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Abstract: Regarding the shortcomings of the cross-coupling control structure during the start-up of a
multi-motor with load—namely, a large synchronization error and a long start-up time—this paper
proposes a fuzzy self-adjusting cross-coupling control structure. This structure combines a fuzzy
self-adjusting filter and an advanced synchronization compensator. The fuzzy self-adjusting filter
adjusts the “softened speed”, a newly established concept, so that each motor follows the trajectory of
the softened speed during start-up, thus effectively reducing the synchronization error of the starting
process. The advanced synchronization compensator is added to shorten the adjusting time of the
motors. In addition, this paper analyzes the synchronization performance of the structure when the
steady state is interrupted by a sudden step of load. Finally, this paper establishes an experimental
platform for a synchronous speed control system for a permanent magnet synchronous motor, and
verifies the effectiveness of the proposed structure and the correctness of the theoretical analysis
through performing experiments.

Keywords: fuzzy self-adjusting filter model; softened speed; advanced synchronization compensator;
cross-coupling control; speed synchronous control

1. Introduction

With the development of modern industry, the synchronous control of multi-motors has
been widely used in robotics, electric vehicles, steel rolling, papermaking, and other fields [1–8].
Shortening the start-up time and improving the synchronization performance of multi-motors are
of both theoretical and practical significance for enhancing the control accuracy and stability of the
system [9–15].

A virtual line-shafting control and a cross-coupling control structure are usually adopted in the
traditional multi-motor synchronous control [16–20]. Anderson R.G. et al. [21] proposed the concept
of “electronic virtual line-shafting”. The sum of electromagnetic torque from the servo motors was
taken as the load torque of the main motor, which can reduce the synchronization error caused by
the starting delay, but the starting time was longer. Therefore, it’s not applicable to the occasions that
require a high starting performance. Then, Koren Y. et al. presented a cross-coupling control structure,
where the speed difference between two motors was taken as a feedback. This structure could better
reflect the load changes of each motor [22], so, it exhibits good synchronization performance in the
steady-state operation. In order to improve the synchronization performance and tracking performance
of a multi-motor system under sudden changes of load during steady operation, Gu X., Zhang H. and
Liu G. et al. presented [23–25] many advanced control methods, such as a neural network, sliding
mode control, and internal model control are applied to the cross-coupling control. However, the
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above methods still have the shortcomings of a large synchronization error and a long starting time
during the start-up of a loaded multi-motor system.

Aiming at the aforementioned problems, this paper presents a fuzzy self-adjusting cross-coupling
control structure that combines a fuzzy self-adjusting filter with an advanced synchronization
compensator. The concept of “softened speed” is put forward in this new structure. The fuzzy
controller adjusts the softened coefficient of each motor smoothly according to the load torque and the
actual given speed; therefore, the softened speed can be adjusted automatically. In this way, motors
can follow the trajectory of the softened speed during the start-up of a multi-motor with load, and
thus reduce the synchronization error. At the same time, the advanced synchronization compensator is
put forward to utilize the phase advance characteristic and obtain the phase advance, thus shortening
the adjusting time of the motors. Finally, the experimental platform of the synchronous speed control
system is established, and the effectiveness of the fuzzy self-adjusting cross-coupling control structure
proposed in this paper is verified through experiments.

2. Traditional Cross-Coupling Control

The control method, which adopts speed difference as a compensation signal in multi-motor
synchronous control, holds high reliability [26]. The speed difference between the two motors is taken
as a compensation signal in the traditional cross-coupling control method. The compensation signal can
reduce the speed error of the two motors when the motor is disturbed internally or externally [27,28].
The motion equations of a permanent magnet synchronous motor (PMSM) are taken to describe the
dynamic and static performance of two motors in the cross-coupling control structure [29]:{

J dω
dt = Te − TL − Bω

Te = KTiq
(1)

where J is the moment of inertia of the motor; ω is the rotor angular velocity of the motor; Te

is the electromagnetic torque; TL is the load torque; KT is the torque coefficient; and B is the
damping coefficient.

For the convenience of analysis, the motor is usually equivalent to an integral part, disregarding
the delay of the current loop and speed measurement. The block diagram of the traditional
cross-coupling control structure is shown in Figure 1.
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Figure 1. Traditional cross-coupling control structure. 

In Figure 1, ωref is the given speed of two motors; TLi (i = 1, 2) is the load torque of the ith motor; 
ωi is the output speed of the ith motor; and the equivalent transfer function of the ith motor Mi is 
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Figure 1. Traditional cross-coupling control structure.

In Figure 1, ωref is the given speed of two motors; TLi (i = 1, 2) is the load torque of the ith motor;
ωi is the output speed of the ith motor; and the equivalent transfer function of the ith motor Mi is
given by:

Gi(s) =
1
Jis

(2)
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where Fi is the ith motor speed loop controller; the structure is shown in Figure 2.
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In Figure 2, Tui is the amplitude-unlimited electromagnetic torque output of the ith motor; Tei is
the amplitude-limited electromagnetic torque output of the ith motor; and ei is the input of speed loop
controller of the ith motor, which can be expressed as:

ei = ∆ωi − βi (3)

where ∆ωi is the tracking error of the ith motor; and βi is the compensation value. βi is given by:

βi = K(ωi −ωj) i 6= j, i = 1, 2 (4)

where Kij is the synchronous compensation coefficient between two motors.
Taking the ith motor as an example, the speed loop controller Fi can be expressed as:

Fi = KPi +
KIi
s

(5)

In Equation (5), the proportional coefficient KPi and the integral coefficient KIi need to be adjusted
according to the dynamic and static performance of the speed loop. KPi and KIi are shown in
Equation (6). {

KPi = fc Ji

KIi = ( fc
2ς )

2
Ji

(6)

where f c and ζ are the bandwidth and damping coefficient of the speed loop, respectively. Each motor
is set by the above method [30], hence:

Fi(s)·Gi(s) = F(s)·G(s) =
fc

s
+

( fc)
2

(2ςs)2 (7)

Which means that each motor has the same open-loop transfer function, independently of the
moment of inertia.

There are some shortcomings in a traditional cross-coupling control structure during the start-up
of a multi-motor with load:

1. In Figure 2, the tracking error ∆ωi is much larger than the compensation value βi, according to
Equation (3), and ei is very large during the start-up of a multi-motor with load, thus making the
amplitude-unlimited output of electromagnetic torque Tui much larger than the saturation value.
However, the output of the speed loop controller generally contains a limiting part because of the
system’s safety requirements. The output Tei of the speed loop controller will be saturated for
a period of time, during which the compensation value does not work, eventually leading to a
larger synchronization error.
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2. When the speed fluctuation of the system is large, the fixed gain compensation can’t be adjusted
according to the disturbance of each motor in real time; this results in a longer adjusting time.

3. Fuzzy Self-Adjusting Cross-Coupling Control

Aiming at the problem of the cross-coupling control structure in the start-up of a multi-motor
system with load, this paper adds a fuzzy self-adjusting control module, and introduces the advanced
synchronous compensator into the traditional cross-coupling control structure. The block diagram of
the two motors is shown in Figure 3.
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The fuzzy self-adjusting control module and advanced synchronization compensator module are
discussed as follows.

3.1. Fuzzy Self-Adjusting Control Module

Since the tracking error is much larger than the compensation value in the cross-coupling control
structure during the start-up of a multi-motor with load, Tei is in saturation for a long time, thus
resulting in a greater synchronization error. In a fuzzy self-adjusting cross-coupling control structure,
the softened speed ω*ref is adjusted by the fuzzy self-adjusting control module, which makes it
converge to ωref smoothly. This makes the tracking error close to the output of the synchronous
compensator in the starting process, thus reducing the influence of the saturation of the limiting part
of the speed loop controller on the synchronization error. The fuzzy self-adjusting control module is
shown in Figure 4.
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In Figure 4, the output α of the fuzzy controller is defined as the softened coefficient, and ε is
defined as the steady state control coefficient. In this paper, ε = 1. Namely:{

ωmax = max{ω1, ω2}
TLmax = max{TL1, TL2}

(8)

The mode selector is used to switch between modes. It divides the fuzzy controller into two
operating modes based on ωmax. Mode 1: when ωmax < 0.98ωref, it is considered that the motor is in a
fast start stage. The fuzzy controller and the filter work simultaneously, so that each motor follows the
trajectory of the softened speed to reduce the synchronization error; Mode 2: when ωmax ≥ 0.98ωref,
it is considered that the motor gradually enters into the steady state. In this case, only the filter is
activated, thereby improving the dynamic response of the system.

In order to make the softened speed transition to the set value at a certain response speed smoothly,
the following filter link is usually taken [31,32]:

ω∗ref = αωref + (1− α)ωmax (9)

where 0 < α <1.
Selecting ωref = 1000 r/min, the load torque of two motors during the start-up are TL1 = 5 N·m,

and TL2 = 0, respectively. Take α ∈ (0, 1) as input; the output are the adjusting time ts of Motor 1 and the
synchronization error ∆ω between the two motors. When the parameters, such as the given speed and
load torque remain unchanged, the influence of the change of the coefficient α on the synchronization
error and adjusting time of the system can be described by several rounds of simulation. As can be seen
in Figure 5, the synchronization error and adjusting time of each motor during start-up are affected by
the softened coefficient α. When α is too small, the synchronization error between the two motors is
smaller, but the adjusting time is longer; on the contrary, when α is too large, the adjusting time of the
two motors is smaller, but the synchronization error is larger. In practice, the synchronous start-up of
two motors needs to balance between the synchronization error and the adjusting time so as to achieve
the best control effect. In addition, curves ∆ω and ts with respect to α will be different when the given
speed or load torque changes. In order to make a multi-motor synchronous control system achieve the
best control effect, this paper adopts a fuzzy controller to adjust the output of α automatically.
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The inputs of fuzzy controller are ωref and TLmax, and the output is α. In order to improve the
sensitivity of the control, the input and output are quantized by normalized quantization factors [33,34].
The quantized inputs ωref and TLmax, and the output α, belong to seven fuzzy subsets in the universe
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of discourse, namely, {NB NM NS O PS PM PB}. NB is Negative Big; NM is Negative Medium; NS is
Negative Small; O is Zero; PS is Positive Small; PM is Positive Medium; and PB is Positive Big.

Forty-nine fuzzy rules can be obtained from Mamdani reasoning [35,36], as shown in Table 1.
Corresponding input and output membership functions are shown in Figure 6. The three-dimensional
rendering of the input and output relations of the fuzzy controller obtained by the fuzzy rules is shown
in Figure 7. As can be seen in the figure, the output α of the fuzzy controller decreases, while ωref or
TLmax increases.

Table 1. Fuzzy control rules. NB: Negative Big; NM: Negative Medium; NS: Negative Small; O: Zero;
PS: Positive Small; PM: Positive Medium; PB: Positive Big.

TLmax

α ωref
NB NM NS ZO PS PM PB

NB PB PB PB PB PM PS ZO
NM PB PB PM PM PS ZO ZO
NS PB PM PM PS ZO ZO NS
ZO PM PS PS ZO NS NS NM
PS PS ZO ZO NS NM NM NB
PM ZO ZO NS NM NM NB NB
PB ZO NS NM NB NB NB NB
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Figure 7. Input and output relationship of the fuzzy controller.

Six combinations are formed by setting ωref as 1000 r/min, 800 r/min, and 500 r/min; TL1 as
5 N·m and 15 N·m; and TL2 as 0, respectively. The fuzzy control was used to obtain the value of α and
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the curve of ω*ref. Figure 8 shows the softened speed under different operating conditions, and Table 2
shows the different operating conditions that correspond to Figure 8.

Table 2. Different operating conditions that correspond to Figure 8.

Variate
Condition

1© 2© 3© 4© 5© 6©

ωref (r/min) 1000 800 1000 800 500 500
TLmax (N·m) 15 15 5 5 15 5

α 0.27 0.31 0.35 0.45 0.4 0.7

1© 3©, 2© 4©, and 5© 6© correspond to three operating conditions of the same given speed but
different load torques; while 1© 2© 5© and 3© 4© 6© correspond to the operating conditions of the same
load torque but different speeds. The variation of softened speed ω*ref can be roughly divided into two
stages: the rising stage, and the steady stage, in which the motor speed increases rapidly at the initial
stage of starting, and the fuzzy self-adjusting module automatically adjusts the softened speed so that
it is on the rise. Then ei decreases, thus shortening the time of Tei in saturation. Then, ω*ref remains
unchanged after the motor gradually enters the steady state. First, comparing the working conditions
1© 3©, the load torque of the working condition 1© is larger, so the adjusting time of the output speed

of the motor is longer. Therefore, the time required for the softened speed of the fuzzy self-adjusting
control to reach the maximum value increases correspondingly, so that t1 > t3, making each motor
follow the softened speed trajectory in a better manner. Then, comparing the working conditions 1©
2©, because the given speed of 1© is greater than that of 2©, the period in which ω*ref is on the rise

under condition 1© is longer, thus t1 > t2, ensuring that each motor can better follow the trajectory of
the softened speed. According to Equation (9), since ωmax = 0 at the initial starting time, the output
value α of the fuzzy controller is different when the given speed is different. From Equation (9), it can
be seen that the values of the softened speeds of two motors are different at the initial starting time.
Therefore, by adjusting the softened coefficient according to different operating conditions, the fuzzy
self-adjusting control module can make each motor better follow the trajectory of the softened speed.
Furthermore, the input of the speed loop controller is reduced, so that the time of electromagnetic
torque in the saturation state is shortened. Finally, the purpose of reducing the synchronization error
during the start-up is achieved.
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3.2. The Advanced Synchronization Compensator

When a load of the motor changes greatly, the fixed gain synchronous compensator will give
rise to an excessive fluctuation of speed, and it takes a long time for the fluctuation to be smoothed
out. For each motor, the speed fluctuation of any other motor can be regarded as a time-varying
interference. In order to eliminate the effect of interference on the output characteristic of the system,
corrective control is employed to further improve the adjusting time. The synchronous compensator
with anticipatory control is shown in Figure 9.Energies 2018, 11, x FOR PEER REVIEW  8 of 16 
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In Figure 9, K is the synchronization compensation coefficient; and Fg is the correction controller.
In order to accelerate the system’s dynamic response [37], this paper introduces the classic advanced
correction, namely:

Fg(s) =
η·Ts + 1
Ts + 1

(10)

where T is advanced time constant; and η is attenuation factor and η > 1.
The advanced compensation controller compensates the output speed of its own according to the

disturbance level of the other motor. The amount of advancement needed by the system is obtained by
using the phase advance characteristic of Fg, thus increasing the cut-off frequency, and finally reducing
the influence of the disturbance.

The following analysis indicates the influence of the speed fluctuation of the second motor on
the first motor in the fuzzy self-adjusting cross-coupling control structure. As shown in Figure 3, the
output speed ω2 of the second motor is taken as the input, and the output speed ω1 of the first motor
is taken as the output. The transfer function in this case is:

ω1(s)
ω2(s)

=
KFg(s)F(s)G(s)

1 + [1 + KFg(s)]F(s)G(s)
(11)

A Bode diagram of phase-frequency characteristics and amplitude-frequency characteristics when
K = 2 is shown in Figure 10. In order to facilitate the comparison with the traditional cross-coupling
control structure, the transfer function of the traditional cross-coupling structure is deduced as:

ω1tra(s)
ω2tra(s)

=
KF(s)G(s)

1 + (1 + K)F(s)G(s)
(12)

Figure 10 also shows the Bode diagram of the amplitude-frequency characteristics and
phase-frequency characteristics of the traditional structure. As can be seen from the figure, the
fuzzy self-adjusting cross-coupling control structure increases the cut-off frequency and improves the
system’s dynamic response compared with the traditional cross-coupling control structure. The phase
margin increases, and the stability of the system is improved.
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4. Performance Analysis of Fuzzy Self-adjusting Cross-Coupling Control

4.1. Synchronization Performance Analysis during the Start-Up of Motors with Load

To simplify the analysis, it is assumed that the load torque of the first motor is TL1 > 0, and the
second motor starts without load. Therefore, for the output speeds of the first motor and the second, it
holds that ω1 < ω2. In Figure 11, ei is the input of the ith (i = 1,2) motor’s speed loop controller; and
∆ωi is the tracking error of the ith motor. Setting the rated torque as TN, then, the saturation value
equals 1.2TN.
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cross-coupling control structure; (b) e1 in the fuzzy self-adjusting cross-coupling control structure.

It can be seen from Figure 11a that in the traditional cross-coupling control structure, for the
load motor, it holds that e1 > ∆ω1, indicating that the compensation value β1 < 0 and e1 during the
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start-up of the motors with load is large. As a result, the output Tu1 of the controller corresponding
to the input e1 is far greater than the saturation value, so Te1 is equal to 1.2 TN. The compensation
value basically does not work. For the initial value of the no-load motor during starting, it holds that
e2 > ∆ω2; the compensation value still does not work. Only when β2 increases to a certain value does
the compensation value begin to play a compensatory role.

In Figure 11b, the load motor satisfies e1 < ∆ω1, indicating that the compensation value β1 > 0,
and the advanced synchronous compensator compensates for the speed. The advanced synchronous
compensator of the no-load motor also compensates for the speed.

Regarding the early stages during the start-up, the controller of each motor is working in the
nonlinear region. Ignoring the integral action of the controller, the input ei (i = 1, 2) of the speed loop
controller with load in the starting process is:

ei = ∆ωi − βi = ω∗ref −ωi − βi = [αωref + (1− α)(ωi − ∆ω)−ωi]− K(ωi −ωj)Fg

= α(ωref −ωi)− (1− α)∆ω− KFg∆ω

= α∆ωi − [KFg + (1− α)]∆ω

(13)

Similarly, the input of the speed loop controller in the traditional cross-coupling control
structure is:

ei(tra) = ∆ωi − K∆ω (14)

Comparing Equation (13) with (14), it should be noted that in the starting process of the fuzzy
self-adjusting cross-coupling control structure, because 0 < α <1 and η > 1, the coefficient before the
first term ∆ωi of Equation (13) is reduced; that is, the tracking proportional coefficient decreases.
Further, the coefficient before the second ∆ω increases; that is, the synchronization proportional
coefficient increases.

In summary, in the multi-motor starting process, compared with the traditional cross-coupling
control structure, the tracking error of the fuzzy self-adjusting cross-coupling control structure
decreases, and the synchronous compensator output increases simultaneously. Hence, the input
of the speed loop controller decreases. Therefore, the time for Tu1 to be saturated is shortened, and the
synchronization error is thus reduced.

When the controller of each motor works in the linear region, the difference of accelerations
between two motors in the fuzzy self-adjusting cross-coupling control structure is:

a1 − a2

= fc J1[αωref+(1−α)ωmax−ω1]
J1

− K fc J1(ω1−ω2)
J1

+ K fc J2(ω2−ω1)
J2

− fc J2[αωref+(1−α)ωmax−ω2]
J2

= fc(1 + K)(ω2 −ω1)

(15)

From Equation (15), it should be noted that the acceleration difference between two motors is
independent of α; that is, changing the softened coefficient α will not influence the synchronization
performance of the system in the working area of the linear zone.

4.2. Synchronization Performance Analysis of Steady State with Sudden Changes of Load

In this section, the synchronization performance of the steady state with sudden changes of loads
in a fuzzy self-adjusting cross-coupling control structure is analyzed. The ith motor output speed is:

ωi =
ωrefFG− TLiGi + KFgFG(ω1 + ω2)

1 + (1 + 2KFg)FG
(16)

Derived from Equation (16), the synchronization error between two motors can be expressed as:

∆ω = ω1 −ω2 =
TL2G2 − TL1G1

1 + (1 + 2KFg)FG
(17)
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Similarly, the synchronization error of two motors in the traditional cross-coupling control
structure is:

∆ωtra = ω1 −ω2 =
TL2G2 − TL1G1

1 + (1 + 2K)FG
(18)

From the above analysis, it should be noted that η > 1, therefore, 1 − Fg < 0. Compared with the
traditional cross-coupling control structure, the ∆ω of a fuzzy self-adjusting cross-coupling control
structure decreases obviously; that is, the synchronization error between two motors in steady state
with sudden changes of load decreases.

5. Experiments and Analysis

5.1. Experimental System and Parameter Selection

To verify the effectiveness of the fuzzy self-adjusting cross-coupling control structure, the PMSM
speed control system experimental platform is constructed, as shown in Figure 12. The hardware
system is mainly composed of two PMSMs. The PMSMs used in this paper are surface-mounted.
One motor is connected to the magnetic powder brake, and the other is connected to the load motor,
which is interlinked over a resistance box. The controlling circuit features mainly include a main control
panel, power circuit, drive circuit, voltage, current sensors, and so on. The DSP chip TMS320F28335
produced by TI is used as the core in the main control panel. The power devices use Mitsubishi’s IPM
module PS21867, and the switching frequency is 5 kHz. The parameters of two motors are shown in
Table 3.
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Table 3. Experiment parameters of permanent magnet synchronous motors (PMSMs).

Motors TN (N·m) J (kg·m2) nN (r/min) p PN (kW)

M 15 2.72 × 10−3 1500 2 2.3

5.2. Performance Comparison of Two Structures During the Start-Up of Motors with Load

The experimental parameters are set as follows: initially, the two motors start at a given speed
of 500 r/min. Motor 1 is connected to the magnetic brake, and Motor 2 is connected to a load motor.
The torque of the magnetic brake is 8 N·m, and the load motor is no-load. The rated torque is TN,
and the saturation value of the speed loop controller is set as 1.2 TN. A performance comparison of
the synchronization error and output speed between the two structures during the start-up of motors
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with load are shown in Figures 13 and 14. In the figure, ts is the adjusting time, and tp is the peak
time. The electromagnetic torque outputs of the first and second motor during the start-up are shown
in Figures 15 and 16, respectively. Performances of the traditional cross-coupling control structure
(abbreviated as traditional structure hereafter) are shown in Figure 13a of every figures below, and
performances of the fuzzy self-adjusting cross-coupling control structure (abbreviated as improved
structure hereafter) are shown in Figure 13b of every figures below.
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As can be seen from Figure 13, the maximum synchronization error of the improved structure
reduces from 157 r/min to 70 r/min, which is a reduction of 55% compared with the traditional
structure. Meanwhile, the dynamic response of synchronization error increases by 43%. In Figure 14,
the adjusting time reduces from 360 ms to 275 ms, which is a 23% reduction; and the peak time reduces
by 4.8%.

From the above experiments, it should be noted that the starting process of the motor is divided
into three stages. In Figures 15a and 16a, the electromagnetic torque outputs of the two motors are
saturated within 7 ms in the first stage, and the synchronous compensator does not work at all. In the
second stage, the electromagnetic torque output of Motor 1 is still in saturation. As a result of the
compensation value, Motor 2 enters the linear region, and its working time is 173 ms. In the third phase,
both of the motors run in the linear working region under the action of compensation. In Figures 15b
and 16b, namely, in the improved structure, the working time of the first stage is shortened by 6 ms.
Since the control period of the system is 0.4 ms, it enters the linear work area 15 times in advance;
in stage II, the electromagnetic torque output of Motor 1 stays in saturation for 139 ms, which a 19%
reduction, and is why the synchronization error significantly reduces.

5.3. Performance Comparison of Two Structures in Steady State with Sudden Changes of Load

The given speed is 400 r/min, and the two motors both start without load. A sudden load
of 10 N·m is applied to Motor 1 in the stable operation. The output speed of each motor and
synchronization error of the two structures are shown in Figures 17 and 18, respectively.

As can be seen from Figure 17, the maximum synchronous error between two motors reduces
from 128 r/min to 95 r/min, which is a decrease of 25.7%, compared with the traditional structure.
The convergence speed of synchronization error increased by 49%.

In Figure 18, the adjusting time of the speed is shortened by 39%, the tracking error is reduced
from 74 r/min to 70 r/min—almost unchanged—and the response time of the tracking error reduces
from 69 ms to 60 ms.
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To summarize, the improved structure proposed in this paper not only improves the
synchronization performance and dynamic response between two motors in the starting process,
it also improves the synchronization performance of motors when the steady state is interrupted by a
sudden change of load.
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6. Conclusions

Aiming at the shortcomings of the cross-coupling control structure, which has a large
synchronization error and a long starting time in the multi-motor system during the start-up of
motors with load, this paper presents a new coupling control structure with a fuzzy self-adjusting
filter and an advanced synchronization compensator.

1. The structure adopts the mode selector to switch between working modes of the fuzzy controller.
It automatically adjusts the softened coefficient according to different given speeds and maximum
load torques, and then adjusts the softened speed so that each motor follows the trajectory of the
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softened speed in the starting process. These adjustments effectively reduce the synchronization
error during the start-up of motors with load. At the same time, the advanced synchronization
compensator is put forward to improve the system’s dynamic response.

2. The synchronization performance of the fuzzy self-adjusting cross-coupling control structure
under the steady state with a sudden change of load is analyzed. The experimental results show
that the structure proposed in this paper can improve the system synchronization performance
and dynamic response both in the starting process, and in the steady state with a sudden change
of load.
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