
energies

Article

Fabrication of Cost-Effective Dye-Sensitized Solar
Cells Using Sheet-Like CoS2 Films and
Phthaloylchitosan-Based Gel-Polymer Electrolyte

Saradh Prasad 1,2 ID , Devaraj Durairaj 1,*, Mohamad Saleh AlSalhi 2,3,* ID ,
Jayaraman Theerthagiri 4, Prabhakarn Arunachalam 5 ID and Govindarajan Durai 4

1 Department of Electrical and Electronics Engineering, School of Electronics and Electrical
Technology (SEET), Kalasalingam Academy of Research and Education (KARE), Krishnankoil,
Virudhunagar 626126, Tamil Nadu, India; saradprasad@gmail.com

2 Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science,
King Saud University, 11451 Riyadh, Saudi Arabia

3 Department of Physics and Astronomy, College of Science, King Saud University,
11451 Riyadh, Saudi Arabia

4 Centre of Excellence for Energy Research, Sathyabama Institute of Science and Technology,
Chennai 600119, India; j.theerthagiri@gmail.com (J.T.); durainayak@gmail.com (G.D.)

5 Electrochemistry Research Group, Chemistry Department, College of Science, King Saud University,
11451 Riyadh, Saudi Arabia; parunachalam@ksu.edu.sa

* Correspondence: deva230@yahoo.com (D.D.); malsalhy@gmail.com (M.S.A.);
Tel.: +91-984-291-3053 (D.D.); +966-50-510-4815 (M.S.A.)

Received: 25 December 2017; Accepted: 18 January 2018; Published: 24 January 2018

Abstract: Platinum-free counter electrodes (CE) were developed for use in efficient and cost-effective
energy conversion devices, such as dye-sensitized solar cells (DSSCs). Electrochemical deposition
of CoS2 on fluorine-doped tin oxide (FTO) formed a hierarchical sheet-like structured CoS2

thin film. This film was engaged as a cost-effective platinum-free and high-efficiency CE for
DSSCs. High stability was achieved using a phthaloychitosan-based gel-polymer electrolyte as
the redox electrolyte. The electrocatalytic performance of the sheet-like CoS2 film was analyzed
by electrochemical impedance spectroscopy and cyclic voltammetry. The film displayed improved
electrocatalytic behavior that can be credited to a low charge-transfer resistance at the CE/electrolyte
boundary and improved exchange between triiodide and iodide ions. The fabricated DSSCs with
a phthaloychitosan-based gel-polymer electrolyte and sheet-like CoS2 CE had a power conversion
efficiency (PCE, η) of 7.29% with a fill factor (FF) of 0.64, Jsc of 17.51 mA/cm2, and a Voc of 0.65 V,
which was analogous to that of Pt CE (η = 7.82%). The high PCE of the sheet-like CoS2 CE arises from
the enhanced FF and Jsc, which can be attributed to the abundant active electrocatalytic sites and
enhanced interfacial charge-transfer by the well-organized surface structure.

Keywords: CoS2 film; electrocatalytic activity; counter electrode; dye-sensitized solar cells;
gel-polymer electrolyte

1. Introduction

Recently, the emphasis on solar energy has resulted in a paradigm shift in the energy industry,
resulting in lower oil prices. Solar energy has recently become a growing part of the energy
industry, mostly because of government backing and subsides, due to its scientific potential and
industrial applications as a renewable (at least for next 2 billion years) and sustainable energy source.
To compete with other energy sources without subsides, solar cell technology must be improved
in terms of efficiency, cost, large scale production, easy fabrication process, transparency, flexibility,
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and environmental friendliness [1–8]. DSSCs have the prospective to fit all of these requirements,
and tremendous progress has recently been reported towards these goals. A standard DSSC mimics
the photosynthetic process with four major components: the dye as a sensitizer, metal oxide-based
semiconductors as the photoanodes, redox electrolyte (usually iodide/triiodide (I−/I3

−)), and CE.
The CE is a crucial part of DSSCs, as it receives electrons from external loads and catalyzes the reduction
of I3

− to I− in the electrolyte. An ideal CE would possess a large surface area for electrocatalytic
performances, low charge transfer resistance, high stability, superior catalytic reduction properties,
and low cost. These properties would decrease the internal series resistance of the device, enabling a
high fill factor (FF) of the fabricated device [9–11]. Usually, Pt has been engaged as CE in DSSCs owing
to its greater electrocatalytic performance. However, Pt is a noble and scarce metal, and its high cost
and disintegration in the redox electrolyte, to produce PtI4 and H2PtI6, hinder the scaling-up of DSSC
production. This has driven several investigators to develop Pt-free electrocatalytic materials with
superior electrocatalytic performances concerning the catalytic reduction of I3

− to I− ions [12,13].
The redox electrolyte is a key component in DSSCs. The main functions of the redox electrolyte

in DSSCs are to regenerate the oxidized sensitizer dye, conduct holes in the DSSCs, and complete
the external electrical circuit. The stability of DSSCs is highly dependent on the redox electrolyte
and they are generally fabricated with liquid electrolytes (e.g., I−/I3

− redox couple) with a high
PCE. However, liquid electrolytes have several disadvantages including difficulty in sealing the
device, lower stability due to solvent evaporation, solvent leakage, and electrode corrosion [14–20].
To overcome these weaknesses, a popular strategy is to use polymer electrolytes in place of
liquid electrolytes.

Numerous Pt-free low cost functional materials have been investigated for their good
electrocatalytic activity in DSSCs, including carbon-based materials [21,22], conducting polymers [23],
sulfides [24,25], selenides [26], nitrides, and carbides [27,28]. Metal sulfides have fascinated significant
consideration due to their distinct physical and chemical properties, high conductivity, high catalytic
activity, low toxicity, abundance, and low-cost manufacturing protocol that can be easily modified for
multi-purpose applications [29–31]. Recent reports have established that cobalt sulfide-based candidates
can be engaged to replace Pt electrocatalysts in DSSCs [32–34]. The electrocatalytic performance of
these materials is mostly determined by the nature of the electrocatalytic active sites and the structural
morphology of the surface [13,31]. Notably, carbon nanofiber and nano-felt were prepared using
electrospinning and found to be low-cost, efficient counter electrodes for DSSCs [35,36].

In this study, a hierarchical structured sheet-like CoS2 film was fabricated on FTO substrate by
electrochemical deposition (ECD) using cyclic voltammetry (CV). The key advantage of the ECD
process is that the coating can be deposited over large area using a low-cost manufacturing technique,
which can easily be implemented on an industrial scale resulting in good adhesion to the FTO substrates
and a uniform coating. In this study, the fabricated solar cells used a polymer gel electrolyte based on
phthaloylchitosan. Herein, we have investigated the use of CoS2 as a cheap electrocatalyst for use in
gel-polymer electrolyte-based DSSCs to achieve long-term stability while maintaining a high PCE.

2. Results and Discussion

2.1. XRD Studies

The XRD pattern of the electrochemically deposited CoS2 thin film on an FTO is shown in Figure 1.
Diffraction peaks can be observed at 33.2◦, 37.6◦, 42.6◦, and 57.8◦ which correspond to the (200),
(210), (211), and (311) diffraction planes of cubic CoS2. The experimental diffraction peaks match
the standard cubic CoS2 data (PDF card No. 01-077-7559). The other major diffraction peaks are
all related to the pure FTO conducting glass substrate, which are in agreement with our previous
report [13]. The observed minor diffraction peaks of CoS2 on FTO substrate might be due to the
deposition thickness of CoS2 film was low content on surface of the FTO glass substrate.
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Figure 2a shows the morphological and structural details of the as-deposited CoS2 film, 
examined by HRSEM and the corresponding image is shown in Figure 2a. The HRSEM image shows 
that the pure CoS2 (Figure 2a) exhibits a sheet-like surface morphology, with some domains 
comprising a very large quantity of aggregated and irregular particles. The well-organized surface 
morphology of CoS2 with firmly stuffed nanocrystals was expected to support efficient charge 
transport processes at the boundary of the CE surface and gel-polymer redox electrolyte in the 
prepared DSSCs [9,30]. The HRSEM analysis also revealed that the FTO conducting glass substrate 
and the as-deposited CoS2 layers were extremely compatible. Fine adhesion was observed between 
the FTO glass substrate and the CoS2 materials and is a significant parameter for defining the stability 
and PCE of the assembled DSSCs. The energy dispersive X-ray spectroscopy (EDS) elemental analysis 
of the electrochemically-deposited CoS2 thin film was performed and shown in Figure 2b, and the 
pure CoS2 comprised Co. and S. The additional peaks in Figure 2b likely arise from the FTO [13]. The 
EDS analysis also revealed the development of the CoS2 film on the FTO.  
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Figure 1. XRD pattern of the as-deposited CoS2 film.

2.2. Morphology and Elemental Composition Studies

Figure 2a shows the morphological and structural details of the as-deposited CoS2 film, examined
by HRSEM and the corresponding image is shown in Figure 2a. The HRSEM image shows that the pure
CoS2 (Figure 2a) exhibits a sheet-like surface morphology, with some domains comprising a very large
quantity of aggregated and irregular particles. The well-organized surface morphology of CoS2 with
firmly stuffed nanocrystals was expected to support efficient charge transport processes at the boundary
of the CE surface and gel-polymer redox electrolyte in the prepared DSSCs [9,30]. The HRSEM analysis
also revealed that the FTO conducting glass substrate and the as-deposited CoS2 layers were extremely
compatible. Fine adhesion was observed between the FTO glass substrate and the CoS2 materials
and is a significant parameter for defining the stability and PCE of the assembled DSSCs. The energy
dispersive X-ray spectroscopy (EDS) elemental analysis of the electrochemically-deposited CoS2 thin
film was performed and shown in Figure 2b, and the pure CoS2 comprised Co. and S. The additional
peaks in Figure 2b likely arise from the FTO [13]. The EDS analysis also revealed the development of
the CoS2 film on the FTO.
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Figure 2. (a) Representative HR-SEM image of the electrodeposited CoS2 film on FTO; and (b) EDS
spectra of the CoS2 film.

2.3. Electrocatalytic Activity

Electrochemical performance of the as-deposited CoS2 film and Pt CEs for the catalytic reduction
of I3

− to I− was investigated by CV using a three-electrode configuration at 150 mV/s. An electrolyte
solution containing of 0.01 M I2, 0.1 M LiI, and 0.1 M LiClO4 as a supporting medium in acetonitrile
was used. The CVs of the CoS2 electrocatalyst for the I−/I3

− redox species is shown in Figure 3.
The redox peaks (Ox-2/Red-2, Ox-1/Red-1) contained two pairs for both the CoS2 and Pt electrodes.
The configuration of right and left redox pairs are shown in Equations (1) and (2).

3I2 + 2e− ↔ 2I3
− (Ox-2/Red-2) (1)

I3
− + 2e− ↔ 3I− (Ox-1/Red-1) (2)
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As shown in Figure 3, the shape of the CVs of the CoS2 electrode was similar to that of conventional
Pt electrodes under identical operating conditions, which demonstrated similar electrocatalytic
behaviors for the I−/I3

− redox species.
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Electrocatalytic performance of the fabricated CE was investigated by examining the peak-to-peak
separation (Epp) and peak current density (PCD or Jpk). For efficient electrocatalytic reduction, electrode
materials should possess a low Epp and high Jpk. Higher Jpk values indicate that the reaction rate
is faster, whereas a low Epp indicates a smaller over-potential, leading to improved electrocatalytic
performance for the reduction of I3

− [13,31]. The Jpk and Epp of the CoS2 electrode was equivalent to
that of the Pt electrode. The experimental CV analysis indicated that the CoS2 film possesses better
performance for the reduction of I3

− in DSSCs related to the Pt CE.
Figure 4a shows the CV with various scan rates for CoS2 electrode I−/I3

− redox reaction. The Jpk
tended to increase when the scan rate was increased along with a steady shift of the cathodic and
anodic peaks in the direction of positive and negative sides, respectively. This indicates that the inner
sites of CoS2 became more reactive at higher scan rates [10,13]. The linear association between the
peak current density and the square root of the scan rates is shown in Figure 4b. The results presented
here are consistent with the Langmuir isotherm rule, and the linear correlation indicates that the
transport of I− on the surface of the CoS2 electrode is influenced by the diffusion control of the redox
response [12]. The CV results evidence that the CoS2 has huge prospective to engage as CEs of DSSCs.
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2.4. Electrochemical Impedance Spectroscopy (EIS) Studies

Electrocatalytic activity of the as-deposited CoS2 film was examined by EIS measurement and the
resultant Nyquist plot is shown in Figure 5. Charge transfer processes, internal resistance, and the
electrocatalytic behavior of the electrodes were effectively determined using the EIS technique [9].
The intercept between the high frequency and real axis (Z’-axis) in the Nyquist plot represents the series
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resistance (Rs), and the charge-transfer resistance (Rct) is determined by the area covered under the
first semicircle formed at a higher frequency. Moreover, the Nyquist plot contained a second semicircle,
which indicates charge recombination between I3

− ions in the electrolyte and the TiO2 photoelectrode.
Thus, the second semicircle represents the Rct at the interface of the TiO2/dye/electrolyte. The focus
of the analysis was directed at the first semicircle because it describes the excellent electrocatalytic
performance for the I3

− reduction at the interface of CE/electrolyte. This improved performance
was due to the low Rct of the CD, which consequently improved the FF value of the fabricated DSSC
device [31]. The Rct value estimated from the Nyquist plot using Z-view software for the CoS2 electrode
was 44.63 Ω, comparable to that of the Pt electrode (41.33 Ω). This suggests that the CoS2 film is as
efficient as the Pt CE for the reduction of I3

− to I− in the fabricated DSSCs. The EIS measurements are
in agreement with the CV analysis.
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2.5. Photovoltaic Performance of the DSSCs

Photovoltaic features of the assembled DSSCs [FTO/TiO2:N3/gel-polymer electrolyte/sheet-like
CoS2/FTO] under an illumination of 1 sun intensity 100 mW/cm2 (AM 1.5) was investigated.
The resulting J-V curves of the DSSCs are displayed in Figure 6a, and the acquired photovoltaic
factors comprising short-circuit current density (Jsc), open-circuit voltage (Voc), FF, and PCE (η) are
listed in Table 1. The fabricated DSSCs have a PCE of 7.29% with anFF of 0.64, Voc of 0.65 V, and Jsc

of 17.51 mA/cm2, which is equivalent to the conventional Pt CE (η of 7.82%). The high PCE of the
sheet-like CoS2 CE is mostly due to its enhanced FF and Jsc values, which can be attributed to abundant
active electrocatalytic sites and enhanced interfacial charge-transfer by the well-organized surface
structure of the CoS2 CE. The stability test of the DSSCs fabricated using sheet-like CoS2 and Pt CEs
was performed. The DSSCs fabricated with the sheet-like CoS2 CE retained approximately 82% of
its original performance over seven days, whereas the DSSC with the Pt CE retained approximately
90% of its original performance over the same period. This indicates that the stability of the sheet-like
CoS2CE was analogous to that of the standard Pt CE, and have the potential to be engaged as low cost
replacements for Pt CEs in the construction of highly efficient and stable DSSCs. Figure 6b, show the
distribution of device performance for 30 devices are shown as a histogram [20,37,38].
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Figure 6. (a) J-V curves of the DSSCs fabricated with a phthaloylchitosan-based gel-polymer electrolyte
using CoS2 and Pt CEs; (b) the histogram distribution of device parameters such as PCE, Jsc, FF and
Voc for 30 solar cell test under above said operational parameters.

Table 1. Photovoltaic parameters of the DSSCs fabricated with phthaloylchitosan-based gel-polymer
electrolyte using CoS2 and Pt CEs.

CE Voc (V) Jsc (mA/cm2) FF η (%)

CoS2 0.65 ± 0.04 17.51 ± 0.07 0.64 ± 0.02 7.29 ± 0.01
Pt 0.69 ± 0.03 17.81 ± 0.04 0.63 ± 0.02 7.82 ± 0.01

Schematic illustration of the electron transfer process in the DSSCs assembled with phthaloylchitosan-
based gel-polymer electrolyte and a CoS2 CE is shown in Figure 7. Upon illumination, the N3 dye
molecule is photoexcited and the excited dye molecule transfers its electrons to the conduction band
(CB) of the TiO2 electrode. Then, the photoexcited dye molecule regenerates its electrons from the
redox mediator in the phthaloylchitosan-based gel-polymer electrolyte. Consequently, the oxidized I−
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ions are reduced to I3
− at the CoS2 CE. This cycle is facilitated by the constant flow of electrons from

the dye-sensitized TiO2 photoelectrode to the CoS2 CE via an outer circuit.
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3. Materials and Methods

3.1. Materials

Acetonitrile, absolute ethanol, thiourea (CH2CSHCH2), cobalt (II) chloride hexahydrate (CoCl2·6H2O),
ammonia solution (NH4OH), and iodine (I2) were purchased from SDFCL (Maharashtra, India).
Lithium iodide (LiI), lithium perchlorate (LiClO4), FTO conducting glass (sheet resistance 10 Ω/cm2),
and N3 dye [cis-diisothiocyanato-bis(2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium(II)] were
acquired from Sigma Aldrich (St Louis, MO, USA). Degussa (Essen, Germany) provided the TiO2

nanoparticles (P25 and P90). Carbowax was attained from Supelco (Bellefonte, PA, USA). Phthalic
anhydride and chitosan were purchased from Merck (Darmstadt, Germany).

3.2. Electrochemical Deposition of the Sheet-Like CoS2 Films

FTO substrates were washed several times with water and ethanol consecutively and kept in an
ultrasonic bath filled with isopropanol for 15 min before deposition. The CoS2 film was electrodeposited
via CV technique with an electrochemical system (CHI608E, CH Instruments, Austin, TX, USA)
featuring a three-electrode assembly. The three electrodes were (i) a saturated aqueous Ag/AgCl
as a reference electrode; (ii) Pt wire as a CE; and (iii) a precleared FTO as the working electrode.
The electrochemical deposition solution was prepared using 0.05 M CoCl2·6H2O and 1.0 M
H2HCSNH2 dissolved in 50 mL of water and subjected to magnetic stirring for 15 min. The pH of
the electrodeposition solution was maintained at 7.5 by adding ammonia dropwise. The potential
range of electrodeposition of the CoS2 film was from−1.2 to 0.2 V at a scan rate of 5 mVs−1 for 25 sweep
cycles. Lastly, the electrodeposited CoS2 film was rinsed with water and dried at ordinary temperature.

3.3. Preparation of the Phthaloylchitosan-Based Gel-Polymer Electrolyte

The phthaloylchitosan-based gel-polymer electrolyte was prepared according to previous studies
with slight alterations [9]. For instance, a fixed 1.3 wt % poly(ethylene oxide) (PEO, Mw~5,000,000),
5.0 wt % phthaloylchitosan, 31.5 wt % dimethylformamide, 22.7 wt % tetrapropylammonium iodide,
and 37.8 wt % ethylene carbonate was kept in a closed container and magnetically stirred at 80 ◦C for
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2 h. After homogeneous gel formation, heating was stopped and the mixture was cooled naturally.
Then, 1.7 wt % iodine was added and stirred to obtain a homogeneous phthaloylchitosan-based
gel-polymer electrolyte.

3.4. Assembly of the DSSCs

The TiO2 photoelectrode was prepared in two layers, in which the first was a compact layer
prepared by spin coating and the second layer was a porous layer deposited on the first using
the doctor blade method. The detailed procedure for the preparation of the TiO2 photoelectrode
was provided in previous reports [12,30]. The TiO2 coated area on the FTO substrate was coated
0.5 × 0.5 cm and the thickness was around 50 µm. The as-prepared TiO2 photoelectrode was sensitized
by immersion in a 3 mM ethanol solution of N3 dye for 24 h. The sensitized photoelectrode layer
was then rinsed with ethanol solution and dried with hot air. Next, the prepared gel-polymer
electrolyte (phthaloylchitosan) was spread uniformly on top of the dye-sensitized TiO2 layer. Finally,
the electrodeposited CoS2 film CE and prepared dye-sensitized TiO2 photoelectrode were clamped
together to form a sandwich type DSSC. The active device area was 0.2 cm2 and photovoltaic
investigations were executed in the air atmosphere. The assembled device configuration was
FTO/TiO2/N3/Gel-polymer electrolyte/CoS2/FTO. The flow chart for the fabrication of the DSSC
device is shown in Figure 8.
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3.5. Characterization Techniques

An X-ray diffractometer (Mini Flex II, Rigaku, The Woodlands, TX, USA) with irradiation of Cu
Kα (λ = 0.154 nm) at a scan rate of 4◦/min was used to analyze the XRD pattern of the electrochemically
deposited CoS2 thin film. High-resolution scanning electron microscopy (HRSEM) (Quanta FEG 200)
with a voltage of 20 kV was used to determine the structural morphology of the fabricated CoS2 thin
film. The HRSEM was also equipped with EDS, which was utilized to define the elemental composition
of the film. A tri-electrode (triode) system with Pt-wire as the CE, Ag/AgCl (non-aqueous) as the
reference electrode and sheet-like CoS2 film as the working electrode was used to measure the CV in
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100 mM LiClO4, 1 mM I2, and 10 mM LiI in acetonitrile. To maintain an inert environment, the solution
was N2 purged for 15 min prior to CV analysis, and the CV curves were measured over a voltage
range of −0.6 to +1.2 V. The AC-impedance method with a frequency range of 0.1 Hz to 1.0 MHz and
the EIS measurements was carried out in an applied bias at 5 mV AC amplitude. A solar simulator
PEC-L01 (PECCELL Inc., Yokohama, Japan) was engaged to investigate photocurrent density-voltage
(J-V) curves of the fabricated DSSCs under 1 sun (100 mW·cm−2) irradiation. The FF and PCE of the
fabricated DSSCs with CoS2 CE in a phthaloylchitosan-based gel-polymer electrolyte were determined
with the methods detailed in previous reports [1,6].

4. Conclusions

In summary, a hierarchical sheet-like structured CoS2 thin film was electrochemically deposited
onto an FTO substrate via a simple CV technique. The resulting device was examined using
various characterization methods including XRD, HRSEM, and EDS analysis, which revealed the
structural properties, surface morphology, and elemental composition of the as-deposited CoS2

film. CV and EIS analyses indicated improved electrocatalytic behavior of the sheet-like structured
CoS2 thin film for the reduction of I3

− to I− ions and low Rct at the boundary of the CoS2

CE/electrolyte. Subsequently, the as-deposited sheet-like CoS2 film was used as a cost-effective
and highly efficient Pt-free CE for the fabrication of DSSCs. A phthaloylchitosan-based gel-polymer
electrolyte was used as a redox electrolyte for the fabrication of stable DSSCs. The fabricated DSSCs
with phthaloylchitosan-based gel-polymer electrolyte and sheet-like CoS2 CE exhibited an overall PCE
of 7.29%, which was comparable to that of conventional Pt CE-based DSSCs (7.20%). The sheet-like
structured CoS2 thin film showed high electrocatalytic activity for the I−/I3

− redox reaction, which was
attributed to abundant active electrocatalytic sites and improved interfacial charge transfer by the
well-organized surface structure of the CoS2 CE. These results indicated that the sheet-like CoS2 film
and phthaloylchitosan-based gel-polymer electrolyte could be used to solve the challenge of fabricating
highly efficient, low-cost, and stable DSSCs.
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