiple interacting continua (MINC)
model [11,12], subdomain model [13], triple-porosity dual-permeability (TPDK) model [14,15], and
multi-porosity model [16]. These multi-continuum methods provide an efficient approach to simulate
micro scale fractures. However, the assumption of fracture uniformity is limited due to losing detailed
information (such as geometry and location) of the discovered macro-scale factures.

A more accurate and physics-based approach was proposed to discretize the discovered
macro-scale fractures explicitly, which is called the discrete fracture model (DFM). Unstructured
grids are commonly used in DFM [17–22]. Based on DFM, some complex fractures, such as intersecting

Energies 2018, 11, 3491; doi:10.3390/en11123491 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://www.mdpi.com/1996-1073/11/12/3491?type=check_update&version=1
http://dx.doi.org/10.3390/en11123491
http://www.mdpi.com/journal/energies


Energies 2018, 11, 3491 2 of 20

fractures and nonplanar fractures, can be represented through appropriate gridding [22–25]. However,
the use of unstructured fine grids in real field studies is still limited because of its complexity in
gridding and computational cost [26,27].

The embedded discrete fracture model (EDFM) has been developed as a compromise. EDFM
borrows the dual-porosity concept from DPM, using traditional Cartesian gridding for the matrix
to keep the efficiency, but also incorporates the effect of each fracture explicitly as with DFM to
account for the complexity and heterogeneity of reservoirs. The concept was first proposed by Lee [28].
The fracture element within its parent matrix block (element) is represented by a control volume and is
connected to the parent matrix block and other fracture element. This concept was implemented by Li
and Lee [29] to vertical fracture cases and implemented by Moinfar [26] to non-vertical fracture cases,
in which the fractures have arbitrary dip and strike angles. Xu [30] and Yu [31] implemented EDFM
to some more complex fracture-networks, such as nonplanar shape and variable aperture. Li [32]
combined EDFM with DPDK for reservoirs with different scale fractures.

However, all these EDFMs are based on a simplified matrix-fracture fluid exchange assumption,
which leads to inaccuracy in some cases and also limits the application of the model, as it is necessary
to finely subdivide fracture elements. Matei [33] proposed a projection-based EDFM (pEDFM) where
the fracture and matrix grids are independently defined. The pEDFM is proposed to deal with highly
conductive fractures and flow barriers, thus it makes little improvement on computational efficiency,
but still provides a useful method to improve gridding and transmissibility calculation upon the
classic EDFM.

In this work, an integrally embedded discrete fracture model (iEDFM) is introduced to improve
simulation accuracy and expand the applications of the model. The iEDFM has a new gridding method
that can arbitrarily grid the fractures according to the requirements, and then embed them integrally
in matrix blocks. A semi-analytic matrix-fracture transmissibility calculation method is applied to
iEDFM with a more precise pressure distribution assumption inside the matrix blocks.

This paper is organized as follows. First of all, the basic mathematical method is introduced.
Second, the improvements of iEDFM upon EDFM are described, where the gridding method and
the semi-analytic calculation method of transmissibility are the most important. Subsequently,
we demonstrate the applicability and advantages of iEDFM through a single-phase case and two
flooding tests. Finally, by using a modified 3D case with a reported dataset from the seismic survey,
we are able to demonstrate the potential applications of the iEDFM in real field studies.

2. Methodology

2.1. Basic Mathematical Method

Models in this paper (including the fine-grid model, EDFM and iEDFM) have been implemented
into a multiphase multidimensional black-oil reservoir simulator, named MSFLOW [34]. The basic
mathematical model of this multiphase multidimensional black-oil method is introduced as follows.

In an isothermal system containing three mass components, three mass-balance equations are
needed to describe flow in fracture elements and matrix blocks. For the flow of phase β (β = g for gas,
β = w for water, and β = o for oil), the mass-balance equation is given by:

∂

∂t
(
φ Sβ ρβ

)
= −∇•

(
ρβvβ

)
+ qβ (1)

where the velocity of phase β is defined by Darcy’s law:

vβ = −
kkr β

µβ

(
∇Pβ − ρβg∇D

)
(2)

where Sβ is the saturation of phase β; k is the absolute permeability of the formation; kr β is relative
permeability to phase β; µβ is the viscosity of phase β; Pβ is the pressure of phase β; ρβ is the density
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of phase β under reservoir conditions; g is gravitational acceleration; φ is the effective porosity; qβ is
the sink/source term of phase β; and D is depth from a reference datum.

As implemented numerically, Equation (1) is discretized in space with an integral finite-difference
or control-volume scheme for the fracture elements and matrix blocks. And in time, it’s discretized
with a backward, first-order, finite-difference scheme. The discrete equations are as follows:{(

φ Sβρβ )
n+1
i −

(
φ Sβρβ )

n
i

}Vi
∆t

= ∑
j∈ηi

Fn+1
β,i j + Qn+1

βi (3)

where n is the previous time level; n + 1 is the current time level; t is time step size; Vi is the volume of
element i (matrix or fracture element); ηi contains the set of neighboring elements j (matrix or fracture
element) to which element i is directly connected; Fβ,i j is the flow term for phase β between element i
and j; and Qβi is the sink/source term at element i of Phase β.

The flow term Fβ,i j in Equation (3) is described by a discrete version of Darcy’s law, given by:

Fβ,i j = λβ,ij+1/2Ti j
(
ψ β j − ψ βi

)
(4)

where λβ,ij+1/2 is the mobility term to phase β, defined as:

λβ,ij+1/2 =

(
ρβkrβ

µβ

)
ij+1/2

(5)

where ij + 1/2 is a proper averaging or weighting of properties at the interface between element i and
j. The flow potential term is defined as:

ψβi = Pβi − ρβ,i j+1/2 g Di (6)

where Di is the depth from a reference datum to the center of element i, and Tij is transmissibility.
If the integral finite-difference scheme [14] is used, the transmissibility will be calculated as:

Tij =
Aij kij+1/2

di + dj
(7)

where Aij is the common interface area between elements i and j; di is the distance from the center
of element i to the interface; and ki j+1/2 is an averaged (such as harmonically weighted) absolute
permeability along the connection between elements i and j.

2.2. Embedded Discrete Fracture Model

EDFM creates fracture elements connected with corresponding matrix blocks (each represents
a matrix element) to account for the mass transfer between matrix and fractures. Once a fracture
penetrates a matrix block, an additional element is created to represent the fracture segment in the
physical domain (Figure 1a). Each individual fracture is discretized into several fracture elements by
the fracture intersections (Figure 1b) and the matrix block boundaries (Figure 1c).



Energies 2018, 11, 3491 4 of 20
Energies 2018, 11, x FOR PEER REVIEW  4 of 20 

 

   
(a) (b) (c) 

Figure 1. Explanation of the embedded discrete fracture model (EDFM) gridding [26]: (a) a fracture 
segment is embedded in a matrix block; (b) two fracture planes intersect in a matrix block; and (c) two 
fracture segments embedded in neighboring matrix blocks. 

Thus, there exist three kinds of connections: matrix–matrix (M–M), fracture–fracture (F–F), and 
matrix–fracture (M–F). The transmissibility of each connection can be calculated referring to Equation 
(7). 

The parameters for the M–M connection give clear physical meanings, and so the 
transmissibility can be easily obtained. For the F–F connection, a simplified approximation from 
Karimi–Fard [23] is used. The two-point flux approximation scheme is: 

21

21
21 TT

TTT FF +
=−

 
(8) 

1

1
F

cF

d
AkT =    

2

2
F

cF

d
AkT =  (9) 

where Fk  is the absolute permeability of fracture, cA  is the common interface area for these two 

fracture elements, and 
1F

d  and 
2F

d  are the average distances from fracture elements 1 and 2 to the 

common interface.  
Transmissibility of M–F depends on the matrix permeability and fracture geometry. When a 

fracture segment fully penetrates a matrix block, EDFM assumes a uniform pressure gradient in the 
matrix element, and that pressure gradient is normal to the fracture plane, creating a linear pressure 
distribution assumption. Then, the M–F transmissibility referring to the equation: 

FM

MF
FM d

kAT
−

− = 2  (10) 

where FA  is the area of the fracture element on one side, Mk  is the absolute permeability of matrix 
(when using the harmonically weighted average permeability, the huge fracture permeability can be 
ignored), and FMd −  is the average normal distance from matrix to fracture, which is calculated as: 

V

dVx
d V

n

FM


=−  (11) 

where V  is the volume of the matrix element, dV  is the volume element of matrix, and nx  is the 
distance from the volume element to the fracture plane. If the fracture does not fully penetrate the 
matrix element, most of the EDFMs make the same assumption as Li [29] that the transmissibility is 
proportional to the area of the fracture element inside the matrix element, which actually further 
simplifies the previous linear pressure distribution assumption. 

Figure 1. Explanation of the embedded discrete fracture model (EDFM) gridding [26]: (a) a fracture
segment is embedded in a matrix block; (b) two fracture planes intersect in a matrix block; and (c) two
fracture segments embedded in neighboring matrix blocks.

Thus, there exist three kinds of connections: matrix–matrix (M–M), fracture–fracture (F–F),
and matrix–fracture (M–F). The transmissibility of each connection can be calculated referring to
Equation (7).

The parameters for the M–M connection give clear physical meanings, and so the transmissibility
can be easily obtained. For the F–F connection, a simplified approximation from Karimi–Fard [23] is
used. The two-point flux approximation scheme is:

TF1−F2 =
T1T2

T1 + T2
(8)

T1 =
kF Ac

dF1

T2 =
kF Ac

dF2

(9)

where kF is the absolute permeability of fracture, Ac is the common interface area for these two
fracture elements, and dF1 and dF2 are the average distances from fracture elements 1 and 2 to the
common interface.

Transmissibility of M–F depends on the matrix permeability and fracture geometry. When a
fracture segment fully penetrates a matrix block, EDFM assumes a uniform pressure gradient in the
matrix element, and that pressure gradient is normal to the fracture plane, creating a linear pressure
distribution assumption. Then, the M–F transmissibility referring to the equation:

TM−F =
2AF kM
dM−F

(10)

where AF is the area of the fracture element on one side, kM is the absolute permeability of matrix
(when using the harmonically weighted average permeability, the huge fracture permeability can be
ignored), and dM−F is the average normal distance from matrix to fracture, which is calculated as:

dM−F =

∫
V

xndV

V
(11)

where V is the volume of the matrix element, dV is the volume element of matrix, and xn is the
distance from the volume element to the fracture plane. If the fracture does not fully penetrate the
matrix element, most of the EDFMs make the same assumption as Li [29] that the transmissibility
is proportional to the area of the fracture element inside the matrix element, which actually further
simplifies the previous linear pressure distribution assumption.



Energies 2018, 11, 3491 5 of 20

2.3. The Improvement of iEDFM

The integrally embedded discrete fracture model (iEDFM) is implemented on EDFM with a
new gridding method, a semi-analytic matrix-fracture transmissibility equation from a more realistic
pressure distribution assumption inside the matrix element, which would improve simulation accuracy
and expand the scope of application. An iEDFM preprocessor was developed with the inputs of
reservoir features and fracture geometries. The gridding and transmissibility calculation processes are
conducted in this preprocessor.

In Figure 2, we illustrate the procedure to add fracture elements with a 2D case with 4 matrix
blocks and 2 fractures. Figure 2a shows that in EDFM, 6 fracture elements have to be added with
14 F–F connections and 6 F–M connections because of the matrix element boundaries and fracture
intersections. However, in iEDFM, the fractures can be embedded integrally—either discretizing
by matrix element boundaries (Figure 2b) or taking the intersecting fracture group as one element
(Figure 2c) is permitted. As a result, the number of fracture elements can be reduced to 3 or 1, and the
number of F–F and F–M connections can be reduced to 2 or 0, 3 or 3.
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Figure 2. Explanation of the integrally embedded discrete fracture model (iEDFM) gridding: (a) EDFM
gridding method; (b) iEDFM gridding method I—discretizing by matrix element boundaries; and (c)
iEDFM gridding method II—taking the intersecting fracture group as one element.

With the fracture added, we determined the calculation method of transmissibility in iEDFM.
For M–M and F–F connections, Equations (7) and (8) are applicable. However, other than using
Equation (10), iEDFM has a new semi-analytic transmissibility equation for M–F connections.

When calculating M–F transmissibility in iEDFM, the analytic solution of pressure distribution
around the fractures and superposition principle of potential are applied. The detailed method will be
explained later.

In general, EDFM has four weaknesses which have been overcome by iEDFM:

1. The pressure difference between adjacent fracture pieces is relatively small due to the high
conductivity in the fracture. Therefore, such fine gridding for fracture in EDFM may bring
unnecessary calculation costs and difficulty in convergence;

2. When the matrix block is coarse or the embedded fractures are more complicated, the linear
assumption in EDFM is too rough (showed in Case 1);

3. If there are more than one fracture pieces inside one matrix element or the fracture has complex
geometries, the pressure distribution inside the matrix element will no longer be available, which
will limit the application of EDFM (shown in Case 1(c) and Case 3);

4. Only the fracture piece and its background matrix block are used for the transmissibility
calculation, while the global fracture network is not taken into consideration. For example,
when calculating the transmissibility of F5–M3 in Figure 2a, according to the linear pressure
distribution assumption in EDFM, the pressure drop at the red point is only influenced by F5.
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This is inaccurate because there is also F6 nearby, which will also cause a pressure drop at the red
point (showed in Case 1(b)).

2.4. Calculation of M–F Transmissibility in iEDFM

The M–F transmissibility calculation is based on the assumption of pressure distribution near the
fracture. The linear pressure distribution assumed in EDFM is rough, especially when the embedded
fractures are non-penetrating or complicated. In iEDFM, fractures can be considered as a bunch of point
sinks. Around each point sink, an analytic pressure distribution formula exists. Then, the superposition
principle of potential allows us to obtain the semi-analytic pressure distribution near the fracture.
With this pressure distribution, the M–F transmissibility equation is obtained.

Given a 2D gridded fractured reservoir as an example (Figure 3a), we could take these two
intersecting fractures as one element (iEDFM gridding method II) and consider the incompressible
steady state single-phase flow in this reservoir.
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2.4.1. Point Sinks Imitate the Fracture

The pressure of the fracture element is PF (for the iEDFM gridding method I, a fracture piece in
each matrix block has a different pressure, but the formula derivation is also similar, as follows).

We use point sink Si (i = 1 to N) to replace whole intersecting fractures. If the point sinks are
dense enough (e.g., more than 50 sinks inside one matrix block), the pressure distribution near the
fracture could be imitated near these point sinks. Point Fj (j = 1 to N) is on the surface of the fracture,
thus having the same fracture pressure PF. The top view of the dotted frame part in Figure 3a is
presented in Figure 3b.

We define a potential:

Φ =
k
µ

P (12)

when the flow reaches the steady state, we have the analytic potential distribution formula of a single
point sink from the integral of the plane radial flow equation:

Φ =
q

2πh
ln r + c (13)

Then, the N-dimensional linear equations are obtained from Equation (13) and the superposition
principle of potential:

ΦF =
N

∑
i=1

qSi

2πh
ln rij + C (j = 1 to N) (14)

where qSi is the flow rate of the point sink Si, h is the height of the reservoir, rij is the distance between
the point sink Si and the point Fj, and C and c are constant numbers. We define:

ξi =
qSi

ΦF − C
(15)

where ξi can be solved out from Equation (14).

2.4.2. The Semi-Analytic Calculation Method

Here, we consider the transmissibility between a specific matrix element (for example, the red
matrix block in Figure 3a, the top view shown in Figure 3c and the fracture element. The average
pressure of the whole matrix element (block) is PM.

Similar to Equation (14), the potential of point X near the fracture inside this specific matrix
element can be determined by:

ΦX =
kM
µ

PX =

N
∑

i=1
ξi ln rix

2πh
(ΦF − C) + C (16)

Thus, we obtain:

PM =

s

M
PX · dVx

VM
(17)

Combining Equations (16) and (17) and the definition of transmissibility (Equation (4)), the M–F
transmissibility and the pressure anywhere inside the matrix block can be calculated by:

TM−F =

kM ∑
Si∈M

ξi

ε− 1
(18)
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PX =


N
∑

i=1
ξi ln rix

2πh
− 1

 · PM − PF
ε− 1

+ PF (19)

where:

ε =

s

M

N
∑

i=1
ξi ln rix

2πh dVx

VM
(20)

where VM is the volume of the specific matrix element, ∈ M means that the point is inside this matrix
block, dVx is an element volume of this matrix element, rix is the distance between the point sink Si

and dVx. TM−F is only related to the properties of the reservoir and can be determined at the step of
pre-processing before the simulation starts.

For the 3D situation, referring to Equations (6) and (12), the analytic potential distribution formula
of a single point sink is:

Φ3D =
k
µ

ψ =
q

2πr
+ c (21)

After a similar derivation, the—F transmissibility and the pressure distribution can be written as:

T3D
M−F =

kM ∑
Si∈M

ξi

ε3D − 1
(22)

Φ3D
X =


N
∑

i=1
ξi

2πrix
− 1

 · Φ3D
M −Φ3D

F
ε3D − 1

+ Φ3D
F (23)

where,

ε3D =

s

dVx∈M

N
∑

i=1
ξi

2πrix
dVx

VM
(24)

3. Verifications and Applications

In the following simulation studies, we present four cases to demonstrate the applicability
of iEDFM.

First, a single-phase case is considered to demonstrate the improvement of iEDFM upon EDFM.
Then, in the second case, we demonstrate the accuracy of our model by comparing the flow rates and
saturation profiles with the fine-grid model through a flooding test. Both gridding methods I and II
are used in this case. Then, a nonplanar fractures case is presented to show the applicability of iEDFM
for a complex geometry situation. At last, a 3D field case demonstrates the potential application of
iEDFM in real field studies.

Most of the reservoir properties and operation parameters were kept the same in all the cases,
as shown in Table 1.
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Table 1. Basic reservoir and fluid parameters in simulations for case 1~4.

Parameter Value Unit

Reservoir permeability 1 × 10−14 m2

Fracture permeability 1 × 10−10 m2

Reservoir porosity 30% -
Oil density 800 kg/m3

Oil viscosity 2.0 Pa·s

3.1. Case 1: Constant Pressure Pumping from Fractures

The calculation method of M–F transmissibility is based on the assumption of pressure distribution
pattern in the vicinity of fractures. EDFM assumes a uniform pressure gradient in the matrix element,
while iEDFM uses a semi-analytic method to calculate the pressure distribution.

In this case, we consider an ideal reservoir with two intersecting fractures (Figure 4), using
simulation results from the fine-grid model to verify the effectiveness of iEDFM over EDFM. EDFM or
iEDFM simulation is not conducted in this case. Only the pressure distribution and M–F transmissibility
for red block (a)/(b)/(c) are calculated through the pre-processing procedure of iEDFM and EDFM,
comparing with the simulation result of the whole reservoir of the fine-grid model.
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Figure 4. The fractured reservoir in Case 1. The 9 × 9 grids showed a possible gridding choice for
iEDFM or EDFM.

Single-phase fluid (water) is pumping out from the constant pressure vertical fractures simulated
in the fine-grid model discretized by 900 × 900 fine gridblocks horizontally. The element dimensions
are non-uniform in the x and y directions to accommodate refinement around fractures. The widths of
the fracture elements and their adjacent matrix elements were equal to the fracture aperture. Table 2
supplements some parameters in addition to Table 1.
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Table 2. Some parameters in simulations for Case 1.

Parameter Value Unit

Initial reservoir pressure 2 × 106 Pa
Pumping pressure
(Fracture pressure) 1 × 106 Pa

Simulation time 1.0 s

This pumping pressure represents the pressure of the fracture element, and the average pressure of
the matrix inside the red blocks represents the pressure of the matrix element. The fluid exchange can be
obtained from simulation results of the fine-grid model. Therefore, the equivalent M–F transmissibility
by the fine-grid model can be calculated through Equation (4).

Figure 5b shows that the transmissibility calculation methods in EDFM and iEDFM are more
accurate when the fracture fully penetrates the matrix block. It can be seen from Figure 5a that
when the fracture does not fully penetrate, the EDFM method will cause some error which cannot be
ignored, which is in agreement with the estimation by Xu [30], while the iEDFM method can still be
relatively accurate in this situation. In Figure 5c, we can see that the EDFM method produces more
obvious errors in the complex situation with fracture intersection, whereas the iEDFM method is still
relatively accurate.
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Figure 5. TM-F of the fine-grid model (equivalent)/iEDFM/EDFM for block (a)/(b)/(c). The equivalent
transmissibility calculated by the fine-grid model will change over time until the flow approaches a
steady state, while the ones calculated through the pre-processing procedure of iEDFM/EDFM stay
the same.

The errors and differences are mainly due to different assumptions regarding the pressure
distribution in the vicinity of fractures. In Figure 6, the pressure profiles in block (a) (b) and (c) after 0.1s
of pumping are presented. Three kinds of pressure profiles are considered here: pressure distribution
calculated by the fine-grid method, and the pressure distribution assumed by EDFM/iEDFM.

As shown in Figure 6, the results of the fine-grid model are quite similar to iEDFM, with negligible
difference. However, the results of EDFM indicate that when the matrix block is not fully penetrated by
the fracture (Figure 6a) or the embedded fractures are complicated (Figure 6c), the linear distribution of
EDFM’s assumption can be rough. Even if the fracture penetrates the block (b), the linear distribution
still does not exactly reflect the real situation, because of the effect of the fracture segment outside this
matrix block, which EDFM does not take into consideration but iEDFM does.
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Figure 6. Pressure distribution profiles after 0.1 s pumping of the fine-grid model/iEDFM
(assumed)/EDFM (assumed) for block (a)/(b)/(c).

In summary, iEDFM has a more accurate M–F transmissibility calculation method based on a
more realistic pressure distribution assumption. In addition, iEDFM can assume a specific pressure
field for any complex embedding situation. If pressure-related physical properties, such as adsorption
analysis and diffusion effects, need to be considered, iEDFM is able to show a greater applicability.

3.2. Case 2: Intersecting-Fractured Reservoir Flooding Test

Figure 7 shows a 2D fractured reservoir containing three intersecting vertical fractures. This case
is a displacement of oil by water, applied in the fine-grid model and the iEDFM model. Table 3
supplements some parameters of this case in addition to Table 1, which will also be used in the
following cases.

Table 3. Some parameters in simulations for Cases 2–4.

Parameter Value Unit

Initial reservoir pressure 1 × 106 Pa
Producer pressure 1 × 106 Pa

Initial water saturation 20% -
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Figure 7. The fractured reservoir in Case 2. A water injector is placed in one corner of the reservoir and
a producer is located in the opposite corner.

For the fine-grid simulation, the grid is 900 × 900 elements in the x and y directions. For the
iEDFM simulation, two sets of uniform matrix grids (30 × 30/10 × 10) are used. Gridding methods I
and II are also compared in this case (gridding method I is applied if not mentioned, as below). The oil
rate and the profiles of oil saturation after 115 days of water injection (8.64 × 10−5 m3/day) calculated
by iEDFM and fine-grid model are presented in Figures 8 and 9.
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Figure 9. Profiles of oil saturation after 115 days’ injection for Case 2 in: (a) the fine-grid model;
(b) iEDFM (10 × 10, gridding method I); (c) iEDFM (30 × 30, gridding method I); and (d) iEDFM
(30 × 30, gridding method II).

Figure 8 compares the oil production rates, confirming the accuracy of the iEDFM approach.
A good agreement exists in both 30 × 30/10 × 10. The curves of gridding methods I and II almost
coincide, indicating that the results of these two methods are not much different when the permeability
of fracture is much higher than that of the matrix, respectively. A curve of the same reservoir without
any fracture is also present on this figure to show the influence of the existence of fractures. The effect
of phase behavior on oil saturations is also pronounced in this case, as Figure 9 shows.

The computational times for iEDFM (30 × 30), iEDFM (10 × 10) and the fine-grid model are 9.1 s,
4.3 s and 6.7 h, respectively, which indicates a high efficiency of iEDFM.

3.3. Case 3: Nonplanar-Fractured Reservoir Flooding Test

Recent advances in fracture-diagnostic tools and fracture-propagation models make it necessary
to model fractures with complex geometries in reservoir-simulation studies. A nonplanar shape is one
of the most common complex geometries [30].

Fractures tend to grow in the direction perpendicular to the minimum horizontal stress. In some
cases, the preferred direction of fracture may not keep the same, which often leads to a nonplanar shape.

The methodology introduced in this study can be directly applied in a nonplanar fractures case.
As Figure 10 shows, the location of the assumed points Si and Fi will reflect the geometry of the
fracture. As a result, the semi-analytic method can bring iEDFM enough flexibility in modeling
nonplanar fractures.
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Figure 10. Schematic of equivalent point sinks and other parameters used in the nonplanar fracture
case corresponding to Figure 3b.

We present an ideal case as shown in Figure 11 in which the fracture is formed as two connected
arcs seen in the top view and is vertical in the z direction. The same parameters as Case 2 are applied
here, and a fine-grid model similar to Case 2 is built. For the iEDFM simulation, gridding method I
and a uniform matrix grid (30 × 30 with one layer in z direction) are used.
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Figure 11. The nonplanar-fractured reservoir in Case 3. A water injector (8.64 × 10−5 m3/day) is
located in one corner of the reservoir, and a producer is placed in the opposite corner.

The oil rate curves are presented in Figure 12 and the oil saturation profiles after 115 days of
injection are shown in Figure 13, where a good agreement demonstrates the accuracy of the iEDFM in
modeling the nonplanar fractures reservoir. The curves of the same reservoir without any fracture
and with a planar fracture with the same starting and ending location are also present on this figure to
show the influence of the existence of nonplanar fractures.
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Figure 13. Profiles of oil saturation after 115 days’ injection for Case 3 in (a) the fine-grid model and (b)
iEDFM (30 × 30).

Actually, as Figures 3b and 10 show, different locations of point Si and Fi are able to reflect any
geometry of the fractures, such as fractures with variable apertures and vuggy-fractures, which means
that iEDFM is naturally suitable for any other complex geometry cases beside nonplanar fractures.

3.4. Case 4: 3D Case with a Modified Dataset of a Real Field

As mentioned previously, iEDFM can be used as a general procedure in both 2D and 3D cases.
In real field applications, the reservoir may have multiple layers, and the height of the fractures can
be smaller than the reservoir height. Therefore, a 3D simulation example is presented to show the
application of iEDFM in a typical field study.

In this case, the geological model is modified from a reported dataset which is interpreted from
a 3D seismic survey [35,36]. Some irregular, sparsely distributed large-scale fractures are present as
main fractures (black planes in Figure 14a). Some stochastic medium-scale fractures (blue planes in
Figure 14a) are added to test iEDFM’s applicability in a complex fracture-network situation. The main
fractures and the wells are assumed to extend throughout the entire depth of the reservoir, while the
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stochastic medium-scale fractures are of different heights. Figure 14b shows the matrix grids (25 × 25
× 5) and the position of fractures and wells. An injection well (4 × 104 m3/day) is placed in the center,
while producers are placed in four corners of the reservoir. Again, the reservoir without any fracture is
also simulated as a comparison.
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Figure 14. (a) Three-dimensional view of main fractures and medium-scale fractures; (b) The matrix
grids of the reservoir and the position of each fracture and each well.

The oil rate curves are presented in Figure 15. The curves of wells 1–4 in the reservoir without
fractures are coincident because of the symmetry. The pressure profiles of the top and bottom
layers after 7300 days of injection are shown in Figure 16. As we can see, the reservoir shows
strong heterogeneity due to the existence of fractures, and the water’s breakthrough is advanced,
which reduces the recovery efficiency. As medium-scale fractures are added, these phenomena become
more pronounced. Because of gravity, the average oil saturation of the first layer is higher than that of
the bottom layer (0.6952 of Figure 16c than 0.5671 of Figure 16d, respectively).
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Figure 16. Profiles of oil saturation after 7300 days’ injection for Case 4 of: (a) the top layer of the non-
fracture reservoir; (b) the bottom layer of the non-fracture reservoir; (c) the top layer of the reservoir 
with only main fractures; (d) the bottom layer of the reservoir with only main fractures; (e) the top 
layer of the reservoir with all fractures; and (f) the bottom layer of the reservoir with all fracture. 

The case study showed the applicability of the iEDFM in reservoirs with complex fracture 
networks. The influence of different scales of fractures can be modeled appropriately by iEDFM. The 
3D multiphase simulation example demonstrates the potential application of the iEDFM in real field 
studies. 

4. Conclusions and Future Work 

In this study, we developed a new approach called the integrally embedded discrete fracture 
model (iEDFM). This approach, for the first time, avoids the limitations of the need to subdivide 
fracture elements in EDFM.  

In iEDFM, we can arbitrarily grid fractures according to the requirements, and then embed them 
integrally in matrix blocks. As a precise pressure distribution assumption inside the matrix blocks is 
introduced, we can obtain a semi-analytic calculation method of matrix-fracture transmissibility. As 
a result, the simulation accuracy is improved and the application is also expanded to fractures with 
complex geometries. Several cases have been presented to support these conclusions. The potential 
application of the iEDFM in real field studies has also been testified through a 3D case. 

Applying the iEDFM to real field study and guiding production is our ultimate goal. Thus, 
heterogeneous and more complex actual reservoir examples with actual production data will be 
considered in our on-going project. 
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Figure 16. Profiles of oil saturation after 7300 days’ injection for Case 4 of: (a) the top layer of the
non-fracture reservoir; (b) the bottom layer of the non-fracture reservoir; (c) the top layer of the reservoir
with only main fractures; (d) the bottom layer of the reservoir with only main fractures; (e) the top
layer of the reservoir with all fractures; and (f) the bottom layer of the reservoir with all fracture.

The case study showed the applicability of the iEDFM in reservoirs with complex fracture
networks. The influence of different scales of fractures can be modeled appropriately by iEDFM.
The 3D multiphase simulation example demonstrates the potential application of the iEDFM in real
field studies.

4. Conclusions and Future Work

In this study, we developed a new approach called the integrally embedded discrete fracture
model (iEDFM). This approach, for the first time, avoids the limitations of the need to subdivide
fracture elements in EDFM.

In iEDFM, we can arbitrarily grid fractures according to the requirements, and then embed them
integrally in matrix blocks. As a precise pressure distribution assumption inside the matrix blocks
is introduced, we can obtain a semi-analytic calculation method of matrix-fracture transmissibility.
As a result, the simulation accuracy is improved and the application is also expanded to fractures with
complex geometries. Several cases have been presented to support these conclusions. The potential
application of the iEDFM in real field studies has also been testified through a 3D case.

Applying the iEDFM to real field study and guiding production is our ultimate goal. Thus,
heterogeneous and more complex actual reservoir examples with actual production data will be
considered in our on-going project.
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