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Abstract: The significant decreased wellbore temperature and increased casing pressure during
fracturing fluid injection present a big challenge for the mechanical integrity of cement sheath in
fracturing wells. Based on the theories of elastic mechanics, thermodynamics, and a multi-layer
composed thick-wall cylinder, this paper proposed a new mechanical model of cement sheath
for fracturing wells, coupling pressure, and thermal loads, which consider the failure modes of
de-bonding, radial cracking, disking, and shear failure. The radial nonuniform temperature change
and the continuous radial stress and radial displacement at two interfaces have been considered.
With the proposed model, the radial distributions of failure stress and the corresponding safety factor
for cement sheath during fracturing fluid injection have been analyzed and compared under four
failure modes. Results show that the decreased wellbore temperature will produce significant tri-axial
tensile stress and induce cement failure of de-bonding, radial cracking, and disking. The increased
casing pressure will significantly lower the risk of de-bonding but also aggravate radial cracking and
shear failure. For integrity protection of cement sheath, increasing the injected fluid temperature,
maintaining higher circulation pumping pressures, and adopting cement sheath with a low elasticity
modulus have been suggested for fracturing wells.

Keywords: cement sheath; analytical model; failure stress; safety factor; fracturing wells

1. Introduction

For maintaining gas well’s long-term and safe production, mechanical integrity of cement sheath
has been given more emphasis in recent years. Field experiences and laboratory studies have both
proven that cement sheath is very likely to fail after downhole operations, such as pressure testing,
hydraulic fracturing, acidizing, steam injection, and more [1–3]. The cement sheath fails mainly
because of the loads from variations of wellbore temperature and pressure. For fracturing wells,
because of the high displacement and pump pressure fracturing fluid injection into wellbore, the
wellbore temperature decrease (by −70 ◦C) and casing pressure increase (by 70 MPa) are both very
serious. In addition, this leads to cement sheath failure and continuous annular casing pressure.
Presently, Portland cement is still frequently-used for wellbore purposes. However, because of its
high elasticity and lower tensile strength, it is more likely to fail. Consequently, an analysis of the
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failure stress and the corresponding failure mode in the cement sheath during the fracturing process is
significant for the wellbore safety of fracturing wells.

Currently, some theoretical mechanical models of cement sheath coupling pressure and
temperature loads have been established for high pressure and high temperature (HPHT) gas wells
and steam injecting wells. Thiercelin et al. [4] first proposed the mechanical model for the cement
sheath in which the influence of thermo-elastic properties of materials on cement failure was verified.
Li et al. [5] proposed a thermal stress model for a coupled casing-cement-formation system in a
thermal well and investigated the casing failure behaviors. After that Li et al. [6] further established
a mechanical model of cement sheath coupling the effects of temperature and pressure loads in a
non-uniform in-situ stress field. Bois et al. [7] also proposed a cement sheath model. The failure modes
were analyzed by investigating the casing deformation induced by wellbore temperature variation.
Haider et al. [8] developed a composite axisymmetric casing-cement-formation model for a CO2

storage well. The results indicated that the decrease in wellbore temperature could induce radial
tensile stress in the cement sheath. Bui et al. [9] also presented a mechanical model for cement failure
prediction, where the non-uniform stress field and the thermal stress were involved. Xi et al. [10]
established a transient thermo-mechanical model of casing-cement sheath-formation assembly by using
the analytical method and the numerical method comprehensively. Our previous study [11] proposed
a mechanical model of casing-cement-formation system and investigated the influence of wellhead
casing pressure on cement sheath integrity for HPHT gas wells. After that, we further proposed a
model of thermal stress for cement sheath during hydraulic fracturing [12], where radial non-uniform
temperature change was involved, and the main influencing factors were also investigated. All the
models mentioned above could be used to simulate the stress and failure of cement sheath in some
ways. However, because of the complexity of wellbore geometry and the diversity of cement sheath
failure modes, the present models cannot provide a relatively accurate and comprehensive failure
analysis for cement sheath.

In this paper, a new mechanical model of cement sheath, coupling pressure, and thermal loads
and considering the failure modes of de-bonding, radial cracking, disking, and shear failure, has been
proposed for fracturing wells, based on the elastic mechanics, thermodynamics theory, and the theory of
multi-layer composed thick-wall cylinder. The radial non-uniform temperature change in the combined
system has been considered and both the radial stress and radial displacement at the casing-cement
sheath interface and the cement sheath-formation interface are supposed to be continuous. Based on
the proposed model, the radial distributions of failure stress and corresponding safety factor for cement
sheath during fracturing fluid injection have been analyzed and compared under four failure modes.
In addition, some measures have been proposed for cement sheath protection, which can be of great
significance for decreasing the risk of sustained casing pressure after fracturing operations.

2. Mechanical Model Development and Solution

2.1. Basic Assumptions

To maintain the wellbore mechanical and hydraulic integrity during fracturing and long-term
production, the open hole is usually cemented with a steel casing. When the high pump pressure
fluid with continuous large displacement is injected into the wellbore, the coupled loads from
increased casing pressure pi and decreased wellbore temperature T(r) will simultaneously exert
on the casing-cement sheath-formation combined system, which induces cement sheath stresses.
The schematic diagram of the casing-cement-formation combined system during fracturing fluid
injection is shown in Figure 1. Before developing the mechanical model of cement sheath, to make the
present model tractable, the following assumptions are made [11,12].

(1) The casing, cement sheath, and formation are continuous, homogeneous, and isotropic.
(2) The casing-cement sheath-formation system is completely cemented and axisymmetric.
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(3) Both casing-cement sheath and cement sheath-formation interface satisfy the continuity
conditions for radial stress and radial displacement.

(4) The radial non-uniform temperature varies along the combined casing-cement sheath -formation
system except for casing as consideration of its thin wall and well heat conduction performance.

(5) The temperature at the inner wall of casing is equal to the wellbore fracturing fluid
temperature and that at the outer wall of formation maintains an original formation temperature
during fracturing.
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Figure 1. The schematic diagram of casing-cement sheath-formation combined system during
fracturing fluid injection.

2.2. Cement Sheath Stress Induced by the Decrease of Wellbore Temperature

The continuous fracturing fluid injection will significantly decrease wellbore temperature and
constrict the combined system, which will lead to thermal stresses in the cement sheath. Our previous
study investigated thermal stresses for cement sheath during hydraulic fracturing based on the elastic
mechanics and thermodynamics theory [13], and the general solutions of radial thermal displacement
and thermal stresses for thick wall cylinder were given as follows [12,13].

uT = 1+µ
1−µ

α
r
∫ r

a T(r)rdr + C1r + C2
r

σT
r = − αE

1−µ
1
r2

∫ r
a T(r)rdr + E

1+µ

(
C1

1−2µ −
C2
r2

)
σT

θ = αE
1−µ

1
r2

∫ r
a T(r)rdr− αETb(r)

1−µ + E
1+µ

(
C1

1−2µ + C2
r2

)
σT

z = − αET(r)
1−µ + 2µEC1

(1+µ)(1−2µ)

(1)

In Equation (1), T(r) stands for the radial temperature change at radius of r in the cylinder after and
before fracturing fluid injection. Considering wellbore temperature varies radially constant in casing
and logarithmically in cement sheath and formation, if the temperature at the inner boundary of casing
is Ti before fracturing and it decreased to Tt after fracturing fluid injection, while the temperature at
the outer boundary of formation is constantly Te, the radial wellbore temperature change T(r) can be
determined by the following [12].

T(r) =

{
Tt − Ti (ri ≤ r ≤ r1)

Tt − Ti + (Ti − Tt)
ln(r/r1)
ln(ro/r1)

(r1 ≤ r ≤ ro)
(2)
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For the integral expression
∫ r

a T(r)rdr in Equation (1), it can be deduced as:

∫ r

a
T(r)rdr =


1
2 (Tt − Ti)(r2 − r2

i ) (ri ≤ r ≤ r1)

1
2 (Tt − Ti)(r2 − r2

1) +
(Ti−Tt)

2 ln(ro/r1)

[
r2 ln

(
r
r1

)
− r2

2 +
r2

1
2

]
(r1 ≤ r ≤ ro)

(3)

Submitting Equations (2) and (3) into Equation (1), the thermal radial displacement and thermal
stresses for combined system can be determined, and the detailed derivative results are shown in
Appendix A.

2.3. Cement Sheath Stresses Induced by the Increase of Casing Pressure

Taking wellbore temperature as no change during fracturing fluid injection and, since only
the increased casing pressure acts on the casing-cement sheath-formation combined system, casing
expansion and induced stresses in the cement sheath will occur. Assuming the plane strain of the
combined system (εz ≈ 0), the following can be obtained [13].

σP
z = µ

(
σP

r + σP
θ

)
(4)

Furthermore, the radial displacement of a cylinder induced by the increased inner pressure can
be expressed below.

uP =
r
E

[(
1− µ2

)
σP

θ −
(

µ + µ2
)

σP
r

]
(5)

If the contact pressure induced by increased casing pressure is pc1 at the casing-cement sheath
interface and pc2 at the cement sheath-formation interface respectively, the induced stress in the cement
sheath can be calculated with the Lame Formula [13]. Now, we will solve pc1 and pc2 with the interfacial
continuity conditions.

For the casing, because it is subjected to the increased casing pressure pi at its inner wall and the
contact pressure pc1 at its outer wall, its radial and tangential stresses can be obtained with the Lame
Formula as follows: 

σP
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pir2
i

r2
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i

(
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1
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By submitting Equation (6) into Equation (5), the radial displacement of the casing at its outer
wall (r = r1) can be obtained.

uP
s |r=r1 =

r1

Es

[(
1− µs

2
)( 2r2

i
r2

1 − r2
i

pi −
r2

1 + r2
i

r2
1 − r2

i
pc1

)
+
(

µs + µs
2
)

pc1

]
(7)

For the cement sheath, because it is subjected to the contact pressure pc1 at its inner wall and the
contact pressure pc2 at its outer wall, its radial and tangential stresses can also be obtained with the
Lame Formula below. 

σP
rc =

pc1r2
1

r2
2−r2

1

(
1− r2

2
r2

)
− pc2r2

2
r2

2−r2
1

(
1− r2

1
r2

)
σP

θc =
pc1r2

1
r2

2−r2
1

(
1 + r2

2
r2

)
− pc2r2

2
r2

2−r2
1

(
1 + r2

1
r2

) (8)

By submitting Equation (8) into Equation (5), the radial displacement of the cement sheath at its
inner wall (r = r1) can be obtained.

uP
c |r=r1 =

r1

Ec

[(
1− µc

2
)( r2

2 + r2
1

r2
2 − r2

1
pc1 −

2r2
2

r2
2 − r2

1
pc2

)
+
(

µc + µc
2
)

pc1

]
(9)
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According to the continuity condition at the casing-cement sheath interface, there exists uP
s |r=r1 =

uP
c |r=r1 . Thus, we can get the following.[

Ec
(
µs + µs

2)− r2
1+r2

i
r2

1−r2
i

Ec
(
1− µs

2)− r2
2+r2

1
r2

2−r2
1

Es
(
1− µc

2)− Es
(
µc + µc
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+
2r2

2
r2

2−r2
1

Es
(
1− µc

2)pc2 = − 2r2
i

r2
1−r2

i
Ec
(
1− µs

2)pi

(10)

Similarly, the radial displacement of the cement sheath at its outer wall (r = r2) can also be obtained
as follows.

uP
c |r=r2 =

r2

Ec

[(
1− µc

2
)( 2r2

1
r2

2 − r2
1

pc1 −
r2

2 + r2
1

r2
2 − r2

1
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)
+
(

µc + µc
2
)

pc2

]
(11)

For the formation, because it is subjected to the contact pressure pc2 at its inner wall and the
changed formation pressure pf at its outer wall, its radial and tangential stresses can also be obtained
with the Lame Formula below.
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Then, by submitting Equation (12) into Equation (5), the radial displacement of the formation at
its inner wall (r = r2) can be obtained.

uP
f |r=r2 =

r2

E f

[(
1− µ f

2
)( r2
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2
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According to the continuity condition at the cement sheath-formation interface, there exists
uP

c |r=r2 = uP
f |r=r2 . Thus, we can get the following.[
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Solving Equations (10) and (14) simultaneously, the contact pressure pc1 and pc2 can be obtained.
Lastly, from Equation (8) we can easily get the radial stress σP

rc and tangential stress σP
θc respectively.

Furthermore, the axial stress σP
zc in the cement sheath caused by the increased casing pressure can be

calculated by Equation (4) as:
σP

zc = µc

(
σP

rc + σP
θc

)
(15)

2.4. Combined Stresses of Cement Sheath during Fracturing Fluid Injection

In fact, the cement sheath will simultaneously suffer from induced stresses caused by decreased
wellbore temperature and increased casing pressure during the fracturing fluid injection. Therefore,
the combined radial, tangential, and axial stress of cement sheath during fracturing fluid injection can
be expressed as follows. 

σrc = σT
rc + σP

rc
σθc = σT

θc + σP
θc

σzc = σT
zc + σP

zc

(16)
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2.5. Failure Criterion and Safety Factor for Cement Sheath

Four kinds of failure modes may lead to the loss of zonal isolation for cement sheath including
inner debonding, outer debonding, radial cracking, shear damage, and disking. Bois et al. [14]
illustrated that in Figure 2. Debonding, radial cracking, and disking can be determined with the
maximum tensile stress criterion, while shear failure can be determined with the Mohr-Coulomb
Criterion or the Mogi-Coulomb Criterion. Compared to the Mogi-Coulomb Criterion, because the
Mohr-Coulomb Criterion does not consider the effect of intermediate principal stress on the strength
of the material, it cannot reflect the real failure under a true tri-axial stress state in the rock [15,16].
The Mogi-Coulomb Criterion was selected in the paper.
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If the radial tensile stress at the casing-cement sheath interface or the cement sheath-formation
interface exceeds the tensile strength of cement sheath, the de-bonding failure can be described as
follows [17].

σrc|r=r1 or r2 > σtc (17)

If the tangential tensile stress in the cement sheath surpasses its tensile strength, cracking will
begin to form and propagate along the radial direction. When multiple radial cracking are linked, the
leakage path can be generated. The radial cracking failure can be expressed by Equation (18) below.

σθc > σtc (18)

Similarly, if the axial tensile stress in the cement sheath exceeds its tensile strength, disking will
begin to form and run across the cement wall. The disking failure can be described below.

σzc > σtc (19)

Shear failure is a critical failure mode, which typically causes an entire failure for cement sheath.
The Mogi-Coulomb Criterion assumes that shear failure will occur when the octahedral shear stress
τoct in the cement sheath exceeds the maximum allowable shear stress τcmax, which can be expressed
as the following equation [15,16].

1
3

√
(σrc − σθc)

2 + (σrc − σzc)
2 + (σθc − σzc)

2 = τoct > τcmax (20)

If a linear form is considered for the Mogi-Coulomb criterion and, noting that the compressive
stress is negative in this paper, the maximum allowable shear stress τcmax in Equation (20) can be
determined by the equation below [18].

τcmax = cc cos φc −
σ1 + σ3

2
sin φc (21)
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Considering the following relationship between the uniaxial compressive strength of cement
sheath σcc and its cohesion cc, the internal friction angle φc is shown below.

σcc = 2cc
cos φc

1− sin φc
(22)

If σcc and φc are both known, by combining Equations (20)–(22), we can express the Mogi-Coulomb
Criterion below.

1
3

√
(σrc − σθc)

2 + (σrc − σzc)
2 + (σθc − σzc)

2 >
1− sin φc

2
σcc − sin φc

σ1 + σ3

2
(23)

According to the failure criteria above, the safety factors for four failure modes can be calculated
respectively, as shown in Table 1.

Table 1. Safety factor for cement sheath.

Failure Mode Failure Criterion Safety factor (SF)

Inner de-bonding σrc|r=r1 > σtc SF = σtc/σrc|r=r1

Outer de-bonding σrc|r=r2 > σtc SF = σtc/σrc|r=r2

Radial cracking σθc > σtc SF = σtc/σθc
Disking σzc > σtc SF = σtc/σzc

Shear failure τoct > τcmax SF = τcmax/τoct

3. Mechanical Integrity Analysis of Cement Sheath during Fracturing Fluid Injection

3.1. Basic Calculation Parameters

A shale gas fracturing well in the Sichuan Basin in China was selected for the analysis of
mechanical integrity of cement sheath during fracturing fluid injection. The 215.9 mm open hole
was cemented with 139.7 mm × 9.17 mm P110 casing. The basic calculation parameters, including
wellbore geometry parameters, material property parameters, and operation parameters, are listed in
Table 2.

Table 2. Basic calculation parameters.

No. Symbol Value Unite No. Symbol Value Unit

1 ri 60.68 mm 11 µs 0.30 dimensionless
2 r1 69.85 mm 12 µc 0.19 dimensionless
3 r2 107.95 mm 13 µf 0.21 dimensionless
4 ro 1079.5 mm 14 Ti 100 ◦C
5 αs 1.15 × 10−5 1/◦C 15 Tt 30–70 ◦C
6 αc 1.03 × 10−5 1/◦C 16 Te 100 ◦C
7 αf 1.03 × 10−5 1/◦C 17 pi 0–70 MPa
8 Es 206 GPa 18 σtc 2.3 MPa
9 Ec 10 GPa 19 σcc 32 MPa
10 Ef 30 GPa 20 ϕc 30 ◦

3.2. Results and Discussion

To make clear the failure laws of cement shear during fracturing fluid injection, the proposed
cement sheath stress model has been validated by the FEA method and then the corresponding failure
stresses and safety factors of cement sheath under a different failure mode have been calculated
according to the basic parameters in Table 2. Simultaneously, when seeking the measures of protecting
cement sheath, the safety factors have also been investigated under a different elasticity modulus of
the cement sheath Ec.
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3.2.1. Cement Sheath Stresses Validated by the FEA Method

Up to now, as the complexity of the casing-cement sheath-formation combined system and the
difficulty of applying coupled loads, fewer experimental studies were conducted about the in situ
cement sheath integrity during fracturing. To validate the cement sheath stress model proposed in this
paper, a 2D axisymmetric casing-cement sheath-formation model has been established with Ansys
Workbench 14.5. Figure 3 shows the finite element analysis model of casing-cement sheath-formation
combined system and the element type of Plane 183 was selected for this analysis. For simulating
cement sheath stresses induced by increased casing pressure and decreased wellbore temperature
during fracturing, a Steady-State Thermal analysis followed by a Static Structural analysis has been
conducted. The axial displacement on the upper and lower bounds of the whole model and the radial
displacement on the outer boundary of formation are all set to be zero. Furthermore, 70 MPa net
increased casing pressure is exerted on the inner boundary of casing. The initial temperature is uniform
at 100 ◦C on the whole model and it decreased to 30 ◦C on the casing inner wall while still maintaining
100 ◦C on the formation outer wall during fracturing.
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Figure 4 shows the comparison of cement sheath stresses between analytical model results and
finite element analysis ones. It can be seen that the radial stress, tangential stress, and axial stress
in the cement sheath calculated with two methods are all very close. The average relative errors of
three kinds of stress are 7%, 5%, and 2% respectively, which indicated that the proposed model can be
applicable for cement sheath stress calculation during fracturing to some extent.Energies 2018, 11, x 9 of 20 
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3.2.2. De-Bonding

De-bonding occurs when radial tensile stress at the cement interfaces exceeds its own tensile
strength, which may mainly result from decreased wellbore temperature during fracturing fluid
injection [19]. Figure 5 shows the radial distribution of the radial stress in the cement sheath considering
increased casing pressure pi of 0–70 MPa and decreased temperature at the casing inner wall of 70 ◦C.
It can be seen from Figure 5 that the decreased wellbore temperature will induce significant radial
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tensile stress, which is very harmful to cement sheath and may cause de-bonding. However, the
increased casing pressure will produce radial compressed stress in the cement sheath at the same time
and offset the radial tensile stress. In addition, with the increase of casing pressure pi, the radial stress
in the cement sheath gradually changes from tensile to compressed stress, which indicates that the
risk of de-bonding decreases. When the increased casing pressure is 50 MPa, the radial stress is nearly
compressive. Consequently, maintaining higher circulation pumping pressures, avoiding pumping off
during injection, and lowering the pump pressure slowly during the operation completion will all be
beneficial for cement sheath protection.
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Figure 6 shows the safety factors of cement sheath for de-bonding at two interfaces under different
increased casing pressures pi. It can be seen form Figure 6 that the safety factors at the casing-cement
interface and the cement-formation interface both increase exponentially with the increase of casing
pressure pi. When pi is less than 32 MPa, both interfaces will separate. When pi is between 32 MPa
and 42 MPa, only the cement-formation interface will separate. When pi is larger than 42 MPa, both
interfaces will not separate. Generally, the outer de-bonding is more relatively easy compared to
inner de-bonding. This is because increased casing pressure pi has a larger effect on the casing-cement
interface. For the integrity of cement sheath, the value of pi must be maintained above 42 MPa during
the whole fracturing fluid injection stage.
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3.2.3. Radial Cracking

Radial cracking appears when tangential tensile stress in the cement surpasses its own tensile
strength, Figures 7 and 8 shows the radial distribution of the tangential stress and safety factors
for radial cracking in the cement sheath considering increased casing pressure pi of 0–70 MPa and
decreased temperature at the casing inner wall of 70 ◦C. It can be seen from Figure 7 that the decreased
wellbore temperature and increased casing pressure will both induce significant tangential tensile stress,
which leads to the risk of radial cracking. Figure 8 shows that the safety factors are all less than one
under the present operation parameters, which means that radial cracking occurs completely. To some
extent, this answers for the sustaining annular pressure after gas production. Meanwhile, we can also
know easily that the maximum tangential tensile stress is nearly located at the casing-cement sheath
interface and is caused by a decreased temperature of 70 ◦C, which is nearly 10 MPa less than that
caused by increased casing pressure of 70 MPa. This indicates that radial cracking is mainly induced
by increased casing pressure pi and it occurs from the inner wall to the outer wall. However, pi cannot
be reduced during fracturing fluid injection because the need of fracture generation. Consequently,
some other measures must be taken for protecting cement sheath, such as selecting cement with low
elasticity and high tensile strength.Energies 2018, 11, x 11 of 20 
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3.2.4. Disking

Disking occurs when axial tensile stress in the cement sheath exceeds its tensile strength when the
gas leaking will run across the cement wall. Figures 9 and 10 show, respectively, the radial distribution
of the axial stress and safety factors for disking in the cement sheath considering increased casing
pressure pi of 0–70 MPa and decreased temperature at the casing inner wall of 70 ◦C. It can be seen
from Figure 9 that the decreased wellbore temperature will induce significant axial tensile stress, which
may cause disking and is very threatening for cement sheath. Yet, the increased casing pressure will
produce axial compressed stress and offset a portion of the axial tensile stress but is very limited.
Figure 10 shows that the safety factors for disking are all less than one under the present operation
parameters, which indicates that disking occurs through the cement sheath. This is also the reason
for sustaining annular pressure. Taking Figures 9 and 10 into consideration simultaneously, it can be
found that disking mainly results from the decreased wellbore temperature and it will generate from
the inner wall to the outer wall. Consequently, increasing the temperature of injected fracturing fluid
can reduce the risk of disking.
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3.2.5. Shear Failure

Shear failure generally causes the entire failure of cement sheath. Figures 11 and 12 show the
radial distribution of the octahedral shear stress and safety factors for shear failure in the cement sheath
considering increased casing pressure pi of 0–70 MPa and decreased temperature at the casing inner
wall of 70 ◦C. It can be seen from Figure 11 that the decreased wellbore temperature and increased
casing pressure induce significant octahedral shear stress. When the decreased temperature at the
casing inner wall is 70 ◦C with the increase of pi, the octahedral shear stress τoct decreases first and
then increases. The maximum τoct is located at the casing interface. From Figure 12, we can conclude
that the shear failure of cement sheath nearly does not occur if the increased casing pressure pi is less
than 50 MPa while the shear failure will initiate from the inner wall to the outer wall. Considering
the present operation parameters, some measures must be taken, such as selecting cement with low
elasticity, for protecting cement sheath.
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3.3. Comparison and Discussion

Figures 13 and 14 show the radial distribution of the failure stress and corresponding strength in
the cement sheath considering increased casing pressure pi of 0 or 70 MPa and decreased temperature
at the casing inner wall of 70 ◦C, respectively. It can be seen from Figure 13 that the decreased wellbore
temperature has produced significant tri-axial tensile stress in the cement sheath and three of them
exceed its own tensile strength, which will induce cement failure of de-bonding, radial cracking, and
disking, especially de-bonding and disking. While the octahedral shear stress is less than the maximum
allowable shear stress for cement sheath, it shows that shear failure will not appear. Consequently,
increasing properly the injected fluid temperature can lower the failure risks of cement sheath for
fracturing wells.
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under an increased casing pressure pi of 70 MPa and a decreased temperature of 70 ◦C at the casing
inner wall.

Figure 14 shows that, when considering the increased casing pressure pi of 70 MPa simultaneously,
the radial stress has turned into compressive but tangential and axial stresses, which are still tensile
and still clearly larger than the tensile strength of cement sheath, which will lead to cement failure of
radial cracking and disking. Meanwhile, the octahedral shear stress has also exceeded the maximum
allowable shear stress near the casing interface, which indicates that shear failure occurs at this location.
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Combining the analysis above, we know that the increased casing pressure will significantly lower
the de-bonding risk but aggravate radial cracking and shear failure. For protecting cement sheath
integrity, higher circulation pumping pressures should be maintained in order to avoid de-bonding
during whole fracturing operations.

In order to lower the risks of radial cracking, disking, and shear failure for cement sheath under a
high pumping pressure from fracturing, the common method is cemented with low elasticity modulus
cement sheath. Figures 15–17 show, respectively, the radial distribution of the cement sheath safety
factors for three kinds of failure modes under a different elasticity modulus of cement sheath Ec.
The considered increased casing pressure pi is 60 MPa and the decreased temperature at the casing
inner wall is 50 ◦C. It can be seen from Figures 15–17 that, with a decrease of Ec, three kinds of
safety factors increase gradually and the increasing range is larger and larger. Therefore, lowering the
elasticity modulus of cement sheath is very effective for cement protection. When Ec is about lower
than 4 GPa, cement sheath will not occur to radial cracking and disking. Meanwhile, when Ec is about
lower than 8 GPa, the shear failure may not occur. In conclusion, cement sheath with a low elasticity
modulus must be adopted in fracturing wells.
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List of Symbols

σT
r , σT

θ , σT
z Radial, tangential, and axial thermal stress of cylinder, respectively, MPa

σP
r , σP

θ , σP
z

Radial, tangential, and axial stress of cylinder caused by increased inner pressure, respectively,
MPa

σT
rs, σT

θs, σT
zs Radial, tangential, and axial thermal stress of casing, respectively, MPa

σT
rc, σT

θc, σT
zc Radial, tangential, and axial thermal stress of cement sheath, respectively, MPa

σT
r f , σT

θ f , σT
z f Radial, tangential, and axial thermal stress of formation, respectively, MPa

σP
rs, σP

θs, σP
zs Radial, tangential, and axial stress of casing caused by increased casing pressure, respectively, MPa

σP
rc, σP

θc, σP
zc

Radial, tangential, and axial stress of cement sheath caused by increased casing pressure,
respectively, MPa

σP
r f , σP

θ f , σP
z f

Radial, tangential, and axial stress of formation caused by increased casing pressure, respectively,
MPa

σrc, σθc, σzc
Combined radial, tangential, and axial stress of cement sheath caused by decreased wellbore
temperature and increased casing pressure during fracturing fluid injection, respectively, MPa

σ1, σ2, σ3 Maximum, intermediate, and minimum principal stresses in the cement sheath, respectively, MPa
uT Radial thermal displacement in the cylinder, mm
uP Radial displacement in the cylinder caused by increased inner pressure, mm
uT

s , uT
c , uT

f Radial thermal displacement for casing, cement sheath, and formation, respectively, mm

uP
s , uP

c , uP
f

Radial displacement caused by increased casing pressure for casing, cement sheath, and
formation, respectively, mm

E, Es, Ec, Ef Elasticity modulus of ordinary cylinder, casing, cement sheath, and formation, respectively, MPa

µ, µs, µc, µf
Poisson’s ratio of ordinary cylinder, casing, cement sheath, and formation, respectively,
dimensionless

α, αs, αc, αf
Linear thermal expansion coefficient of ordinary cylinder, casing, cement sheath, and formation,
respectively, 1/◦C

a Internal radius of thick wall cylinder, mm
r Radial distance from the axis of wellbore, mm
ri Inside radius of casing, mm
r1 Outside radius of casing or inside radius of cement sheath, mm
r2 Outside radius of cement sheath or inside radius of formation, mm
ro Outside radius of formation, mm
T(r) Temperature change value at the radius of r after fracturing fluid injection, ◦C
Ti Wellbore temperature before fracturing fluid injection, ◦C
Tt Wellbore temperature after fracturing fluid injection, ◦C
Te Formation temperature, ◦C
C1, C1s, C1c,
C1f

Undetermined coefficients, dimensionless

C2, C2s, C2c,
C2f

Undetermined coefficients, m2

[A], {B} Coefficient matrix and constant vector for Equation (A5), respectively
σtc Tensile strength of cement sheath, MPa
σcc Uniaxial compressive strength of cement sheath, MPa
τcmax The maximum allowable shear stress for cement sheath, MPa
τoct Octahedral shear stress, MPa
cc Cohesion of cement sheath, MPa
φc Angle of internal friction of cement sheath, (◦)
pi Increased casing pressure, MPa
pc1 Contact pressure at the casing-cement sheath interface induced by increased casing pressure, MPa

pc2
Contact pressure at the cement sheath-formation interface induced by increased casing pressure,
MPa

pf Changed formation pressure, MPa
SF Safety factor of cement sheath, dimensionless
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Appendix A. Cement Sheath Stress Induced by a Decrease of Wellbore Temperature

Submitting Equations (2) and (3) into Equation (1), the thermal radial displacement and thermal stresses for
the combined system can be determined and the detailed derivative results are given below [12].

For the casing (ri ≤ r ≤ r1):

uT
s =

1+µs
1−µs

αs
r

1
2 (Tt − Ti)(r2 − ri

2) + C1sr + C2s
r

σT
rs = − αs Es

1−µs
1
r2

1
2 (Tt − Ti)(r2 − ri

2) + Es
1+µs

(
C1s

1−2µs
− C2s

r2

)
σT

θs =
αs Es
1−µs

1
r2

1
2 (Tt − Ti)(r2 − ri

2)− αs Es(Tt−Ti)
1−µs

+ Es
1+µs

(
C1s

1−2µs
+ C2s

r2

)
σT

zs = −
αs Es(Tt−Ti)

1−µs
+

2µs EsC1s
(1+µs)(1−2µs)

(A1)

For the cement sheath (r1 ≤ r ≤ r2):

uT
c =

1+µc
1−µc

αc
r

{
Tt−Ti

2 (r2 − r1
2) + (Ti−Tt)

2 ln(ro/r1)

[
r2 ln

(
r
r1

)
− r2

2 + r1
2

2

]}
+ C1cr + C2c

r

σT
rc = − αc Ec

1−µc
1
r2

{
Tt−Ti

2 (r2 − r1
2) + (Ti−Tt)

2 ln(ro/r1)

[
r1 ln

(
r
r1

)
− r2

2 + r1
2

2

]}
+ Ec

1+µc

(
C1c

1−2µc
− C2c

r2

)
σT

θc =
αc Ec
1−µc

1
r2

{
Tt−Ti

2 (r2 − r1
2) + (Ti−Tt)

2 ln(ro/r1)

[
r2 ln

(
r
r1

)
− r2

2 + r1
2

2

]}
− αc Ec

1−µc

[
Tt − Ti + (Ti − Tt)

ln(r/r1)
ln(ro/r1)

]
+ Ec

1+µc

(
C1c

1−2µc
+ C2c

r2

)
σT

zc = − αc Ec
1−µc

[
Tt − Ti + (Ti − Tt)

ln(r/r1)
ln(ro/r1)

]
+

2µc EcC1c
(1+µc)(1−2µc)

(A2)

For the formation (r2 ≤ r ≤ ro):

uT
f =

1+µ f
1−µ f

α f
r

{
Tt−Ti

2 (r2 − r1
2) + (Ti−Tt)

2 ln(ro/r1)

[
r2 ln(r/r1)− r2

2 + r1
2

2

]}
+ C1 f r + C2 f

r

σT
r f = −

α f E f
1−µ f

1
r2

{
Tt−Ti

2 (r2 − r1
2) + (Ti−Tt)

2 ln(ro/r1)

[
r2 ln(r/r1)− r2

2 + r1
2

2

]}
+

E f
1+µ f

(
C1 f

1−2µ f
− C2 f

r2

)
σT

θ f =
α f E f
1−µ f

1
r2

{
Tt−Ti

2 (r2 − r1
2) + (Ti−Tt)

2 ln(ro/r1)

[
r2 ln(r/r1)− r2

2 + r1
2

2

]}
− α f E f

1−µ f

[
Tt − Ti + (Ti − Tt)

ln(r/r1)
ln(ro/r1)

]
+

E f
1+µ f

(
C1 f

1−2µ f
+

C2 f

r2

)
σT

z f = −
α f E f
1−µ f

[
Tt − Ti + (Ti − Tt)

ln(r/r1)
ln(ro/r1)

]
+

2µ f E f C1 f

(1+µ f )(1−2µ f )

(A3)

Now, let us solve the six undetermined coefficients of C1s, C2s, C1c, C2c, C1f, and C2f in Equation (A1) to
Equation (A3). Suppose the combined system is completely cemented at two interfaces. The boundary conditions
and the continuity conditions of the radial thermal stress and thermal radial displacement at the two interfaces
are as follows. 

 σT
rs
∣∣
r=ri

= 0

σT
r f

∣∣∣
r=ro

= 0{
σT

rs
∣∣
r=r1

= σT
rc
∣∣
r=r1

uT
s
∣∣
r=r1

= uT
c
∣∣
r=r1 σT

rc
∣∣
r=r21

= σT
r f

∣∣∣
r=r21

uT
c
∣∣
r=r2

= uT
f

∣∣∣
r=r2

(A4)

Then submitting Equations (A1) to (A3) into Equation (A4), we get the system of linear equations with
unknown number of C1s, C2s, C1c, C2c, C1f , and C2f as follows.

[A]×
{

C1s, C2s, C1c, C2c, C1 f , C2 f

}T
= {B} (A5)

In Equation (A5), the coefficient matrix [A] and constant vector {B} can both be obtained from the final
actual boundary and continuity conditions. The Gaussian main elimination method was selected for solving
Equation (A5) [20]. Then, submitting C1c and C2c into Equation (A2), we can get the radial thermal displacement
and thermal stress induced by a decrease of wellbore temperature during fracturing at any radius of r in the
cement sheath.
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