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Abstract: Moving towards energy systems with high variable renewable energy shares requires a
good understanding of the impacts of climate change on the energy penetration. To do so, most
prior impact studies have considered climate projections available from Global Circulation Models
(GCMs). Other studies apply sensitivity analyses on the climate variables that drive the system
behavior to inform how much the system changes due to climate change. In the present work,
we apply the Decision Scaling approach, a framework merging these two approaches, for analyzing
a renewables-only scenario for the electric system of Northern Italy where the main renewable
sources are solar and hydropower. Decision Scaling explores the system sensibility to a range of
future plausible climate states. GCM projections are considered to estimate probabilities of the future
climate states. We focus on the likely future energy mix within the region (25% of solar photovoltaic
and 75% of hydropower). We also carry out a sensitivity analysis according to the storage capacity.
The results show that run-of-the river power generation from this Alpine area is expected to increase
although the average inflow decreases under climate change. They also show that the penetration
rate is expected to increase for systems with storage capacity less than one month of average load
and inversely for higher storage capacity.

Keywords: solar power; run-of-the river power; energy mix; Decision Scaling; climate change

1. Introduction

The United Nations Framework Convention on Climate Change (UNFCCC) 2015 Paris Agreement
provides an ideal framework to move toward an energy transition from traditional to renewable energy
sources. The agreement actually promotes the use of renewable energy sources instead of conventional
energy sources (i.e., usually fossil ones). As discussed by Jacobson [1], the main fraction of power
generation from renewable energy sources is expected to come from Variable Renewable Energy sources,
hereafter noted as VRE (e.g., solar-, wind- and hydro-power). As highlighted by Engeland et al. [2],
VRE power generation is characterized by a large degree of variability inherent to their driving climate
variables (e.g., wind speed, precipitation, solar radiation, temperature . . . ). The multiscale space-time
variability of VRE complicates their integration into the electricity networks [3–5]. In any energy mix
scenario with high shares of VRE, temporal variations of the production would not exactly match
those of the load, leading to a succession of over- and under-production periods and, in turn to a risk
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of not meeting the demand (e.g., [6]). The energy transition is even more complicated by the transitory
climate conditions in which it should take places [7]. The evolution of the mean and time variability
of weather variables remains uncertain, and thus the related impacts on VRE generation (e.g., [8] for
solar Photovoltaic (PV)) and consumption (e.g., [9]) too. When setting energy transition pathways,
the evolution of the society is also an important parameter to account for [10]. For instance local or
national energy policies, promoting either solar-, wind- or hydro-power, might have various impacts
in term of power generation, energy backup requirements and management (e.g., [11]).

Several studies investigate possible pathways of the European energy system toward a high
share of renewable energies. Most of these studies give more consideration for the evolution of
the infrastructures than for the change in VRE generation due to climate change. For instance,
Becker et al. [12] analyze the potential evolution of the transmission lines that is required to allow
integrating high share in solar and wind power generation, as expected by the European Union
objectives. The evolution of the VRE sources due to climate change is in this case completely
disregarded (i.e., the effects of climate change on solar radiation and wind speed (and thus on power
generation) are not accounted for by Becker et al.).

The evolution of the VRE sources due to climate change is in this case completely disregarded
(i.e., the effect of climate change on solar radiation and wind speed are accounted for by Becker et al.,
neither the resulting effect on power generation).

Some other studies focus on the impact of climate change on weather variables driving VRE
power generation. These studies mainly rely on Global Circulation Models (GCMs). The GCM outputs
are used as input into impact models such hydrological models, energy models or market models.
If needed, intermediate regional downscaling models are used to adapt the GCM outputs to the scale
of the considered system [13]. This analysis framework is often denoted as a top-down approach.
For instance, Tobin et al. use such an approach for analyzing climate change impact on European
wind power generation from the ENSEMBLES high-resolution climate projections [14] and from the
EURO-CORDEX regional climate experiment [15]. Ref. [7] estimates changes in solar power generation
in Europe from the EURO-CORDEX experiment. Climate change impacts on hydropower have been
studied much earlier than for solar and wind power (e.g., [16,17]). As indicated in the review paper
by Schaefli [18], the top-down approach was mainly used in the hydropower literature for such an
assessment (see [19] for an early reference).

However, Brown et al. [20] explain that it is often difficult to use the top-down approach for
decision-making purposes because the results are only conditioned by the ensemble of considered
future projections. As discussed in [21], the envelope of possible futures that is described by all
available projections only provides a lower bound of the uncertainty of the ‘real’ envelope of possible
futures. The sample of possible futures as seen by available GCM projections may thus underestimate
the change in performance of any systems [22]. Other drawbacks that limit the use of top-down
approach for decision-making is that no probability can be attached to GCM projections and that
two GCM projections can predict two evolutions of the system that are significantly different (see the
discussion of this topic by Kundzewicz and Stakhiv [23]).

An alternative approach, denoted as ‘bottom-up’ starts from an understanding of the
dependencies between the performance or vulnerability of the considered system and its climatic
drivers. This understanding usually follows from the stochastic exploration of plausible climate states,
which may reveal thresholds, tipping points and other vulnerabilities as well as opportunities. One
can thus note that bottom-up approaches depart from conventional top-down approaches because they
explore the sensitivity of the system response to a plausible range of climate states rather than exploring
its sensitivity to the temporal sequences of weather variables that are obtained out of each available
GCM projection. Whether the bottom-up approach increases the understanding of the considered
system, especially its changes in performance/vulnerability should the climate changes; this approach
does not inform on the future evolution of the system.
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In this study, we use Decision Scaling, an approach that merges top-down and bottom-up
approaches. Decision Scaling is based on the scenario neutral approach [24]. It was originally designed
for testing the robustness of water systems (see [20,25,26] for recent applications). Decision Scaling is
specifically designed to address the shortcomings of GCM projections use at project scales. It mainly
relies on the development of Climate Response Functions (CRFs). For any considered system, a CRF
shows the link between a chosen indicator of the system’s performance and different climate states
(e.g., different annual averages of weather variables driving the VRE power generation). In a second
stage, Decision Scaling uses the ex post GCM projections to infer about the plausibility of the future
climate states leading to change in system’s performance as observed on the CRF.

We use Decision Scaling for analyzing a 100% renewable energy system covering three provinces
in the North-Eastern Italy (Figure 1). Solar and hydro-power are the main VRE sources in this region
(with a high share of run-of-the river (RoR) hydropower). The considered performance indicator is
the ‘energy penetration’ rate, which is defined as the long-run percentage of energy demand that is
directly met by the VRE on an hourly basis. The CRFs are developed in a 2D climate change space
(annual change in mean precipitation and temperature). They are obtained from multiple time series
of precipitation and temperature that are obtained by perturbing the observed weather time series
following the change factor method.
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Figure 1. Topographic map of the study region in Northern Italy. The catchments of Aurino at
Cadipietra (149.8 km2) and Posina at Stancari (116 km2) are shown by light gray areas. Along the
climate transect from the alpine crests to the Veneto plain (dry and snowmelt dominated at high
elevations and wet and precipitation dominated at lower elevations), these two catchments represent a
benchmark of the opposite locations of hydropower plants in this region. Location of solar irradiance
and temperature measurements in the Veneto plain area are indicated by black pyramids.

Climate change projections from the ex-post GCM projections from the Climate Model
Intercomparison Project phase 5 (CMIP5) are further used for assessing these change factors for
the Representative Concentration Pathway 8.5 and for different climate models and different future
prediction lead times. Future system performance/vulnerability to climate change is then discussed by
putting in perspective the CRF and the change factor as obtained from GCM projections. As mentioned
above, this also allows inferring probabilities of future climate states and thus probabilities of system
performance changes.

Although all possible combinations between solar PV and RoR hydropower might be considered,
we mainly focus on the 25% solar 75% hydro mix, which is the most likely future energy mix in the
studied area.

The study is organized as follows: Section 2 describes the study area. The database and the models
are presented in Section 3. Section 4 show the results obtained for the control climate. The results
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obtained through the Decision Scaling approach are presented in Section 5. The Section 6 concludes
and gives some outlooks for future works.

2. Study Area

The area selected in North-Eastern Italy includes three main administrative units: Regione Veneto,
Provincia Autonoma di Trento, Provincia Autonoma di Bolzano-Southern Tyrol. The area crosses part
of the Alps with a climatic gradient from essentially snow-fed catchments at the Northern edge to
rainfall fed catchments at the Southern edge of the transect [27]. The regional administrative units
coordinated their energy policy, optimizing the joint use of the main renewable energy sources, namely
solar and hydropower (see C3-Alps project http//www.c3alps.eu/).

A number of hydropower stations have been operational for decades in the region. They are
operated by public institutions, private companies or consortia of municipalities and local communities.
Hydropower production is characterized by a high share of RoR power generation, as in the rest of the
country where RoR generation reached almost 43% of the hydropower generation in 2011 (for a power
capacity equal to 27% of the total hydropower capacity) [28].

Veneto province is the second largest producer of PV power in the North of Italy. In 2011,
the regional PV power capacity reached more than 370 MW with a surface more than 18 km2 covered
by PV systems. This power capacity is share between big PV farms, such as the one located in Rovigo
(with 70 MW of installed capacity, this farm is the largest in the area), and private PV systems located
on building roofs. In the recent years, a number of private initiatives were proposed for developing PV
production in the area. An illustration is the deployment of demo floating PV systems on artificial
reservoirs and water ponds (irrigation reservoirs, drinking water reservoirs, . . . ) by the Institute for
Renewable Energy of the European Academy of Bolzano [29].

3. Data and Methods

The flow diagram on Figure 2 summarizes the analysis framework. Each component of the
analysis framework is described below, including the database, the hydrological model, the energy
and load modeling and the different climate scenarios used to build the CRFs. By carrying out
simulations at an hourly time step, we may account for the three key cycles of the load and generation
fluctuation—daily, weekly and seasonal. The time step series are obtained over the 1992–2010 period.
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3.1. Regional Energy Load

No time series of electricity consumption is available for the Veneto, Trento and Bolzano-Southern
Tyrol provinces. We therefore estimate the regional electricity consumption by weighting the time
series of the national consumption according to the Gross Domestic Product (GDP) of these three
provinces, which roughly represented 8% of the Italian GDP in 2013. The electricity consumption data
for Italy were provided by the European Network of Transmission System Operators of electricity
(https://www.entsoe.eu/home/). The hourly database is available from 2006 to 2013. The Italian
average hourly consumption equals 38 GWh, leading to an estimate of 3 GWh for the three provinces.

As illustrated by François et al. [30], economic and societal features affect daily, weekly and annual
patterns of electricity demand with high consumption peaks around noon and during the evening
and low consumption sequences during weekends, holiday periods and civil or religious celebrations.
In addition to these human drivers, the air temperature also influences the electricity consumption.
The so-called Temperature Dependence Pattern [31] in Italy presents increased consumption during
hot and cold days, related to energy needs for cooling and heating systems respectively.

The weather variables that drive both hydropower and solar PV generation are available from
1992. A daily electricity consumption model has been developed by François et al. [30] in order to
extend the analyzed period prior to the year 2006. Daily electricity consumption is estimated based on
the heating and cooling degree-day method [32] by the following piecewise linear relation:

L(t) = ai,j,THeat × [THeat − T(t)] + bi,j i f T(t) < THeat

L(t) = bi,j i f THeat < T(t) < TCool

L(t) = ai,j,TCool × [T(t)− TCool ] + bi,j i f T(t) > TCool

(1)

where L is the simulated energy load for the day t, T is the daily temperature, i and j are dummy
variables expressing the day of the week (i.e., weekday, Saturday or Sunday), and the period
(i.e., holiday or not). In between temperature thresholds TCool and THeat, the air temperature is
assumed as having no influence of the energy load. Higher electricity consumption are simulated
for air temperatures higher than TCool or lower than THeat (i.e., ai,j,Theat < 0 and ai,j,Tcool > 0). This
model allows estimating for long temporal periods the day-to-day variations of the load due to
temperature variations.

The sub-daily variations of the load are obtained with the non-parametric disaggregation method
developed by François et al. [30]. For each simulation day, it uses the observed sub-daily anomaly
pattern of a day randomly selected from days of the same calendar period (e.g., 30-day calendar
interval centered on the simulation day). The prediction skill of this energy load model is quite high,
accordingly with the Nash-Sutcliffe efficiency [33], which ranges from 1 (perfect model) to minus
infinite. Nash-Sutcliffe efficiency values obtained for calibration and evaluation periods (2006–2009
and 2010–2012) are equal to 0.85 and 0.79, respectively.

3.2. Run-of-River Hydropower

By choice in our study, we consider the run-of-river (RoR) hydropower generated from the natural
river flow, i.e., without dam control along rivers. The power at a given time t is thus generated from
the water discharges of a selected catchment:

p(t) = ηH ghρq(t) (2)

where p is the power delivered by a generator (kW), ηH the efficiency of the generator (no units), q the
water flow through the turbines (m3 s−1), g the acceleration of gravity (m3 s−2), ρ the water density
(kg m−3) and h the falling height (m). For a given plant, the power generation is classically bounded
by three characteristic flows corresponding to technical and environmental constraints. In the present
case, no hydropower is produced if the river discharge is lower than the minimum discharge value

https://www.entsoe.eu/home/
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Qmin required to fulfill downstream environmental requirements (i.e., the lowest acceptable flow in
the natural river network). The production is also interrupted to prevent any potential damages to
the power plant when the discharge exceeds the safety threshold Qmax. The plant design flow Qd
finally determines the maximum river discharge that can be diverted to the power plant. In this study,
values of Qmin, Qmax and Qd, are constant in time and fixed equal to the 95th, 2nd and 25th percentiles
of the natural flows; as discussed by Hänggi and Weingartner [34], these values are usual for RoR
power plants. These thresholds are estimated for the 1992–2010 period and remain unchanged for the
whole analysis.

We consider two different hydro-climatic regions from where RoR power is generated (Figure 1).
We selected one catchment from each region with the typical size of the catchment equipped with
run-of-the river power plants in the region: Aurino at Cadipietra (149.8 km2) and Posina at Stancari
(116 km2). They are located at the opposite bounds of the climatic gradient mentioned previously.
Aurino is mainly a snow-dominated catchment, whereas Posina is mainly a rainfall fed catchment.
Both catchments are not significantly influenced by dams or significant diversions. We assume that
the selected catchments are good indicators of the temporal organizations of the production of similar
power plants distributed within the same hydro-climatic region.

The Integrated Catchment Hydrological Model (ICHYMOD) was used for simulating water
discharge time series from weather data for both Aurino at Cadipietra and Posina at Stancari
catchments [35,36]. This conceptual and semi-distributed model simulates at hourly time steps
the processes of snow accumulation and ablation, evapotranspiration and soil humidity. The snow
accumulation and ablation module is based on hourly temperature combined with a distributed
radiation index, based on local morphology [37]. Potential evapotranspiration is calculated based
on regional maximum and minimum temperatures [38]. The soil partition of precipitation into
evapotranspiration, surface and subsurface flow components is regulated through the Probability
Distributed Model [39]. ICHYMOD was calibrated and validated over Aurino at Cadipietra and Posina
at Stancari catchments over the period 1990–2000 and 2001–2010, respectively (with Nash-Sutcliffe
efficiency values equal to 0.83 and 0.76 for Aurino and for the calibration and validation periods; and
0.82 for both periods for Posina at Stancari). Hourly observed precipitation, temperature and discharge
data bases were provided by the regional environmental agencies. Simulated water discharges are
then used for computing RoR power generation at the outlet of both catchments (Figure 2).

For the alpine region, i.e., the Aurino at Cadipietra catchment, discharges are mainly governed
by the dynamics of the snowpack (accumulation and melt). The resulting power generation presents
significant seasonal signal with low generation during winter and high generation during spring
floods (Figure 3a). For the lowland region, i.e., Posina at Stancari catchment, the temporal structure of
power generation follows the seasonality of rainfall amounts that are higher in early spring and during
the fall season (Figure 3a). In both climatic areas, no significant diurnal cycle is observed (Figure 3b).

3.3. Solar PV Power Generation

Solar photovoltaic (PV) power generation from a horizontal photovoltaic generator (PPV) is
computed at 17 locations where hourly air temperatures Ta (◦C) and global solar irradiance Ie f f
(Wm−2) are available in the Veneto plains (black pyramids in Figure 1). Observed hourly temperature
and solar radiation data are provided by the Regional Agency for the Prevention and Environmental
Protection of the Venetian (ARPAV) for the 1992–2010 period. Missing data (less than 2% of the time
series) were reconstructed from the nearest station. We assume that the total power generation obtained
from equally weighting the 17 available local power generation series is representative of a regional
PV system.

At a given time t, power generation can be estimated as a function of the measured global solar
irradiance Ie f f (Wm−2) and air temperature Ta through the following expression [40]:

PPV(t) = B× Ie f f (t)×
(

1− µ(Ta(t)− Tc,STC)− µ·C·Ie f f (t)
)

, (3)
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where µ and C are parameters controlling the conversion efficiency according to the air temperature
and the radiation. B is a constant production parameter equal to the product of the invertor efficiency
(conversion from direct to alternative current) by the surface area of the PV array and the generator
efficiency under the standard test conditions, defined by a cell temperature Tc,STC equal to 25 ◦C and a
solar irradiance ISTC equal to 1000 Wm−2 [41]. In the study area, solar PV power generation follows
the diurnal and seasonal variations of radiation and temperature with high values around noon and
summer (Figure 3).
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Figure 3. Annual (a) and daily (b) average cycles of simulated energy load (black) and simulated
energy generation (i.e., solar PV generation (green) and RoR power generation from the snow- (red)
and rain-dominated (blue) catchments and for the present climate (1992–2009). Bold curves represent
the median cycle while shaded areas show distance between 25th and 75th percentiles. The time step
used is hourly for daily cycles and daily for annual cycles (For illustration, all the cycles have been
normalized to their average value. Hence, the average value of the cycles equals 1).

3.4. Evaluating the Penetration Rates of VRE Mixes

For this study, the region is considered as autonomous in a sense that there is no energy
import/export with neighboring regions. The regional electricity consumption can be only satisfied
(or not) with the production obtained within the region from solar and RoR power generation.
Furthermore, the study area is regarded as a ‘copper plate’ grid, meaning that the energy can circulate
instantaneously within the region without energy losses. This assumption has been used for systems
with spatial scales ranging from local (e.g., [42]), to regional (e.g., [6,30,43,44]), country (e.g., [45]
for Germany and [46] for UK) and continental (e.g., [47–49] for the European continent). Although
this assumption may appear crude for analyzing real systems, the context of our study is different.
We aim at analyzing how complementarity between small run-of-the river hydro power plants and
solar power may change under climate change for a region in Northern Italy. While several studies
analyze the how climate change affects single renewable energy source (e.g., [7,14,15,17,50]), studies
that look at how climate change affects the complementarity among different energy sources are rather
limited. This study contributes to this effort. In that context, the copper plate assumption provides an
ideal platform for analyzing the complementarity among energy sources resulting from their natural
availability and variability both in space and time. The complementarity among energy sources also
depends on system constraints (such as the electricity grid) and those constraints will also evolve in
the future as a result of system development and adaptations. We however believe that the first order
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drivers of the complementarity are the variability and the co-variability features of hydro-climatic
drivers. We also believe that focusing on those drivers gives important and meaningful information
for the complementarity that may be achieved for different technical configurations of the power
system. As these features are likely to change with climate change, characterizing these changes is also
potentially helpful for a relevant planning of future adaptations/developments of electricity systems.

RoR and solar PV power generation time series are scaled so that the regional electricity
consumption is on average satisfied over the considered period. This configuration is often denoted as
100% renewable scenario). Such configuration is obtained by dividing each time series by their average
and then multiplying by the consumption average:

P(t) =
p(t)
〈p(t)〉 〈L(t)〉 (4)

with p the energy generation from one energy source in a given region (Wh), L the in situ energy load
(Wh) and P the scaled energy production (Wh). 〈x〉 is the temporal mean of x. The average production
from the energy mix thus equals the average of the simulated electricity consumption over the whole
period 1992–2010 (i.e., 3 GWh per hour on average).

A mixed run-of-the-river power generation from the two hydro-climatic regions is given by:

PH = SH PHSnow + (1− SH)PHRain (5)

where PHSnow and PHRain are the scaled hydropower generation from RoR plants located on snowmelt and
rainfall dominated regions, respectively, and SH the sharing coefficient between the two hydro-climatic
areas (0 < SH < 1). When SH = 1, the hydropower generation comes from the alpine area only and
when SH = 0, the hydropower generation comes from the downstream area only.

Mixed power generation scenarios are obtained by coupling PV and RoR power generation using
a sharing coefficient denoted SPV:

PMix = SPV PPV + (1− SPV)PH (6)

where PMix is the power generation from the energy mix. SPV equals 1 when the whole generation
comes from PV systems, and inversely, SPV equals 0 when the whole generation comes from
hydropower. Including expression PH in Equation (6), we obtain:

PMix = SPV PPV + (1− SPV)
(
SH PHSnow + (1− SH)PHRain

)
(7)

Note that when SPV equals 1, SH value does not matter. Note also that the energy mix
corresponding to an equal distribution of production between the three considered energy sources
would be obtained with SH = 0.5 and SPV = 0.33. Even though it is not yet really clear what will the
energy mix look like in the next decades, the scenario corresponding to 25% of generation coming
from solar PV systems and 75% of hydropower seems to be a good guess within the studied area (i.e.,
SPV = 0.25). A high share of hydropower coming from the mountainous areas is also expected (i.e.,
SH = 0.75). We mainly focus on this scenario.

We also consider the possibility to use some energy storage facilities to store energy in case
of energy production excess and to release energy during periods of insufficient VRE production.
We assume that both solar PV and RoR power generation can be stored and released with the same
power efficiency. For instance, this might be achieved using batteries or pumped hydro storage
technologies. In such a case, the energy storage time fluctuation is given by:

S(t + 1) =

{
min[Smax, S(t) + ηin∆(t)], i f ∆(t) > 0
max[Smin, S(t) + ηout∆(t), i f ∆(t) < 0

(8)
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where ∆(t) is the hourly energy balance defined as the time difference between hourly generation and
consumption, S(t) is the actual storage varying between a minimum value Smin (set to 0 here) and the
maximum storage capacity of the system (Smax) and where ηin and ηout are respectively the storage
and power generation efficiencies. In this system, any energy production excess is lost when the actual
storage reaches the storage capacity limit.

In the following, we will consider different system configurations with storage capacities Smax

ranging from one hour to six months of average load. The range of solutions that could provide such
storage capacities depends obviously on the considered region and its grid structure. Beaudin et al., [51]
reviewed current storage solutions and show that a combination of several technologies is needed
to balance the different variability features of VRE generation. Batteries could for instance be used
for grid stability, pumped storage for load following, and flow batteries and compressed air energy
storage for seasonal storage. Even though each storage technology presents its own constraints and
efficiency, for the sake of simplicity we assume a perfect efficiency for all considered storage capacities
(ηin = ηout = 1). Broadly speaking, we explore how smoothing the range of sub-daily to monthly
variability of a given production with increasing storage capacity affects the rate of load satisfaction.
In order to compare in a consistent way the simulation results obtained with the different storage
capacity scenarios, the initial value of the actual storage is always set to 0.

The penetration rate PE (%) is defined as the percentage of the energy load that is supplied during
the studied period. It is estimated from the hourly time series. The penetration indicator was used in
previous studies for characterizing how power generation from a mix of renewable energy sources
matches the demand (e.g., [6,43,52,53]).

3.5. Future Scenarios

Within the Decision Scaling analysis framework, we focus on changes in mean annual precipitation
and temperature that are the two main climatic drivers of change for energy load and RoR power
generation via changes in hydrological regimes. CRFs are thus expressed in a two dimensional climate
change space and built from multiple hydro-climatic time series. To build the CRFs illustrated on
the flow diagram on Figure 2, and then later in Section 5, we simply apply absolute (respectively
relative) change factors to the observed temperature (respectively precipitation) time series. The change
factors range from −50% to +50% with a 10% step for precipitation (∆P) and from 0 to +8 ◦C with
+1 ◦C step for temperature (∆T). This yields to 98 bivariate scenarios plus one status-quo scenario.
The resulting time series of precipitation and temperature are then used as input of hydrological model,
electricity consumption model and energy generation model. Note that change factors considered for
producing the CRFs are not obtained from the GCM projections. They are chosen to uniformly sample
all possible scenarios of change (i.e., the space that defines all possible combination of temperature
and precipitation changes).

Positioning on the CRFs future projections of GCM experiments allows discussing the credibility
of the VRE penetration obtained for the considered climate states (see black dots on the CRF in Figure 2
and colored dots in the CRFs in Section 5). In the present case, we consider future projections of a
multi-model ensemble of CMIP5 GCMs experiments [54]. In recent climate change studies, change
factors are classically obtained from the change between a future and a reference period obtained
from the raw climate model outputs (e.g., absolute for temperature or relative for precipitation).
Such estimation of change factors is sensitive to low-frequency variations, commonly termed as
climate internal variability. Low-frequency variability can either temporally decrease or increase
the perception of long-term climate change (or even reverse its sign). Consequently, change factors
classically estimated from raw climate projections are likely to misestimate change factors that are
expected from the noise-free climate signal (the uncertainty coming from the internal variability has
actually been found to be a major limitation for a robust estimation of change factors, especially for
precipitation variables as discussed in [55,56]). In this work, we estimate the climate change factors for
each GCM projection by using all data of the transient simulations available for the model (150 years
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from 1950–2099). For each GCM projection, we first fit a trend model to the raw climate projections
following Hingray and Said [57]. A piece-wise linear function of time is considered for precipitation
and a third order polynomial trend is used for temperature. We then compute the change factors from
the trends (Figure 2).

This approach was applied to estimate the change factors for 25 climate models, one representative
concentration pathway (i.e., the Representative Concentration Pathways 8.5), and three prediction lead
times, namely 2040–2059, 2060–2079 and 2080–2099 (Table 1). Data and detailed description of the
models are available at the CMIP5 archive (https://esgf-node.llnl.gov/search/cmip5/). These GCMs
were chosen according to their data availability at the time this study was conducted. Note that some
of the considered climate projections may not be independent because obtained from models that are
developed (partially or totally) within the same institutes. Accounting for the effect of GCM similarities
is out of the scope of our study. The reader is invited to head to Refs. [58,59] for broader discussion
about the how GCM projection similarities affect the climate change assessment. The reference period
is 1992–2010. As illustrated on Figure 4, the temperature is expected to increase with time although
the model uncertainty is rather large over the studied area. The deviation between minimum and
maximum temperature changes roughly equals 2.5 ◦C for the 2040–2059 period and more than 4 ◦C for
the 2080–2099 period. Model uncertainty for precipitation changes is very large and even the sign of
change is uncertain. The grand ensemble mean tends to decrease but for some GCMs an increase of
precipitation is indicated.

Table 1. GCM model considered from CMIP5 experiment. All considered projections are obtained for
the Representative Concentration Pathways 8.5.

Modeling Center Model Institution

BCC
BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration

BCC-CSM1.1(m)

CCCma CanESM2 Canadian Center for Climate Modelling and Analysis

CMCC CMCC-CM Centro Euro-Mediterraneo par I Cambiamenti Climatici

CNRM-CERFACS CNRM-CM5
Centre National de Recherches Météorologiques ;
Centre Européen de Recherche et Formation Avancées en
Calcul Scientifique

CSIRO-BOM ACCESS1.0 CSIRO (Commonwealth Scientific and Industrial Research
Organisation, Australia); BOM (Bureau of Meteorology)

CSIRO-QCCCE CSIRO-Mk3.6.0
Commonwealth Scientific and Industrial Research
Organisation in collaboration with the Queensland Climate
Change Center of Excellence

GCESS BNU-ESM College of Global Change and Earth System Science,
Beijing Normal University

INM INM-CM4 Institute for Numerical Mathematics

IPSL IPSL-CM5A-MR Institut Pierre-Simon Laplace

LASG-CESS FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy
of Sciences, and CESS, Tsinghua University

MIROC
MIROC5 Atmosphere and Ocean Research Institute (Univ. Tokyo);

National Institute for Environmental Studies; Japan Agency
for Marine-Earth-Science and Technology

MIROC-ESM
MIROC-ESM-CHEM

MPI-M MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M)

MRI MRI-CGCM3 Meteorological Research Institute

NSA GISS GISS-E2-R NASA Goddard Institute for Space Studies

NCAR CCSM4 National Center for Atmospheric Research

NCC NorESM1-M Norwegian Climate Center

NOAA GFDL
GFDL-CM3

Geophysical Fluid Dynamics LaboratoryGFDL-ESM2G
GFDL-ESM2M

NSF-DOE-NCAR
CESM1(BGC) National Science Foundation; Department of Energy;

National Center for Atmospheric ResearchCESM1(CAM5)

https://esgf-node.llnl.gov/search/cmip5/
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Figure 4. Scatter plot of changes in mean annual precipitation and temperature expected between
a control period (1992–2010) and three future periods (i.e., 2040–2059; 2060–2079; 2080–2099) for 25
CMIP5 GCM experiments.

4. Penetration Rates for the Current Climate (1992–2009)

This section presents the penetration rates obtained over the control period (1992–2010) for
each single source and for the likely energy mix for the next decades (i.e., SPV = 0.25 and SH = 0.75.
The absolute shares of PV, alpine RoR and lowland RoR are thus respectively 25%, 56% and 19%).
Following the analysis framework defined by the Equation (4), we use a 100% VRE scenario meaning
that the average generation equals the average consumption over the considered period.

Figure 5 shows the penetration rates obtained for the control period and different storage
capacities. Without any storage facility, the diurnal variability of solar power generation (see Figure 3b)
makes its penetration rate rather low (i.e., about 42%). The solar penetration increases by about
30% moving from a no-storage to a twelve-hour storage configuration and by 25% more when the
storage is further raised to three months. Increasing the storage capacity to six months has almost no
further effect.
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Figure 5. Evolution of the penetration rates with the storage capacity for solar PV power (green), RoR
power coming from either snowmelt dominated (red) or rain-fed (blue) catchments and for the mix
defined by SPV = 0.25 and SH = 0.75 (black). Values of storage capacities are given in hours of average
load; h, d and m respectively mean hour, day and month.

Without storage, RoR penetration rates for either rain-fed or snowmelt dominated regions are
roughly equal (62.6 and 61% respectively). They do not significantly increase when raising up to 24 h
of storage (+3.9% and +2.3%, respectively) as expected from the low sub-daily discharge variability
illustrated in Figure 3b. Catchment low-pass filter smooths the variability of rainfall and snowmelt both
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in time due to the internal basin storages and in space with the branching structure of the hydrological
network. This rather high temporal persistency makes RoR power generation often higher or lower
than the load during sequences of days. RoR penetration rates significantly increase when going from
one week of storage, roughly corresponding to the characteristic persistence of weather configurations,
to three months of storage partly coping for discharge seasonality (+25.9 and +30.4% respectively).

Figure 5 also highlights the advantage of combining the considered energy sources. Without
storage, the penetration rate of the mix is respectively higher than RoR power and solar PV by about
10% and 30%. The penetration of the mix gradually improves by only 4.2% when raising the storage
capacity up to one week. Further, lifting the storage up to a capacity of the trimester demand clearly
improves the penetration by over 20%.

5. Penetration Rates for Future Climates

This section presents first the possible impacts of climate change on load, RoR and solar PV power
generation, as estimated via the Decision Scaling approach as described in Section 3. The resulting
change in penetration rate is further discussed for the considered storage capacities.

5.1. Future Electricity Consumption, RoR and Solar PV Power Production

Figures 6 and 7 illustrate, for Posina and Cadipietra catchments respectively, the annual and
seasonal changes in water discharges and RoR power generation for a selection of precipitation and
temperature change scenarios.

At both locations, change in precipitation appears to be the main driver of changes in river flows
with a roughly linear relationship between the average changes in precipitation and discharge. Due to
the considered technical and environmental constraints of hydropower generation (see Section 3.2),
an increase in water discharges may turn into either a decrease or an increase in RoR power generation
during some periods. For instance, the RoR generation from Cadipietra catchment collapses during the
late spring season for large precipitation increases (Figure 7d). This follows from longer and/or more
frequent sequences where water discharges exceed the safety threshold Qmax leading to longer and/or
more numerous power plant curtailments. Besides these threshold effects, RoR power generation
seasonality remains almost unchanged when considering precipitation changes only.

Changes in temperature have different impacts in the two considered climatic areas.
The evaporation effect reflected is slightly more important in low land than in altitude and leads to
lower water discharges with higher temperatures (see the shape of the CRFs Figures 6e and 7e).

For the lowland Posina catchment, all the considered GCMs indicate a decrease of average water
discharges, which turns into a decrease of average RoR power generation (Figure 6e,f). For the alpine
Cadipietra catchment, the RoR generation evolves in a more unexpected way. Most GCMs indicate a
decrease in average discharge and an increase in average RoR generation. This results from the role of
temperature in alpine regions. In such areas, a warmer climate implies that more precipitation falls
as rain instead of snow. The hydrological behavior of the catchment turns to be rainfall dominated.
Less snow accumulation results to higher water discharges during autumn and winter seasons and
lower water discharges during the spring flood season. Higher winter/autumn discharges are more
frequently greater than the environmental flow threshold Qmin, permitting many additional winter
days of RoR production. Lower spring discharges are more frequently below the safety threshold Qmax,
limiting power plant curtailments. Both threshold mechanisms smooth the RoR generation during the
year. RoR generation decreases only when this threshold effect does not make up for the decrease in
discharges. This is for instance the case for the GCMs predicting a decrease in average precipitation
higher than 12%.
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Figure 6. Average cycle of discharges (a,c) and RoR power generation (b,d) obtained for different
temperature changes ∆T (a,b) or precipitation changes ∆P (c,d) over the Posina catchment. The cycles
are smoothed over moving window of 30 days. RoR cycles were normalized regarding the generation
obtained for the control climate. The climate response functions (e,f) respectively represent the
changes (%) in average annual of discharge and RoR power generation. Dots show change factors for
temperature and precipitation expected from CMIP5 experiments (see Figure 3 for details). The dashed
black curve shows the ‘no change’ edge.
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Note that air temperature also influences solar PV generation (Equation (4)), although its effect
is rather weak. For instance, when considering the extreme +8 ◦C scenario, maximum daily solar
PV generation decreases during very hot days by less than 5% while annual average generation only
decreases by less than 3% (not shown).

The simulated energy load (Equation (1)) is impacted by temperature change only. Higher
consumption during summer, with more use of cooling systems, and lower consumption during
winter, with less use of heating systems, underpins the demand dependence to temperature illustrated
on Figure 8. In the present case, decreasing winter consumption does not make up for increasing
summer consumption. As a result, the average energy load slightly increases with temperature.
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5.2. Future Penetration Rates

Figure 9 shows the CRF function of the regional penetration rate of the considered energy mix
without any capacity. Due to the high share of RoR power coming from the Alpine area, this CRF
shows a similar pattern than the ones obtained for PHSnow (Figure 7f).
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Figure 9. Climate Response Function of the penetration rate (%) when power generation comes
from 25% of solar PV and 75% of RoR power (i.e., SPV = 0.25). 75% of RoR power comes the alpine
catchment (i.e., SH = 0.75). Dots show the temperature and precipitation changes expected from CMIP5
experiments as illustrated on Figure 4. Dashed black line shows ‘no penetration change’ edge.

In a future climate, the main driver of the penetration rate is the change in precipitation. At a given
level of temperature change, the sensitivity is higher for a decrease than for an increase in precipitation.
For instance with no change in temperature, when precipitation changes by 40%, the penetration
decreases by 15% for a precipitation decrease and increases by only 2.5% for a precipitation increase.
As discussed previously for the influence on hydropower production, this might come from more
frequent discharges exceeding the safety threshold Qmax. At a given level of either positive precipitation
change or negative precipitation change by less than 12%, warmer conditions increase the penetration
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rate under a twofold influence: the alpine RoR generation dominating the mix increases (cf. Section 5.1)
and the RoR generation better matches the load in time.

A penetration rate is associated to each GCM experiment from its estimated changes in
temperature and precipitation. We present Figure 10 the cumulative probability distribution function
of the penetration rates for each future period. We note that almost all GCMs predict an increase of the
penetration rate for all periods. Only one GCM predicts a decrease by about 2% over the 2080–2099
period. Although the dispersion of the penetration distribution increases with time, the mean ensemble
rise by 4.3%, 5.4% and 5.7%, respectively for the period 2040–2059, 2060–2079 and 2080–2099.
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using position-plotting formula by Hazen [60].

5.3. Future Penetration Rates with Storage

Figure 11 illustrates the evolution of the penetration rate for each energy source when considering
a storage capacity. Note that the future penetration rate obtained for PV only account for the effect of
temperature, assuming no change in solar radiation. Whatever the control or future period considered,
increasing the storage capacity within the system logically increases the penetration rate of the VREs.

The changes in average temperature and precipitation have different impact on RoR penetration
whether we look at either the lowland or the alpine catchment. For all storage capacities, the penetration
rates decrease for the former and increase for the latter. We also note that the penetration rate
distributions are much more spread for the lowland than for the alpine area because of the smoothing
effect of the snowpack dynamic. The PV penetration rates do not significantly change, as expected
from the minor role of the temperature in the power generation.

The penetration rates obtained for the considered mix are also presented Figure 11. For any
storage capacity lower that one month of average load, the penetration rate in a future climate is
expected to be roughly always greater than the one obtained during the control period. For instance,
we note that the evolution of the penetration values obtained during the 2080–2099 period without
storage corresponds to the penetration values obtained during the control period with one week
of storage. These penetration rises follow from the fact that a system with low storage facility (i.e.,
less than one month) may take advantage of the increase in alpine RoR generation and of a better
temporal match between generation and load. For systems with a large storage capacity (i.e., larger
than one month), we observe for some GCMs a decrease in penetration from the 2040–2059 period to
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the 2080–2099 period. Since these systems are designed to store the energy in excess and to release it
when needed, such systems are less sensitive to the raw time generation-load mismatches. Conversely,
they become more sensitive to the evolution of the mean generation.
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obtained for the control period (same as Figure 5).

6. Discussion and Conclusions

In many places of the world, the on-going climate change is expected to modify VRE driving
weather variables. In Northern Italy, an increase in average temperature is consistently predicted for
the next decades. Mean precipitation is expected to slightly increase according to some GCMs but
others predict a significant decrease in mean precipitation. Both changes are expected to affect VRE
generation together with the electricity consumption in the region. As a result, the current regional
energy balance between VRE generation and load is expected to change.

This study analyzed the evolution of the energy balance in Northern Italy via the penetration
rate indicator defined as the percentage of supplied load over the considered period. We used the
assumption that only solar- and hydro-power are used for supplying the load within the studied area.
We focused on the most likely regional energy mix in the next decades, i.e., 25% of the generation
coming from solar PV power and 75% of run-of-the river (RoR) hydropower. RoR power generation
is shared between an alpine snow-dominated catchment and a lowland catchment (respectively
56% and 19% of the total generation). We applied the decision scaling approach, as developed by
Brown et al. [19] for the assessment of the vulnerability of various water resource systems regarding
climate change, to the analysis of the electricity system in Northern Italy.

In this region, results show non-linear changes of RoR power generation regarding expected
changes in average precipitation and temperature, both in terms of average and seasonal organization.
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According to the different hydro-meteorological processes involved in river flow generation, the climate
change impacts vary from high to low altitudes. For the considered rain-fed catchment (i.e., low
altitude), the decrease in average precipitation implies a decrease in RoR generation for all seasons.
For snow dominated catchments (i.e., high altitude), the RoR generation is likely to increase although
the discharges are expected to decrease. In this region, a decrease in average RoR generation is only
observed if the average precipitation decreases by more than 12%. The seasonal organization of the
RoR power generation within this area is also expected to be altered; lower generation is expected
during spring and early summer while higher generation is expected in winter. Climate warming is
expected to increase the annual electricity consumption with higher consumptions in summer (cooling)
but lower consumptions in winter (heating).

Results show that without energy storage capacity, it is worth combining the considered energy
sources since the related penetration is higher than the raw penetration obtained for each source
individually. The penetration rate for a system with a low storage capacity (i.e., lower than one month
of average load) is likely to increase in the next decade thanks to a modification in the temporal
covariation structure between both production and load. For a system with a high storage capacity,
the penetration rate is conversely expected to slightly decrease. With its ability to better exploit the
yearly resource, such a system is indeed much more sensitive to changes in the mean resource.

This study considered a set of assumption and modelling choices that could be discussed or
improved in further works. First, even though the simple change factor approach is very popular
for testing system sensitivity to mean climate change, more sophisticated methods were recently
developed. For instance, Steinschneider and Brown [61] developed a stochastic multisite weather
generator able to account for possible changes in low-frequency variability. Using such a framework
instead of the change factor method would allow the assessment of the role of change in time sequence
frequency (e.g., what would be the impact of a long sequence of year with low/high VRE generation).
This study analyses the impact of change in precipitation and temperatures only. Since the main
driver of solar PV power is the radiation, further researches should also look at the effect of change in
radiation time sequences.

Second, the electricity consumption is assumed to be only temperature dependent, although
other climatic factors are well known for affecting the load (e.g., see [62] for the influence of humidity
and cloud cover). Another limitation about the load model is that the simulated national electricity
consumption is scaled according to the regional GDP. This neglects the differences in temporal pattern
of the electricity consumption between the three considered provinces and the whole country; the latter
being rather not informative because it averages consumption pattern from the North to South of
the country. In other word, this means the parameters of the load model (Equation (1)) would take
different values if regional values were used to calibrate the model. In fact, for the three considered
provinces, higher (resp. lower) sensitivity of the electricity consumption to temperature in winter (resp.
summer) is expected.

The use of statistics at the regional scale that could be obtained from Istat (http://www.istat.
it/en/) and from Gestore Mercati Energetici (http://www.mercatoelettrico.org) could be integrated
within a framework similar to the one described in [63] could be used to better define the regional
consumption. However, the variability of the electricity consumption (in this case the seasonality)
is known for being much lower than for the VRE generation (see for instance the power spectrum
density on Figure 6 of the review by England et al. [2]). As such, a better description of the regional
load should slightly influence the result of our study, but the general picture should hold.

The capacity to store the surplus of generation has been modeled with perfect efficiency that do not
have real storage technologies such as batteries or pumped storage plants (for instance, the efficiency
of a typical pumped storage plant is about 0.8). This is actually discussed in Ref [47]; the energy losses
resulting from storage efficiencies lower than 1 can be compensated by oversizing the VRE generation
(by using the scenario 120% scenario). However, the distribution of the total storage capacity into
several storage technologies is a question per se that deserves to be address in further research works

http://www.istat.it/en/
http://www.istat.it/en/
http://www.mercatoelettrico.org
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by following a cost-benefit analysis framework, for instance. The levelized costs of VRE plants and
storage facilities could be used to define the optimal combination of storage technologies but also the
optimal average VRE generation (e.g., 100 or 120% scenario).Because of the aforementioned limitations,
the simplified electricity system described in this study do not provide the literal portrayal of the real
system. However, there is no doubt that the main results of this study that maps the effect of climate
change on the complementarity between solar PV and RoR power in Northern Italy remain valid for
the real system.
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