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Abstract: With the growing penetration of wind power into electric grids, improving wind speed
prediction accuracy has become particularly valuable for the exploitation of wind power. In this
paper, a novel hybrid strategy based on a three-phase signal decomposition (TPSD) technique,
feature extraction (FE) and weighted regularized extreme learning machine (WRELM) is developed
for multi-step ahead wind speed prediction. The TPSD including seasonal separation algorithm
(SSA), fast ensemble empirical mode decomposition (FEEMD) and variational mode decomposition
(VMD) is proposed for the first time to handle the complex and irregular natures of wind speed
comprehensively. The FE process is used to capture the useful features of wind speed fluctuations and
determine the optimal inputs for a prediction model. The WRELM is employed as a basic predictor
for building the prediction model by these selected features. Four real wind speed prediction cases
are utilized to evaluate the proposed model, and experimental results verify the effectiveness of the
proposed model compared with the benchmark models.

Keywords: multi-step ahead prediction; three-phase signal decomposition; feature selection;
weighted regularized extreme learning machine

1. Introduction

In the past few decades, to reduce dependence on fossil fuels with their negative effects on
the environment, attention has turned to clean renewable energy sources throughout the world [1].
As one kind of the rapidly growing renewable energy sources, wind energy has been recognized as an
attractive alternative to conventional fossil fuels due to several advantages, including renewability and
pollution-free environment [2]. However, wind power is recognized as a stochastic process [3] because
of the intermittent and multi-scale characteristics of wind speed fluctuation [4,5]. With the increasing
penetration of wind power in electric grids, this presents a number of challenges to power system
operation, both technically and economically [6]. An accurate wind speed forecast is considered as one
of the most efficient ways to mitigate these challenges. Improving the prediction accuracy of wind
speed is beneficial for increasing the security of wind energy utilization and reducing the risk of power
outages [7].

In recent years, many prediction methods have been proposed in the literature. Weron [8]
presented a review of the state-of-the-art with a look into the future for forecasting methods.
These models are generally classified into two groups: physical models and statistical methods [9].
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Considering the physical description (such as topography, roughness, and obstacles) of wind farms,
physical models mainly including numeric weather prediction (NWP), utilize physical laws and
boundary conditions to simulate the physics of the atmosphere and predict the local wind speed [10].
These methods which usually require large amount of computing time and rich physical background
knowledge, are frequently adopted for long-term wind speed prediction [11]. Contrary to these
physical models, statistical methods which usually utilize lots of historical data to build the prediction
models, are suitable for short-term wind speed prediction [12]. Traditional statistical methods, mainly
including autoregressive moving average model (ARMA) [13], stochastic model [14], and Markov
chain [15], are most widely used in the literatures. Erdem and Shi [13] developed four ARMA
models for short-term prediction of wind speed and direction, and found that these proposed models
performed better than the selected benchmark models. Bivona et al. [14] proposed several stochastic
models to predict the short-term wind speed and concluded that the proposed model could significantly
improve the forecast accuracy. Shamshad et al. [15] employed the first and second order Markov
chain models to predict the uncertain characteristic of wind speed. More research about wind speed
prediction with these conventional statistical methods has been done in [16-19].

Although these statistical methods can achieve more accurate short-term wind speed forecasting
than physical models, their prediction performances are still not satisfactory because these models may
be insufficient to capture the hidden nonlinear features in wind speed [20,21]. To capture the nonlinear
variation of wind speed and improve the prediction accuracy, machine learning models have been
proposed for short-term wind speed prediction. As two typical representatives of machine learning
models, artificial neural networks (ANNSs) and support vector machines (SVMs) have been widely used
for wind speed prediction [19,22-27]. For instance, Velo et al. [22] employed a back propagation (BP)
neural network with three layers to forecast the short-term wind speed and found that the proposed
model could obtain reliable estimations. Shamshirband et al. [23] adopted a radial basis function (RBF)
neural network to predict the wind speed and proved the effectiveness of the proposed model by test
cases. Li and Shi [24] comprehensively compared the performances of three kinds of ANNSs including
adaptive linear element, BP and RBF for short-term wind speed prediction, and concluded that the
prediction performance of different ANNs models depended on the different conditions. Guo et al. [19]
employed a SVM model to predict the monthly wind speed, and the results indicated that this model
had better performance in three different error criterion compared with selected benchmark models.
Zhou et al. [25] developed three SVM models with three kernels to predict the short-term wind speed
and concluded that the proposed models could improve the prediction accuracy. Cincotti et al. [26]
compared the performances of three different methods including discrete-time univariate econometric
model, ANN and SVM for electricity spot-prices forecasting and the results indicated that the SVM
had the better prediction performance than other selected benchmark models.

Even though these machine learning models can improve the forecasting precision of wind
speed to some extent, their prediction performances are still not satisfactory due to the spatial and
temporal complexity of wind velocity variation. In recent years, there has been an increasing trend of
combining different individual models, forming a hybrid model for short-term wind speed forecasting.
For instance, Shi et al. [24] proposed two hybrid models namely ARMA-ANN and ARMA-SVM for
short-term wind speed predictions. ANN and SVM were used to overcome the linear limitations
of ARMA. The results showed that the proposed hybrid models were better than other individual
forecasting models. Wang et al. [28] developed a hybrid model which combined extreme learning
machine (ELM), Ljung-Box Q-test, and ARMA for wind speed prediction, and concluded that the
developed hybrid model could improve the prediction accuracy of wind speed. Khashei et al. [29]
proposed a hybrid model based on ARMA, fuzzy logic and ANN forwind speed prediction. Fuzzy logic
and ANN were employed to capture the nonlinear information of wind velocity variation, and ARMA
was employed to capture the linear information of it. The result showed that the developed model
had the better prediction performance than other selected benchmark models. Kani and Ardehali [30]
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presented a hybrid model based on ANN and Markov chain for wind speed prediction, concluded
that the developed model was better than the single methods.

Through the previous review, it can be found that most of these models are usually constructed
by using the original wind speed signal directly. However, because of the inherent complexity
of wind speed fluctuations, it is a difficult task to predict wind speed by these above-mentioned
methods. To improve the predictive ability of these models, it is very necessary to consider and
analyze the complicated characteristics of wind speed fluctuations. In recent years, a large amount of
hybrid methods named decomposition prediction aggregation (DPA) models, which combine signal
decomposition techniques and existing prediction models, have been proposed for short-term wind
speed forecasting. The common modeling process of these DPA models can be summarized as follows:
(1) decomposing raw wind speed signal into several sub-signals using some signal decomposition
algorithms mainly including wavelet transform (WT) and empirical mode decomposition (EMD);
(2) building forecasting models for each sub-signal; (3) obtaining the final forecasting results by sum of
the forecasting result for each sub-signal. For example, De Giorgi et al. [31] built a combined model
based on WT and SVM for wind speed prediction. In this method, WT was used to conduct the
decomposition with the complicated multi-patterns signal, and SVM was constructed for forecasting
all the sub-signals. The result showed that the WT could enhance the prediction performance of the
standard SVM model. Ren et al. [32] presented a combined method based on EMD and ARMA for
wind speed prediction. In this method, EMD was utilized to implement the decomposition of the
original wind speed signal, ARMA was used for sub-signals forecasting, and the final forecasting result
was calculated by the sum of the forecasting result of each sub-signal. This study proved that EMD
could enhance the forecasting ability significantly. Liu et al. [33] presented a combined EMD-ANN
model for wind speed forecasting, and concluded that EMD could enhance the forecasting performance
of the ANN model.

Although the DPA models based on signal decomposition algorithms can improve the prediction
ability to some extent, there still exist several deficiencies for these models. For example, adopting
a single signal decomposition algorithm is inadequate to deal with non-stationary and inherent
complexity of wind speed, constructing prediction models for each sub-series needs substantial
computational resources and wastes training time, and ignoring the seasonal variation of wind
speed will reduce the prediction precision of models. Thus, there still exist some probabilities for
enhancing the prediction ability of these models. In this paper, a novel hybrid strategy based on
three-phase signal decomposition (TPSD) technique, feature extraction (FE) and weighted regularized
extreme learning machine (WRELM) is developed for multi-step ahead wind speed prediction. Firstly,
a TPSD framework including seasonal separation algorithm (SSA), fast ensemble empirical mode
decomposition (FEEMD), and variational mode decomposition (VMD) is for the first time developed
to handle the complex and irregular natures of wind speed comprehensively. In the first phase,
the original wind speed signal can be separated into season and trend components by SSA. In the
second phase, the trend component can be decomposed into a number of intrinsic mode functions
(IMFs) and a residual with different frequencies. For reducing the non-stationarity of the high frequency
signal, the high frequencies IMFs (especially IMF1) can be further decomposed into several stationary
modes in the third phase. Secondly, a feature extraction (FE) process including partial autocorrelation
function (PACF) and regression analysis is proposed to capture the useful features of wind speed
fluctuations and determine the optimal input features for a prediction model. Then, an improved
extreme learning machine (ELM) named weighted regularized extreme learning machine (WRELM) is
established using these selected features, and the prediction results of wind speed can be calculated by
WRELM. Finally, the proposed approach is tested using four real wind speed datasets collected from a
real-world wind farm of China. The main novelties and contributions of this study can be summarized
as follows:

(1) Compared with the single-step ahead wind speed prediction, multi-step ahead wind speed
prediction can provide more time for wind power scheduling and wind turbines maintenance.
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However, due to the cumulative error influence on the prediction accuracy, it is still a challenge
task for multi-step ahead prediction. This study develops a novel hybrid strategy using
three-phase feature extraction technique and weighted regularized extreme learning machine for
multi-step ahead wind speed prediction.

(2) Different from the traditional DPA models which build prediction models for each subseries
obtained by signal decomposition algorithms, in order to decrease the computation time and
increase the prediction accuracy, this study proposes a novel prediction framework which only
establishes a prediction model using these selected features from all different subseries.

(3) In order to capture the useful features of wind speed signal and obtain the optimal input-output
sample pairs, this study proposes a novel feature extraction framework including three signal
decomposition processes of SSA, FEEMD and VMD. First, the SSA is employed to separate the
season and trend components of wind speed signal, and capture the seasonal features of wind
speed fluctuations. Second, the FEEMD is applied to decompose the trend component into lots
of intrinsic mode functions (IMFs) and a residual with different frequencies. Considering the
negative effect of high frequencies IMFs (especially IMF1) on the prediction accuracy, the VMD is
utilized to further decompose the high frequency IMF1 into several stationary modes for reducing
the non-stationarity of the high frequency signal. Finally, a feature selection process is used to
capture the useful features of wind speed fluctuations and determine the optimal inputs of the
prediction models.

(4) In order to avoid the over-fitting limitation and reduce the influence of outliers, an improved
ELM named WRELM is employed as a basic predictor for building the prediction model by using
these selected features.

The rest of this paper is organized as follows: Section 2 gives a brief description of SSA, FEEMD,
VMD, PACF and WRELM. Section 3 presents the frame work of the proposed model and the different
error criteria. Section 4 shows the numerical results obtained from four real datasets. Finally,
the conclusions and future researches are summarized in Section 5.

2. Related Methodology

This study develops a novel hybrid strategy based on three-phase feature extraction technique
and weighted regularized extreme learning machine for multi-step ahead wind speed forecasting.
Before presenting the hybrid approach, the key components of the proposed model are introduced
as follows.

2.1. Seasonal Separation Algorithm (SSA)

The Seasonal separation algorithm (SSA) can implement the separation of both season and trend
components from seasonal time series [34]. As a climate-driven renewable resource, the seasonal
variations and trend variations of wind speed are two most commonly encountered phenomena. As the
first step of the TPSD technique, this study firstly employs the SSA to implement the decomposition of
raw wind speed signal for both season and trend components and capture the seasonal features of
wind speed fluctuations. The concrete process of the algorithm can be described as follows [35].

Assuming that x; denotes the wind speed at time t,t € {1,2,...,T},and S i and Tr represent the
seasonal and trend components, respectively. Then

x; = Tr X S] (1)
Then, the seasonal index Sj can be obtained by

S] = Xt/TT’t (2)
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Because the trend component Tr; is unknown, it is need to be approximate by the average of x; in
each cycle.

Assuming that T =] x m, and m and I denote the number of cycles and the number of data items

in each cycle, respectively. Then, the dataset {x1, x, ... , x7} can be expressed as x11, ..., X1 oo

X1, X0y« o e s X2js v e s X2 ey Xply e s Xkl o ooy Ximds ooy Ximjs -+ s Xl k=1,2,... mj=1,2,...,10),

where x;; represents the j-th datum of the k-th cycle. Then, the average of the k-th cycle can be derived
as follows:

=X +x0+-xg)/l  (k=1,2,...,m) 3)

If 54 denotes the normalization data for items xy;, then:

Si=  (k=1,2...,m =121 .
k] v ( 7 /"'/m/] ylyeeey ) ()
Xk

Then, Sj can be defined as follows:

B S1j+ Soj + -+ Swj
I m

(Gj=12,...,1). )

This definition of S; conforms to the normalization process and is demonstrated as follows:

SR
S\H

1 m m l m
Y. Si= Zzsk] Z Z X/ %) = Z ©)
j=1 k=1 k=1 j=1 k=1

Then, the trend component can be obtained as follows:

Trkj:% (k=1,2,...,m; j=1,2,...,1) @)
]

Considering the cycle influence of wind speed data, in this paper, [ = 24 is as a cycle and m = [T/I].

2.2. Fast Ensemble Empirical Mode Decomposition (FEEMD)

As a novel signal processing technology, EMD has been frequently adopted for analyzing
nonlinear and stochastic signals [32,33]. Compared with the traditional signal processing techniques
such as wavelet transform and Fourier transform, the EMD has better performance in multi-resolution
and extensive practicability. However, this method presents a serious drawback of mode mixing.
An ensemble EMD named EEMD was developed by Wu and Huang in 2008 for tackling the mode
mixing problem [36]. Although the EEMD can effectively alleviate the mode mixing problem, it is
time consuming to obtain the ensemble means. A new improved version of EMD called fast ensemble
empirical mode decomposition (FEEMD) is proposed for overcoming two main disadvantages
including mode mixing and time consuming. The superiority of FEEMD has been demonstrated
in many fields [37,38]. The main steps of this algorithm can be summarized as follows:

Step 1: Initializing the ensemble number en and the replication times M.

Step 2: Obtaining the noise-added signal x,(t) by adding the Gaussian white noise 7,(t) to the
original signal x(t):

Xen(t) = x(t) 4+ 1 (¢) 8)

where tn (tn=1,2,L, ... , M) denotes the number of trial times, and ¢ is the time script.
Step 3: Using EMD to decompose the noise-added signal x,(t) into a set of intrinsic mode
functions (IMFs) and a residue:

xtn Z Ci, tn + rtn ) )

where c; 4, (t) and r4,(t) represent the i-th IMF and the residue of the tn-th trial at time ¢, respectively.
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Step 4: Adding different white noises to the original signal and repeat step (2) to step (3) until
tn = M.
Step 5: Calculating the final decomposition results by the following equations:

M

ci(t)= X cim(t)/M

t;l/l:l (10)
r(t) = erm(t)/M

tn=

where ¢;(t) represents the ensemble mean of the i-th IMF, and r(t) denotes the ensemble mean of the
residue components.

Considering the real empirical data, three important parameters of FEEMD which includethe
ensemble number en and the replication times M, are respectively set as 8 and 200 in this paper.

2.3. Variational Mode Decomposition (VMD)

As a new signal processing technique, variational mode decomposition (VMD) can decompose a
complicated signal into a discrete number of modes with specific sparsity properties [39]. Let x(t) be
the original signal at time ¢, i7; denotes the i-th component of signal x(t) by VMD, and cp; represents the
corresponding center pulsation of y;. Along with the decomposition process of VMD, a center pulsation
cp; can be obtained and each mode y; can be compressed around it. To estimate the bandwidth of
each mode y;, three main steps can be considered: (i) using Hilbert transform to obtain unilateral
frequency spectrum by calculating each mode y;; (ii) shifting the frequency spectrum of each mode to
baseband by mixing an exponential tuned to the respective estimated center frequency; (iii) estimating
the bandwidth of each mode y; by making use of the H! Gaussian smoothness of the demodulated
signal. Therefore, the decomposition process of VMD can be converted into the following optimization
problem [40]:

min {5 3:[(6(6) + L) © yi(t)]e )
{yi}Acpi}
sty = x(t)

where y;(t) denotes the i-th component of signal at time t, () and ® represent the Dirac distribution
and convolution operator, respectively.

(11)

Considering the penalty terms and Lagrange multiplier, the above constrained problem can be
converted to the unconstrained one which is easier to be calculated. The process can be described
as follows:

L({yibAepi},A) = s [211(6(0) + ) @ wi(t)]e T W
H(0) = SO + (M0 x(8) ~ Eia(t)

where & and A denote the balancing parameter of the data-fidelity constraint and Lagrange
multiplier, respectively.

The alternate direction method of multipliers (ADMM) can be used to update y; and cp; in two
directions, and complete the analysis process of VMD. Therefore, the solutions of y; and cp; can be
calculated as follows: h
it = 2ep)—Lapidelep)+ 75

! 1+2a(cp—cp;)?
Cp§n+1 _ Jo cp gf"*l(cp)izdcp
Jo™ [ ep)[“dep
nin+1

where in denotes the number of iterations, £(cp), #.(cp), A(cp) and 7!

transforms of x(t), y,(t), A(t) and y"*1(t), respectively.

1

(13)

(cp) represent the Fourier
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2.4. Partial Autocorrelation Function (PACF)

In time series analysis issues, PACF is widely applied to determine the correlation between
the current values and the past values of a time variable. Inspired by this, in this paper, PACF is
employed to find the correlation between the current values and the past values of wind speed variable,
and determine the input number of these prediction models. The brief introduction of the PACF is
described as follows [41,42].

If x(t) (t =1,2, K, T) is the wind speed at time f and (/) denotes the covariance at lag h, then we
can get the estimation value 4 (h) of y(h) as follows:

H\H

i X(t4+h) —T), h=0,1,--- L (14)

where X is the average value of time series x(t), T is the data size, and L is the maximum lag. The choice
of L depends on the length of the data. In general, L = T/4.
If p(h) is denoted as autocorrelation function (ACF) at lag &, then we can get the estimation value

p(h) of p(h) as follows:
() = 10 a5

If B(h, h) denotes the PACF at lag /1, then the estimation value B(h, k) of the B(h, 1) can be derived
as follows:

B(1,1) = p(1)
Bh+1,j)=pBhj)—Bh+1,h+1)-Bh+1,h—j+1) (j=1,2,---,h) (16)
Blh+1,h+1) = p(h+1)— Zj’ 1 P(1=))B(1f)

=5, p()A ()

whereh=1,2,L, L.

To assess the significance of autocorrelation between lags, the confidence intervals have been
widely adopted. In this study, the 95% confidence interval is employed to determine the optimal lags
of wind speed for all models. The definition can be described as follows:

+ 2
To95 = T 7

Y (17)
Yoos = T

where T is the data size, rjqs and 7,5 denote the upper and lower critical values, respectively.
If B(h, 1) € (rygs Tdos), then x(t — 1) is one of the input variables. Otherwise, it is not.

2.5. Weighted Regularized Extreme Learning Machine (WRELM)

2.5.1. Extreme Learning Machine (ELM)

As a special kind of ANN, the ELM has the advantages of fast learning speed, high forecasting
accuracy and better generalization ability relative to traditional ANNs [43]. Huang et al. have
demonstrated that ELM can improve the prediction performance than the other ANN and SVM [44].
It has been successfully applied for time series prediction [45,46]. A standard structure of ELM is
demonstrated in Figure 1.
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Input layer Hidden layer Output layer

Figure 1. A standard structure of ELM.

For given a dataset with N samples {(X;, Y;) }fi 1, Where X; is the input vector and X; € R", Y; is
the target output vector and Y; € R™, set g(X) as the activation function of hidden layer with Q nodes,
and the working principle of the standard ELM can be described as follows [43]:

Q
Y Vig(WyXi+b) =Y, i=12,---,N (18)
g=1

where b, is randomly selected as the bias of the g-th hidden node, W; is randomly selected as the input
weight vector between the g-th hidden node and the input nodes, and Vj is the output weight vector
between the g-th hidden node and the output nodes.

Equations (18) can be simplified as a linear system:

HV =Y (19)

where H is the output results of hidden layers and:

§Wi-Xy+0b1) -+ g(Wo-Xi+Dbg)
H(Wl,W2,...,WQ,Xl,Xz,...,XN,bl,bz,...,bQ): ,
g(Wy-Xn+b1) - g(WQ'XN+bQ) NxQ
vt
vp!
V is the output weights matrix between hidden layer and output layer and V = . ,
T
VQ Qxm
YT
YT
and Y is the target output results of output layer and ¥ =
YN ’ Nxm
The optimal least squares solution V can be obtained by minimizing the empirical risk:
V= (HTH) 'HTY (20)

where V is the optimal least squares estimates of the output weights matrix V.
Therefore, the prediction results of ELM can be expressed as:

A

Y =HV (21)
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2.5.2. Weighted Regularized Extreme Learning Machine (WRELM)

As mentioned above, because the ELM considers only the empirical risk minimization, it still
suffers from over-fitting in the modeling process. On the other hand, the prediction performance of
ELM is also affected by the outliers in train samples. In order to overcome these limitations of ELM,
an improved ELM named WRELM based on the principles of both empirical risk minimization and
structural risk minimization simultaneously, is employed to build the wind speed predictor in this
study. The mathematical expression of WRELM model is shown as follows [47]:

mvin C\|We||§—|— ||V||§, subjecttoY — HV =e¢ (22)

where ¢; is the error variable W; is the weighing factor, W = diag{W;, W, - - - , Wy } is the extended
form of ||e|5 (e = [e1,ep,- -+ ,eN]T). C is a regularization parameter.
This following formula can get the optimal solution V for WRELM:

-1
V = (H'"W?H + é) HTW?y (23)

where [ is a unit matrix.

The prediction results of WRELM can be obtained similar to ELM. The related research has
demonstrated that the WRELM can improve the prediction performance than other versions of ELM.
The detailed process of model derivation and parameter setting of the WRELM can be found in [47].

3. Proposed Approach and Error Criteria

3.1. The Framework of the Proposed Model

From the upper review, it can be found that these signal decomposition algorithms are
often employed to enhance the prediction ability of the proposed models. However, due to the
insufficiency of single signal decomposition algorithms for dealing with complex wind speed signal
and the low computational efficiency caused by modeling for each subseries obtained from signal
decomposition process, there still exist some probabilities for improving the prediction accuracy of
these models. In this paper, a novel hybrid strategy based on three-phase signal decomposition (TPSD)
technique, feature extraction (FE) and weighted regularized extreme learning machine (WRELM)
is developed for improving the multi-step ahead wind speed prediction. In this proposed model,
Firstly, a TPSD framework including seasonal separation algorithm (SSA), fast ensemble empirical
mode decomposition (FEEMD), and variational mode decomposition (VMD) is utilized to handle the
complex and irregular natures of wind speed comprehensively. Then, a feature extraction (FE) process
including partial autocorrelation function (PACF) and regression analysis is proposed to capture the
useful features of wind speed fluctuations and determine the optimal input features for a prediction
model. Finally, an improved extreme learning machine (ELM) named weighted regularized extreme
learning machine (WRELM) is established using these selected features to improve the forecasting
accuracy and computational efficiency.

Figure 2 shows the framework of the developed hybrid model, and the modeling process of the
proposed approach can be briefly summarized as follows:
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Capture the seasonal
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v
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( Forecasting of
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Figure 2. The framework of the proposed approach.

(1) Develop a TPSD framework to handle the complex and irregular natures of wind speed signal
comprehensively. In the first phase, the SSA is employed to separate the season and trend
components of wind speed signal, and capture the seasonal features of wind speed fluctuations.
In the second phase, the FEEMD is applied to decompose the trend component into lots of
intrinsic mode functions (IMFs) and a residual with different frequencies. Considering the
negative effect of high frequencies IMFs (especially IMF1) on the prediction accuracy, the VMD is
utilized to further decompose the high frequency IMF1 into several stationary modes for reducing
the non-stationarity of the high frequency signal in the third phase. The full dimensions features
of wind speed signal can be obtained by TPSD.
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(2) Propose a feature extraction process to capture the useful features of wind speed fluctuations
and determine the optimal features for a prediction model. The PACEF is first applied to find the
correlation between the current values and the past values of wind speed variable, and determine
the initial features for the prediction model. In order to avoid over-fitting, a linear regression is
further applied to select the optimal features for the prediction models. In the modeling process
of linear regression, the top 80% of training data is called as the learning set which is applied to
calculate the parameters of the model, and the remaining 20% of training data is called validation
set which is applied to estimate the performance of the model. If one kind of feature combinations
can generate the smallest validation error, then the corresponding feature combination is selected
as the optimal input features subset for the prediction model.

(3) Use these optimal features to build a WRELM prediction model. Different from the traditional
signal decomposition-based prediction models which build a prediction model for each sub-series
decomposed from original signal by signal decomposition algorithm, this study only constructs
a prediction model using these selected optimal features for saving computation time and
improving the prediction accuracy.

3.2. Evaluation Criteria

In this study, three error criteria which measure the deviation between the real and forecasting
values are utilized to quantitatively evaluate prediction performance of all involved forecasting models.
Three error criteria have the three measures including the mean absolute error (MAE), root mean
square error (RMSE) and mean absolute percentage error (MAPE). In general, the smaller values of
these measures indicate that the corresponding model has better prediction performance. These error
measures are given as follows:

fn
MAE = flnt;x(t) _2(t)] (24)

fn
RMSE = flnz (x(t) — 2(t))* (25)
t=1

{0 0) 26

f
L x(¥)

MAPE = S
fri=
where fn represents the number of forecasting samples, x(f) and £(t) denote the real value and

prediction value of wind speed signal at time ¢, respectively.
4. Experimental Simulation

4.1. Data Collection

Gansu Province in China has abundant wind energy resources due to its particular favorable
terrain and the influence of atmospheric circulation. In this study, the mean hourly wind speed data
with 24 observation values every day collected from a real wind farm located in Gansu Province
was utilized to evaluate the prediction performance of the proposed model. In order to further
verify the seasonal adaptability of the proposed model, four prediction cases were randomly selected:
from 1 May 2010 to 31 May 2010, corresponding to the spring, from 1 August 2010 to 31 August
corresponding to the summer, 2010, from 1 October 2010 to 31 October 2010 corresponding to the
fall, and from 1 December 2010 to 31 December 2010 corresponding to the winter season, respectively.
Figure 3 shows the raw wind speed signals in the four cases. As shown in Figure 3, the wind speed
has obvious random fluctuations and multi-pattern characteristics. Table 1 describes the statistical
analysis results of these wind speed signals. From Table 1, it can be shown that the four datasets have
different statistical measures. The basic idea is used to test if the proposed model can be applied for
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different seasonal prediction cases. Moreover, each case recorded 744 observation values that can
be partitioned into both the training set (80%) and the validation set (20%) in the modeling process.
The training set is used for building the prediction model, and the validation set is used to test the
forecasting performance of the proposed model.
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B
& 7L {
E 0 1 | | 1 | |
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E 14 T T T T T T T
3
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20 '
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3
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E 0 1 Il I ] )
B 0 100 200 300 400 500 600 700
w Winter
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2
& 3 ’
E 0 1 | 1 1 1 1 1
2 0 100 200 300 400 500 600 700
Time (hours)
Figure 3. Four original wind speed cases.
Table 1. Statistical measures of four cases.
Cases Mean (m/s) Std.dev (m/s) Maximum (m/s) Median (m/s) Minimum (m/s)
Spring 4.24 2.39 13.40 3.75 0.50
Summer 2.20 1.55 10.80 1.80 0.10
Fall 2.23 1.47 8.60 1.80 0.10
Winter 3.13 1.83 9.70 2.90 0.10

4.2. Three-Phase Signal Decomposition of Wind Speed Signal

Due to the influence of the complex climate system on wind speed, wind speed fluctuations
have complicated multi-pattern characteristics. It is essential to consider and analyze the complicated
multi-pattern characteristics of wind speed fluctuations to improve the prediction ability of the
models, but most of the existing studies either ignore the complex multi-pattern characteristics or
adopt a single signal decomposition algorithm for capturing the complicated wind speed fluctuations.
It is a difficult task to further improve the wind speed prediction accuracy using these mentioned
methods. Many studies have shown that a best decomposition algorithm for all situations does not
exist. In this paper, we make full use of the latest theoretical achievements of signal decomposition
algorithms, and develop a novel combination framework including SSA, FEEMD and VMD for dealing
comprehensively with the complicated characteristics of wind speed fluctuations. This algorithm first
uses SSA to separate the season and trend components of wind speed signal, and capture the seasonal
features of wind speed fluctuations. Then, the FEEMD is applied to decompose the trend component
into lots of IMFs and a residual with different frequencies. Finally, considering the negative effect of
high frequencies IMFs (especially IMF1) on the prediction accuracy, the VMD is utilized to further
decompose the high frequency IMF1 into several stationary modes for reducing the non-stationarity of
the high frequency signal.
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Figure 4 shows the SSA results of four original wind speed signals. From Figure 4, it can be
shown that each wind speed dataset is separated into the seasonal variations and trend variations.
The seasonal features of each case are shown in Table 2, where the seasonal features of the four cases
have the different characteristics because of the influence of the climate system on wind speed.

Raw data Trend component Seasonal component
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Figure 4. De-seasonalization process of original wind speed data using SSA in four cases.

Table 2. Seasonal indices of the original wind speed data in the four cases.

Datasets Datasets
Times Times
Spring Summer Fall Winter Spring Summer Fall Winter
1 1.02 0.86 0.84 0.93 13 0.90 0.88 0.81 0.74
2 0.96 1.03 0.90 0.84 14 0.97 0.97 0.98 0.80
3 0.90 0.92 0.88 0.89 15 1.14 1.12 1.17 1.19
4 0.85 0.88 0.83 0.95 16 113 1.28 1.37 1.29
5 0.82 0.84 0.81 0.86 17 1.17 1.41 1.46 1.34
6 0.85 0.71 0.77 0.85 18 1.22 1.45 1.56 1.37
7 0.80 0.75 0.74 0.88 19 1.22 141 1.60 1.46
8 0.87 0.76 0.72 0.80 20 1.24 1.38 1.47 1.42
9 0.86 0.72 0.82 0.76 21 1.22 1.18 1.38 1.41
10 0.83 0.73 0.69 0.68 22 1.20 1.17 1.24 1.23
11 0.85 0.69 0.71 0.73 23 1.09 1.11 0.84 0.95
12 0.90 0.62 0.78 0.69 24 0.98 1.13 0.64 0.94

Figure 5 shows the decomposed results of trend components using FEEMD in the four cases.
From Figure 5, it can be shown that the different trend components in four cases are decomposed
into a number of IMFs and a residual with different frequencies. The frequencies of IMFs reflected
different natural oscillatory modes are ranged from high to low. The residual is the lowest frequency
and represents the basic trend of signal. In this paper, each trend component is decomposed into totally
9 components which are respectively named as IMF1, IMF2, IMF3, IMF4, IMFE5, IMF6, IMF7, IMF8 and
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residual. In addition, to further improve the forecasting performance of the model, the VMD is further
employed to decompose the high frequency IMF1 into several stationary modes for reducing the
non-stationarity of the high frequency signal. Figure 6 shows the VMD results of the high frequency
IMF1 in four cases. From Figure 6, it can be shown that each IMF1 of four cases is decomposed in total
into three components which are respectively named as Model, Mode2, and Mode3. The complicated
multi-patterns features of wind speed change have been decomposed thoroughly by the above
three-phase signal decomposition technique. In next section, a feature selection process is employed
to capture the useful features of wind speed fluctuations and determine the optimal features for a

prediction model.
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Figure 5. The decomposed results of trend components using FEEMD in four cases.
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Figure 6. The decomposed results of IMF1 using VMD in four cases.

4.3. Feature Selection Process of Trend Components Signal

4.3.1. The Initial Feature Selection Process of Training Samples Using PACF

The input nodes number of the model has to be determined from data signal before training the
prediction model. In this study, the PACF is first utilized to find the correlation between the current
values and the past values of wind speed variable, and determine the input nodes number of the model.
Figure 7 shows the plot of PACF against the lag length in the four trend components, respectively.
As shown in Figure 7, the PACF graph shows different cutoff phenomena in the four cases. In spring
and winter, the PACF shows a cutoff phenomenon after lag 2. In summer and fall, the PACF shows a
cutoff phenomenon after lag 3. Table 3 shows the input nodes number of the predictor. According
to the PACF results of four cases, the training samples of different cases can be constructed from all
the subseries and the corresponding trend component. For instance, the trend component in Spring is
decomposed into totally 11 components by FEEMD and VMD which are respectively named as IMF2,
IMF3, IMF4, IMF5, IMF6, IMF7, IMFS, residual, Model, Mode2, and Mode3, and the input nodes
number is identified as 2 by PACEF, then there are the 22 initial features of the training samples and can
be shown in Table 4. Similarly, the initial features of the training samples in other cases can also be
shown in Table 4.
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Figure 7. Plots of PACF against the lag length in four trend components.

Table 3. The input nodes number of the trend component for the prediction models in four cases.

Cases

Initial Features

Spring
Summer
Fall
Winter

TC(t), TC(t — 1)

TC(t), TC(t — 1), TC(t — 2)

TC(t), TC(t — 1), TC(t — 2)
TC(t), TC(t — 1)

Table 4. The initial features of training samples in four cases.

Cases Initial Features
IMF2(t), IMFE3(t), IMF4(t), IMF5(t), IMF6(t), IMF7(t), IME8(t), Residue(t), Model(t),
Spring Mode2(t), Mode3(t), IMF2(t — 1), IMF3(t — 1), IMF4(t — 1), IMF5(t — 1), IMF6(t — 1),
IMF7(t — 1), IMF8(t — 1), Residue(t — 1), Model(t — 1), Mode2(t — 1), Mode3(t — 1)
IMF2(t), IMF3(t), IMF4(t), IMF5(t), IMF6(t), IMF7(t), IMFE8(t), Residue(t), Model(t),
Mode2(t), Mode3(t), IMF2(t — 1), IMF3(t — 1), IMF4(t — 1), IMF5(t — 1), IMF6(t — 1),
Summer IMF7(t — 1), IMF8(t — 1), Residue(t — 1), Model(t — 1), Mode2(t — 1), Mode3(t — 1),
IME2(t — 2), IMF3(t — 2), IMF4(t — 2), IMF5(t — 2), IMF6(t — 2), IMF7(t — 2), IMF8(t — 2),
Residue(t — 2), Model(t — 2), Mode2(t — 2), Mode3(t — 2)
IMF2(t), IMF3(t), IMF4(t), IMF5(t), IMF6(t), IMF7(t), IMF8(t), Residue(t), Model(t),
Mode2(t), Mode3(t), IMF2(t — 1), IMF3(t — 1), IMF4(t — 1), IME5(t — 1), IMF6(t — 1),
Fall IMF7(t — 1), IMF8(t — 1), Residue(t — 1), Model(t — 1), Mode2(t — 1), Mode3(t — 1),
IMF2(t — 2), IMF3(t — 2), IMF4(t — 2), IMF5(t — 2), IMF6(t — 2), IMF7(t — 2), IMFE8(t — 2),
Residue(t — 2), Model(t — 2), Mode2(t — 2), Mode3(t — 2)
IME2(t), IME3(t), IMF4(t), IMF5(t), IMF6(t), IMF7(t), IME8(t), Residue(t), Model(t),
Winter Mode2(t), Mode3(t), IMF2(t — 1), IMF3(t — 1), IMF4(t — 1), IMFE5(t — 1), IMF6(t — 1),

IMFE7(t — 1), IMF8(t — 1), Residue(t — 1), Model(t — 1), Mode2(t — 1), Mode3(t — 1)
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4.3.2. The Optimal Feature Selection Process of Training Samples Using Regression Analysis

In order to select the optimal feature combination and avoid over-fitting, a linear regression
is further applied to select the optimal features of training samples in four cases. In the modeling
process of linear regression, the top 80% of training data is called as the learning set which is applied
to calculate the parameters of the model, and the remaining 20% of training data is called validation
set which is applied to estimate the performance of the model. A simple feature selection process
which adds the more recent feature to the less recent feature one by one is adopted in this study. If one
kind of feature combinations can generate the smallest validation error, then the corresponding feature
combination is selected as the optimal features subset of training samples.

Here, RMSE is selected as the validation error, and Figure 8 shows the validation error against
the feature number in the four cases. As is shown in Figure 8, the best feature numbers are 14, 19, 17,
and 16 in the four cases, respectively. The optimal feature combinations of training samples in the four

cases are summarized in Table 5.

Summer

Spring
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[ 8]
RMSE (m/s)

(14, 1.0139)

(19, 0.5231)

0 S 10 15 20 25 0 10 20 30 40
Feature number Feature number

Fall Winter

RMSE (m/s)
S
RMSE (m/s)
S

(16, 1.2222)

(17, 0.6217)

0 0
0 10 20 30 40 0 5 10 15 20 25

Feature number Feature number

Figure 8. Validation errors of feature selection in the four cases.

Table 5. The optimal feature combinations of training samples in four cases.

Cases Optimal Features

Sorin IMF2(t), IMF3(t), IMFA(t), IMF5(t), IMF6(t), IME7(t), IMES(t), Residue(t), Model(t),
pring Mode2(t), Mode3(t), IMF2(t — 1) , IMF3(t — 1), IMF4(t — 1)
IME2(t), IMF3(t), IMF4(t), IMF5(t), IMF6(t), IMF7(t), IMF8(t), Residue(t), Model(t),
Summer  Mode2(t), Mode3(t), IMF2(t — 1), IMF3(t — 1), IMF4(t — 1), IMF5(t — 1), IMF6(t — 1),
IMFE7(t — 1), IMES(t — 1), Residue(t — 1)
IMF2(t), IMF3(t), IMF4(t), IMF5(t), IMF6(t), IMF7(t), IMF8(t), Residue(t), Model(t),
Fall Mode2(t), Mode3(t), IMF2(t — 1), IME3(t — 1), IMF4(t — 1), IMF5(t — 1), IMF6(t — 1),
IMFE7(t — 1)
Winter IMF2(t), IMF3(t), IMF4(t), IMF5(t), IMF6(t), IMF7(t), IMF8(t), Residue(t), Model(t),
¢ Mode2(t), Mode3(t), IMF2(t — 1), IMF3(t — 1), IMF4(t — 1), IMF5(t — 1), IMF6(t — 1)
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4.4. The Prediction Results of Original Wind Speed Signal

As a novel machine learning algorithm, ELM has the advantages of fast learning speed, high
forecasting accuracy and better generalization ability relative to traditional single-hidden layer
feed-forward neural networks, and has been successfully applied in the field of time series prediction.
However, because the ELM considers only the empirical risk minimization, it still suffers from
over-fitting in the modeling process. On the other hand, the prediction performance of ELM is also
affected by the outliers in train samples. In order to overcome these limitations of ELM, an improved
ELM named WRELM based on the principles of both empirical risk minimization and structural
risk minimization simultaneously, is employed to build the wind speed predictor in this study.
Different from the traditional signal decomposition-based prediction models which build a prediction
model for each sub-series decomposed from original signal by signal decomposition algorithm, this
study only constructs a prediction model using these selected optimal features for improving the
prediction accuracy.

Figure 9 shows the multi-step ahead prediction results of WRELM model for trend components in
four cases. From Figure 9, it can be seen that the WRELM model can capture the complicated features of
trend component fluctuations from one-step ahead forecasting to three-step ahead forecasting. Finally,
the prediction results of original wind speed can be calculated by aggregating the seasonal features to
the prediction values of trend component. Figure 10 shows the multi-step ahead prediction results of
original wind speed in four cases. Similarly, from Figure 10, it can be also shown that the prediction
values of each original wind speed in four cases can capture the main trend of each corresponding
original wind speed fluctuations.
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Figure 9. Multi-step ahead prediction results of trend component in four cases.
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Figure 10. Multi-step ahead prediction results of original wind speed in four cases.

4.5. Model Comparisons

In order to comprehensively evaluate the effectiveness of the proposed feature extraction method
(FEM)-based prediction approach called FEM-SFVW model, a detailed comparative study is conducted
for multi-step ahead wind speed forecasting in this section. Three kinds of models including the single
models (BP, ELM and WRELM), DPA-based models (DPA-SFVB, DPA-SFVE and DPA-SFVW) and
other FEM-based models (FEM-SB, FEM-FB, FEM-VB, FEM-SFB, FEM-SVB, FEM-FVB, FEM-SFVB,
FEM-SE, FEM-FE, FEM-VE, FEM-SFE, FEM-SVE, FEM-FVE, FEM-SFVE, FEM-SW, FEM-FW, FEM-VW,
FEM-SFW, FEM-SVW, FEM-FVW and FEM-SFVW) are selected as the benchmark models to assess
the effectiveness of the proposed model. Three error criteria including MAE, RMSE and MAPE are
utilized to assess the performance of all considered prediction models. Table 6 shows the comparison
of multi-step ahead prediction performances of different models in spring. The smallest value
of each column is marked as boldface in Table 6. As shown in Table 6, compared with these all
benchmark models, the proposed model has the smallest error criteria in horizons of one-step, two-step
and three-step ahead prediction. Tables 7-9 show the comparisons of multi-step ahead prediction
performances of different models in other cases. A similar conclusion is deduced in Tables 7-9.
To present the comparison more intuitively, Figures 11-14 show the histograms of four cases based on
the values of MAE, RMSE and MAPE of different models.

Table 6. Comparison of the prediction performances of different models in spring.

Spring
Categories  Models One-Step Ahead Two-Step Ahead Three-Step Ahead
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
BP 1.04 2.23 0.41 1.26 2.78 0.54 173 2.93 0.68
Single ELM 1.02 1.99 0.39 1.22 2.61 0.52 1.63 2.82 0.65

WRELM 1.01 191 0.37 1.14 2.48 0.49 1.58 2.53 0.63

DPA-SFVB 0.77 0.82 0.31 0.89 0.93 0.38 0.94 0.99 0.52
DPA DPA-SFVE 0.72 0.69 0.29 0.78 0.81 0.32 0.86 0.91 0.42
DPA-SFVW 0.63 0.48 0.20 0.71 0.58 0.25 0.77 0.78 0.29
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Table 6. Cont.
Spring
Categories Models One-Step Ahead Two-Step Ahead Three-Step Ahead
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

FEM-SB 0.95 1.82 0.35 1.06 2.14 0.48 1.47 2.61 0.61
FEM-FB 0.89 1.74 0.38 0.98 1.97 0.50 1.25 2.03 0.62
FEM-VB 0.93 1.69 0.36 0.99 1.85 0.48 1.32 1.96 0.60
FEM-SFB 0.79 1.09 0.29 0.85 1.24 0.41 0.99 1.35 0.54
FEM-SVB 0.76 0.99 0.30 0.81 1.07 0.42 0.89 1.18 0.53
FEM-FVB 0.71 0.83 0.27 0.73 0.87 0.39 0.79 0.92 0.51
FEM-SFVB 0.59 0.52 0.25 0.68 0.76 0.31 0.71 0.85 0.41
FEM-SE 091 1.57 0.33 1.01 1.98 0.48 1.39 2.07 0.60
FEM-FE 0.87 1.45 0.37 0.96 1.79 0.47 1.21 1.88 0.59
FEM-VE 0.89 1.51 0.35 0.97 1.82 0.45 1.14 1.91 0.57
FEM FEM-SFE 0.75 1.03 0.28 0.79 1.19 0.40 0.94 1.23 0.53
FEM-SVE 0.72 0.95 0.29 0.75 1.03 0.41 0.84 1.09 0.52
FEM-FVE 0.67 0.78 0.25 0.70 0.81 0.36 0.72 0.88 0.49
FEM-SFVE 0.54 0.49 0.22 0.61 0.58 0.27 0.65 0.71 0.36
FEM-SW 0.82 1.23 0.29 0.94 1.82 0.46 1.23 1.96 0.58
FEM-FW 0.80 1.16 0.33 0.91 1.68 0.44 1.18 1.77 0.57
FEM-VW 0.81 1.21 0.31 0.88 1.54 0.45 1.02 1.63 0.56
FEM-SFW 0.71 0.97 0.27 0.77 1.08 0.39 0.89 1.17 0.52
FEM-SVW 0.68 0.89 0.28 0.73 0.96 0.39 0.79 1.01 0.51
FEM-FVW 0.55 0.58 0.21 0.63 0.69 0.33 0.68 0.73 0.49
FEM-SFVW 0.32 0.20 0.10 0.43 0.33 0.13 0.50 0.58 0.14

Table 7. Comparison of prediction performances of different models in summer.

Summer
Categories  Models One-Step Ahead Two-Step Ahead Three-Step Ahead
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

BP 0.94 1.12 0.73 1.24 1.79 0.86 1.79 2.75 1.03
Single ELM 0.89 1.08 0.69 1.18 1.64 0.78 1.52 2.18 091
WRELM 0.85 0.99 0.58 1.05 1.37 0.71 1.35 1.87 0.86
DPA-SFVB 0.82 0.95 0.45 0.85 0.99 0.53 0.98 1.12 0.65
DPA DPA-SFVE 0.79 091 0.43 0.82 0.95 0.49 0.86 0.97 0.62
DPA-SFVW 0.64 0.58 0.29 0.79 0.89 0.47 0.83 0.94 0.56
FEM-SB 0.86 0.95 0.61 1.15 1.29 0.75 1.55 1.73 0.89
FEM-FB 0.84 0.97 0.57 1.09 1.34 0.64 1.43 1.81 0.78
FEM-VB 0.85 0.94 0.55 0.97 1.31 0.66 1.27 1.71 0.69
FEM-SFB 0.74 0.89 0.49 0.82 0.95 0.51 1.03 1.13 0.59
FEM-SVB 0.78 0.89 0.50 0.85 0.96 0.53 1.09 1.04 0.55
FEM-FVB 0.76 091 0.45 0.81 0.95 0.48 0.99 0.96 0.56
FEM-SFVB 0.70 0.78 0.40 0.78 0.90 0.46 0.92 0.95 0.53
FEM-SE 0.83 0.89 0.57 1.07 1.16 0.68 1.41 1.58 0.77
FEM-FE 0.80 0.94 0.51 0.99 1.27 0.61 1.36 1.48 0.69
FEM-VE 0.79 0.89 0.53 0.94 1.29 0.62 1.16 1.37 0.65
FEM FEM-SFE 0.71 0.79 0.45 0.80 0.87 0.47 0.99 1.02 0.55
FEM-SVE 0.76 0.81 0.47 0.82 0.84 0.49 0.93 0.98 0.56
FEM-FVE 0.71 0.82 0.39 0.78 0.85 0.45 0.81 0.89 0.53
FEM-SFVE 0.66 0.74 0.33 0.72 0.82 0.44 0.75 0.85 0.51
FEM-SW 0.81 0.85 0.55 0.98 1.02 0.63 1.27 1.49 0.71
FEM-FW 0.78 091 0.49 0.95 1.18 0.58 1.26 1.32 0.65
FEM-VW 0.75 0.88 0.51 0.89 1.08 0.56 1.09 1.21 0.63
FEM-SFW 0.68 0.77 0.43 0.78 0.82 0.46 0.94 0.96 0.51
FEM-SVW 0.72 0.70 0.45 0.77 0.79 0.47 0.87 0.94 0.52
FEM-FVW 0.68 0.75 0.36 0.71 0.80 0.44 0.76 0.84 0.50
FEM-SFVW 0.32 0.17 0.19 0.64 0.69 0.42 0.68 0.82 0.49
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Table 8. Comparison of prediction performances of different models in fall.

Fall
Categories  Models One-Step Ahead Two-Step Ahead Three-Step Ahead
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
BP 1.02 0.99 0.62 1.28 1.06 0.74 1.95 141 0.98
Single ELM 0.97 0.95 0.59 1.16 1.02 0.69 1.74 1.18 0.92

WRELM 0.94 0.89 0.56 1.02 0.92 0.66 1.57 1.05 0.88

DPA-SFVB 0.72 0.69 0.45 0.85 0.89 0.47 0.87 0.93 0.55
DPA DPA-SFVE 0.65 0.47 0.36 0.72 0.76 0.44 0.78 0.85 0.51
DPA-SFVW 0.53 0.48 0.23 0.62 0.67 0.42 0.67 0.73 0.48

FEM-SB 0.95 0.92 0.55 1.08 0.96 0.67 1.58 1.21 0.83
FEM-FB 0.92 0.89 0.53 0.97 0.92 0.64 1.29 1.13 0.76
FEM-VB 0.88 0.93 0.52 0.92 0.98 0.61 0.97 1.05 0.73
FEM-SFB 0.78 0.74 0.45 0.82 0.79 0.53 0.84 0.91 0.61
FEM-SVB 0.80 0.75 0.42 0.84 0.81 0.50 0.86 0.87 0.58
FEM-FVB 0.78 0.69 0.40 0.80 0.76 0.45 0.81 0.83 0.55
FEM-SFVB 0.57 0.52 0.32 0.71 0.68 0.41 0.76 0.79 0.50
FEM-SE 0.91 0.88 0.53 0.99 0.90 0.65 1.37 1.02 0.79
FEM-FE 0.89 0.84 0.50 0.94 0.86 0.61 1.16 1.05 0.71
FEM-VE 0.85 0.87 0.49 0.88 0.95 0.57 0.92 0.97 0.66
FEM FEM-SFE 0.75 0.70 0.43 0.78 0.76 0.50 0.81 0.85 0.58
FEM-SVE 0.78 0.73 0.41 0.81 0.78 0.47 0.81 0.83 0.53
FEM-FVE 0.72 0.68 0.36 0.78 0.73 0.42 0.79 0.78 0.51
FEM-SFVE 0.42 0.35 0.29 0.59 0.62 0.39 0.61 0.72 0.45
FEM-SW 0.89 0.85 0.49 0.96 0.89 0.63 1.26 0.95 0.75
FEM-FW 0.86 0.79 0.47 0.91 0.82 0.58 1.01 0.97 0.67
FEM-VW 0.83 0.84 0.48 0.85 091 0.55 0.89 0.93 0.63
FEM-SFW 0.72 0.69 0.41 0.74 0.71 0.47 0.77 0.81 0.57
FEM-SVW 0.71 0.68 0.37 0.75 0.72 0.42 0.79 0.79 0.51
FEM-FVW 0.66 0.63 0.32 0.71 0.68 0.37 0.74 0.72 0.45
FEM-SFVW 0.17 0.05 0.18 0.36 0.22 0.33 0.36 0.24 0.35

Table 9. Comparison of prediction performances of different models in winter.

Winter
Categories Models One-Step Ahead Two-Step Ahead Three-Step Ahead
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
BP 0.95 0.97 0.55 1.05 1.02 0.69 2.16 2.05 0.92
Single ELM 091 0.93 0.52 1.01 0.99 0.67 1.75 1.86 0.82

WRELM 0.89 0.87 0.49 0.98 0.94 0.61 1.37 1.64 0.76

DPA-SFVB 0.68 0.73 0.38 0.84 0.88 0.45 0.92 0.97 0.51
DPA DPA-SFVE 0.57 0.64 0.35 0.74 0.79 0.38 0.83 0.87 0.41
DPA-SFVW 0.42 0.56 0.27 0.65 0.62 0.33 0.74 0.81 0.38

FEM-SB 0.82 0.81 0.50 0.96 0.94 0.63 1.21 1.39 0.71
FEM-FB 0.85 0.78 0.48 0.98 0.90 0.59 1.17 1.26 0.66
FEM-VB 0.83 0.79 0.47 0.93 0.86 0.58 1.04 1.10 0.67
FEM-SFB 0.75 0.70 0.41 0.85 0.80 0.49 0.92 0.94 0.56
FEM-SVB 0.77 0.68 0.38 0.82 0.77 0.45 0.86 0.96 0.53
FEM-FVB 0.70 0.65 0.35 0.78 0.72 0.41 0.82 0.84 0.47
FEM-SFVB 0.54 0.61 0.32 0.72 0.66 0.39 0.78 0.82 0.42
FEM-SE 0.78 0.79 0.48 0.92 0.89 0.59 1.08 1.18 0.67
FEM-FE 0.82 0.75 0.46 0.95 0.86 0.54 1.05 1.14 0.63
FEM-VE 0.80 0.77 0.45 0.90 0.84 0.56 0.97 1.02 0.63
FEM FEM-SFE 0.73 0.68 0.39 0.81 0.78 0.46 0.89 0.91 0.54
FEM-SVE 0.74 0.64 0.35 0.75 0.73 0.42 0.80 0.87 0.48
FEM-FVE 0.66 0.59 0.32 0.71 0.67 0.38 0.77 0.79 0.44
FEM-SFVE 0.37 0.31 0.28 0.67 0.61 0.34 0.71 0.69 0.40
FEM-SW 0.75 0.77 0.46 0.87 0.84 0.56 0.98 1.07 0.62
FEM-FW 0.79 0.72 0.45 0.92 0.83 0.52 0.97 1.08 0.61
FEM-VW 0.76 0.75 0.43 0.88 0.82 0.51 0.94 0.97 0.59
FEM-SFW 0.71 0.65 0.35 0.76 0.72 0.43 0.83 0.80 0.49
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Figure 14. Performance comparison of different models in terms of MAE, RMSE and MAPE in winter.

From Figures 11-14, it can be shown that the proposed model has the smallest error criteria
compared with other benchmark models. In a word, it is concluded that the proposed model
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can improve the prediction performance of multi-step ahead wind speed and is superior to all the
benchmark models.

To further assess the influence of TPSD technique, FE process and WRELM on the proposed
hybrid model, five experiments are designed as follows. Experiment I is designed for proving the
advantages of WRELM, and three comparisons are conducted including ELM vs. BP, WRELM vs. BP,
and WRELM vs. ELM. The comparison results of the experiment I in four cases are shown in Table 10.

From Table 10, it can be shown that the WRELM model has the smallest multi-step ahead
prediction errors compared with BP and ELM. Therefore, we adopt WRELM as the basic predictor
for wind speed forecasting in this study. Experiment II is designed to assess the influence of the FE
process on the proposed hybrid model, and three comparisons are conducted including FEM-SFVB vs.
DPA-SFVB, FEM-SFVE vs. DPA-SFVE, and FEM-SFVW vs. DPA-SFVW. The comparison results of the
experiment II in four cases are also shown in Table 10, where it can be seen that the FE process can
improve the prediction performance of multi-step ahead wind speed forecasting.

In order to assess the influence of the different signal decomposition algorithms on the proposed
hybrid model, three experiments including experiment III, experiment IV and experiment V are
designed. Experiment IIl is designed to evaluate that if the three-phase signal decomposition technique
is better than two-phase signal decomposition technique, and nine comparisons are conducted
including FEM-SFVB vs. FEM-SFB, FEM-SFVB vs. FEM-SVB, FEM-SFVB vs. FEM-FVB, FEM-SFVE vs.
FEM-SFE, FEM-SFVE vs. FEM-SVE, FEM-SFVE vs. FEM-FVE, FEM-SFVW vs. FEM-SFW, FEM-SFVW
vs. FEM-SVW, and FEM-SFVW vs. FEM-FVW.

Experiment IV is designed to evaluate that if the two-phase signal decomposition technique is
better than single signal decomposition technique, and eighteen comparisons are conducted including
FEM-SFB vs. FEM-SB, FEM-SFB vs. FEM-FB, FEM-SVB vs. FEM-SB, FEM-S5VB vs. FEM-VB, FEM-FVB
vs. FEM-FB, FEM-FVB vs. FEM-VB, FEM-SFE vs. FEM-SE, FEM-SFE vs. FEM-FE, FEM-SVE vs.
FEM-SE, FEM-SVE vs. FEM-VE, FEM-FVE vs. FEM-FE, FEM-FVE vs. FEM-VE, FEM-SFW vs. FEM-SW,
FEM-SFW vs. FEM-FW, FEM-SVW vs. FEM-SW, FEM-SVW vs. FEM-VW, FEM-FVW vs. FEM-FW, and
FEM-FVW vs. FEM-VW. Experiment V is designed to evaluate that if the single signal decomposition
technique is better than the no decomposition process, and nine comparisons are conducted including
FEM-SB vs. BP, FEM-FB vs. BP, FEM-VB vs. BP, FEM-SE vs. ELM, FEM-FE vs. ELM, FEM-VE vs.
ELM, FEM-SW vs. WRELM, FEM-FW vs. WRELM, and FEM-VW vs. WRELM. Table 11 shows the
comparison results of the three experiments in spring over different horizons including one-step,
two-step and three-step ahead wind speed prediction. From Table 11, it can be shown that the
three-phase signal decomposition technique is better than two-phase signal decomposition technique,
the two-phase signal decomposition technique is better than single signal decomposition technique,
and the single signal decomposition technique is better than the no decomposition process. In a
word, the multi-phase signal decomposition algorithms can effectively decrease the three prediction
errors including MAE, RMSE and MAPE compared with the single models (BP, ELM and WRELM)
in different prediction horizons. Similarly, Tables 12-14 show the comparison results of the three
experiments in other three cases over different horizons including one-step, two-step and three-step
ahead wind speed prediction. A similar conclusion is deduced in Tables 12-14.
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Table 10. Comparison results of experiment I and experiment II in four cases.

The Proportion of Reduction

Cases  Prediction Horizon Errors FEM-SFVBvs. FEM-SFVEvs.  FEM-SFVW vs.

DPA.SFVB DPA.SFVE DPA.SFVW WRELM vs. BP  WRELM vs. ELM ELM vs. BP

MAE (%) 23.38 25.00 4921 2.88 0.98 1.92

One-step ahead RMSE (%) 36.59 28.99 58.33 14.35 4,02 10.76

MAPE (%) 19.35 24.14 50.00 9.76 5.13 4.88

Sori MAE (%) 23.60 21.79 39.44 9.52 6.56 3.17

pring Two-step ahead RMSE (%) 18.28 28.40 43.10 10.79 4.98 6.12

MAPE (%) 18.42 15.63 48.00 9.26 5.77 3.70

MAE (%) 24.47 24.42 35.06 8.67 3.07 5.78

Three-step ahead RMSE (%) 14.14 21.98 25.64 13.65 10.28 3.75

MAPE (%) 21.15 14.29 51.72 7.35 3.08 441

MAE (%) 14.63 16.46 50.00 9.57 4.49 5.32

One-step ahead RMSE (%) 17.89 18.68 70.69 11.61 8.33 3.57

MAPE (%) 11.11 23.26 34.48 20.55 15.94 5.48

MAE (%) 8.24 12.20 18.99 15.32 11.02 4.84

Summer Two-step ahead RMSE (%) 9.09 13.68 22.47 23.46 16.46 8.38

MAPE (%) 13.21 10.20 10.64 17.44 8.97 9.30

MAE (%) 6.12 12.79 18.07 24.58 11.18 15.08

Three-step ahead RMSE (%) 15.18 12.37 12.77 32.00 14.22 20.73

MAPE (%) 18.46 17.74 12.50 16.50 5.49 11.65

MAE (%) 20.83 35.38 67.92 7.84 3.09 490

One-step ahead RMSE (%) 24.64 25.53 89.58 10.10 6.32 4.04

MAPE (%) 28.89 19.44 21.74 9.68 5.08 4.84

MAE (%) 16.47 18.06 41.94 2031 12.07 9.38

Fall Two-step ahead RMSE (%) 23.60 18.42 67.16 13.21 9.80 3.77

MAPE (%) 12.77 11.36 21.43 10.81 435 6.76

MAE (%) 12.64 21.79 46.27 19.49 9.77 10.77

Three-step ahead RMSE (%) 15.05 15.29 67.12 2553 11.02 16.31

MAPE (%) 9.09 11.76 27.08 10.20 4.35 6.12

MAE (%) 20.59 35.09 33.33 6.32 2.20 421

One-step ahead RMSE (%) 16.44 51.56 78.57 10.31 6.45 412

MAPE (%) 15.79 20.00 48.15 10.91 5.77 5.45

) MAE (%) 14.29 9.46 13.85 6.67 2.97 3.81

Winter Two-step ahead RMSE (%) 25.00 22.78 12.90 7.84 5.05 2.94

MAPE (%) 13.33 10.53 12.12 11.59 8.96 2.90

MAE (%) 15.22 14.46 18.92 36.57 21.71 18.98

Three-step ahead RMSE (%) 15.46 20.69 19.75 20.00 11.83 9.27

MAPE (%) 17.65 2.44 23.68 17.39 7.32 10.87

25 of 33



Energies 2018, 11, 321

Table 11. Comparison results of experiments III, IV and V in spring.

Spring
Comparison of Models One-Step Ahead Two-Step Ahead Three-Step Ahead
MAE (%) RMSE (%) MAPE (%) MAE (%) RMSE(%) MAPE(%) MAE(%) RMSE (%) MAPE (%)

FEM-SFVB vs. FEM-SFB 25.32 52.29 13.79 20.00 38.71 24.39 28.28 37.04 24.07
FEM-SFVB vs. FEM-SVB 22.37 47.47 16.67 16.05 28.97 26.19 20.22 27.97 22.64
FEM-SFVB vs. FEM-FVB 16.90 37.35 7.41 6.85 12.64 20.51 10.13 7.61 19.61
FEM-SFVE vs. FEM-SFE 28.00 52.43 21.43 22.78 51.26 32.50 30.85 42.28 32.08
FEM-SFVE vs. FEM-SVE 25.00 48.42 24.14 18.67 43.69 34.15 22.62 34.86 30.77
FEM-SFVE vs. FEM-FVE 19.40 37.18 12.00 12.86 28.40 25.00 9.72 19.32 26.53
FEM-SFVW vs. FEM-SFW 54.93 79.38 62.96 44.16 69.44 66.67 43.82 50.43 73.08
FEM-SFVW vs. FEM-SVW 52.94 77.53 64.29 41.10 65.63 66.67 36.71 42.57 72.55
FEM-SFVW vs. FEM-FVW 41.82 65.52 52.38 31.75 52.17 60.61 26.47 20.55 71.43
FEM-SFB vs. FEM-SB 16.84 40.11 17.14 19.81 42.06 14.58 32.65 48.28 11.48
FEM-SFB vs. FEM-FB 11.24 37.36 23.68 13.27 37.06 18.00 20.80 33.50 12.90
FEM-SVB vs. FEM-SB 20.00 45.60 14.29 23.58 50.00 12.50 39.46 54.79 13.11
FEM-SVB vs. FEM-VB 18.28 41.42 16.67 18.18 42.16 12.50 32.58 39.80 11.67
FEM-FVB vs. FEM-FB 20.22 52.30 28.95 25.51 55.84 22.00 36.80 54.68 17.74
FEM-FVB vs. FEM-VB 23.66 50.89 25.00 26.26 52.97 18.75 40.15 53.06 15.00
FEM-SFE vs. FEM-SE 17.58 34.39 15.15 21.78 39.90 16.67 32.37 40.58 11.67
FEM-SFE vs. FEM-FE 13.79 28.97 24.32 17.71 33.52 14.89 22.31 34.57 10.17
FEM-SVE vs. FEM-SE 20.88 39.49 12.12 25.74 47.98 14.58 39.57 47.34 13.33
FEM-SVE vs. FEM-VE 19.10 37.09 17.14 22.68 43.41 8.89 26.32 4293 8.77
FEM-FVE vs. FEM-FE 22.99 46.21 3243 27.08 54.75 23.40 40.50 53.19 16.95
FEM-FVE vs. FEM-VE 24.72 48.34 28.57 27.84 55.49 20.00 36.84 53.93 14.04
FEM-SFW vs. FEM-SW 13.41 21.14 6.90 18.09 40.66 15.22 27.64 40.31 10.34
FEM-SFW vs. FEM-FW 11.25 16.38 18.18 15.38 35.71 11.36 24.58 33.90 8.77
FEM-SVW vs. FEM-SW 17.07 27.64 3.45 22.34 47.25 15.22 35.77 48.47 12.07
FEM-SVW vs. FEM-VW 16.05 26.45 9.68 17.05 37.66 13.33 22.55 38.04 8.93
FEM-FVW vs. FEM-FW 31.25 50.00 36.36 30.77 58.93 25.00 42.37 58.76 14.04
FEM-FVW vs. FEM-VW 32.10 52.07 32.26 28.41 55.19 26.67 33.33 55.21 12.50
FEM-SB vs. BP 8.65 18.39 14.63 15.87 23.02 11.11 15.03 10.92 10.29
FEM-FB vs. BP 14.42 21.97 7.32 22.22 29.14 7.41 27.75 30.72 8.82
FEM-VB vs. BP 10.58 2422 12.20 21.43 33.45 11.11 23.70 33.11 11.76
FEM-SE vs. ELM 10.78 21.11 15.38 17.21 24.14 7.69 14.72 26.60 7.69
FEM-FE vs. ELM 14.71 27.14 5.13 21.31 31.42 9.62 25.77 33.33 9.23
FEM-VE vs. ELM 12.75 24.12 10.26 20.49 30.27 13.46 30.06 32.27 12.31
FEM-SW vs. WRELM 18.81 35.60 21.62 17.54 26.61 6.12 22.15 22.53 7.94
FEM-FW vs. WRELM 20.79 39.27 10.81 20.18 32.26 10.20 25.32 30.04 9.52
FEM-VW vs. WRELM 19.80 36.65 16.22 22.81 37.90 8.16 35.44 35.57 11.11
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Table 12. Comparison results of experiments III, IV and V in summer.

Comparison of Models

Summer

One-Step Ahead

Two-Step Ahead

Three-Step Ahead

MAE (%) RMSE (%) MAPE (%) MAE (%) RMSE (%) MAPE (%) MAE (%) RMSE (%) MAPE (%)
FEM-SFVB vs. FEM-SFB 541 12.36 18.37 4.88 5.26 9.80 10.68 15.93 10.17
FEM-SFVB vs. FEM-SVB 10.26 12.36 20.00 8.24 6.25 13.21 15.60 8.65 3.64
FEM-SFVB vs. FEM-FVB 7.89 14.29 11.11 3.70 5.26 4.17 7.07 1.04 5.36
FEM-SFVE vs. FEM-SFE 7.04 6.33 26.67 10.00 5.75 6.38 2424 16.67 727
FEM-SFVE vs. FEM-SVE 13.16 8.64 29.79 12.20 2.38 10.20 19.35 13.27 8.93
FEM-SFVE vs. FEM-FVE 7.04 9.76 15.38 7.69 3.53 222 7.41 4.49 3.77
FEM-SEVW vs. FEM-SFW 52.94 77.92 55.81 17.95 15.85 8.70 27.66 14.58 3.92
FEM-SFVW vs. FEM-SVW 55.56 75.71 57.78 16.88 12.66 10.64 21.84 12.77 5.77
FEM-SFVW vs. FEM-FVW 52.94 77.33 47.22 9.86 13.75 4.55 10.53 2.38 2.00
FEM-SFB vs. FEM-SB 13.95 6.32 19.67 28.70 26.36 32.00 33.55 34.68 33.71
FEM-SFB vs. FEM-FB 11.90 8.25 14.04 24.77 29.10 20.31 27.97 37.57 24.36
FEM-SVB vs. FEM-SB 9.30 6.32 18.03 26.09 25.58 29.33 29.68 39.88 38.20
FEM-SVB vs. FEM-VB 8.24 5.32 9.09 12.37 26.72 19.70 14.17 39.18 20.29
FEM-FVB vs. FEM-FB 9.52 6.19 21.05 25.69 29.10 25.00 30.77 46.96 28.21
FEM-FVB vs. FEM-VB 10.59 3.19 18.18 16.49 27.48 27.27 22.05 43.86 18.84
FEM-SFE vs. FEM-SE 14.46 11.24 21.05 25.23 25.00 30.88 29.79 35.44 28.57
FEM-SFE vs. FEM-FE 11.25 15.96 11.76 19.19 31.50 22.95 27.21 31.08 20.29
FEM-SVE vs. FEM-SE 8.43 8.99 17.54 23.36 27.59 27.94 34.04 37.97 27.27
FEM-SVE vs. FEM-VE 3.80 8.99 11.32 12.77 34.88 20.97 19.83 28.47 13.85
FEM-FVE vs. FEM-FE 11.25 12.77 23.53 21.21 33.07 26.23 40.44 39.86 23.19
FEM-FVE vs. FEM-VE 10.13 7.87 26.42 17.02 34.11 27.42 30.17 35.04 18.46
FEM-SFW vs. FEM-SW 16.05 9.41 21.82 20.41 19.61 26.98 25.98 35.57 28.17
FEM-SFW vs. FEM-FW 12.82 15.38 12.24 17.89 30.51 20.69 25.40 27.27 21.54
FEM-SVW vs. FEM-SW 11.11 17.65 18.18 21.43 22.55 25.40 31.50 36.91 26.76
FEM-SVW vs. FEM-VW 4.00 20.45 11.76 13.48 26.85 16.07 20.18 22.31 17.46
FEM-FVW vs. FEM-FW 12.82 17.58 26.53 25.26 32.20 24.14 39.68 36.36 23.08
FEM-FVW vs. FEM-VW 9.33 14.77 29.41 20.22 25.93 21.43 30.28 30.58 20.63
FEM-SB vs. BP 8.51 15.18 16.44 7.26 27.93 12.79 13.41 37.09 13.59
FEM-FB vs. BP 10.64 13.39 21.92 12.10 25.14 25.58 20.11 34.18 2427
FEM-VB vs. BP 9.57 16.07 24.66 21.77 26.82 23.26 29.05 37.82 33.01
FEM-SE vs. ELM 6.74 17.59 17.39 9.32 29.27 12.82 7.24 27.52 15.38
FEM-FE vs. ELM 10.11 12.96 26.09 16.10 22.56 21.79 10.53 32.11 24.18
FEM-VE vs. ELM 11.24 17.59 23.19 20.34 21.34 20.51 23.68 37.16 28.57
FEM-SW vs. WRELM 471 14.14 517 6.67 25.55 11.27 5.93 20.32 17.44
FEM-FW vs. WRELM 8.24 8.08 15.52 9.52 13.87 18.31 6.67 29.41 24.42
FEM-VW vs. WRELM 11.76 11.11 12.07 15.24 21.17 21.13 19.26 35.29 26.74
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Table 13. Comparison results of experiments III, IV and V in fall.

Fall
Comparison of Models One-Step Ahead Two-Step Ahead Three-Step Ahead
MAE (%) RMSE (%) MAPE (%) MAE (%) RMSE(%) MAPE(%) MAE(%) RMSE (%) MAPE (%)

FEM-SFVB vs. FEM-SFB 26.92 29.73 28.89 13.41 13.92 22.64 9.52 13.19 18.03
FEM-SFVB vs. FEM-SVB 28.75 30.67 23.81 15.48 16.05 18.00 11.63 9.20 13.79
FEM-SFVB vs. FEM-FVB 26.92 24.64 20.00 11.25 10.53 8.89 6.17 4.82 9.09
FEM-SFVE vs. FEM-SFE 44.00 50.00 32.56 24.36 18.42 22.00 24.69 15.29 2241
FEM-SFVE vs. FEM-SVE 46.15 52.05 29.27 27.16 20.51 17.02 24.69 13.25 15.09
FEM-SFVE vs. FEM-FVE 41.67 48.53 19.44 24.36 15.07 7.14 22.78 7.69 11.76
FEM-SFVW vs. FEM-SFW 76.39 92.75 56.10 51.35 69.01 29.79 53.25 70.37 38.60
FEM-SFVW vs. FEM-SVW 76.06 92.65 51.35 52.00 69.44 21.43 54.43 69.62 31.37
FEM-SFVW vs. FEM-FVW 74.24 92.06 43.75 49.30 67.65 10.81 51.35 66.67 22.22
FEM-SFB vs. FEM-SB 17.89 19.57 18.18 24.07 17.71 20.90 46.84 24.79 26.51
FEM-SFB vs. FEM-FB 15.22 16.85 15.09 15.46 14.13 17.19 34.88 19.47 19.74
FEM-SVB vs. FEM-SB 15.79 18.48 23.64 22.22 15.63 25.37 45.57 28.10 30.12
FEM-SVB vs. FEM-VB 9.09 19.35 19.23 8.70 17.35 18.03 11.34 17.14 20.55
FEM-FVB vs. FEM-FB 15.22 22.47 24.53 17.53 17.39 29.69 37.21 26.55 27.63
FEM-FVB vs. FEM-VB 11.36 25.81 23.08 13.04 22.45 26.23 16.49 20.95 24.66
FEM-SFE vs. FEM-SE 17.58 20.45 18.87 21.21 15.56 23.08 40.88 16.67 26.58
FEM-SFE vs. FEM-FE 15.73 16.67 14.00 17.02 11.63 18.03 30.17 19.05 18.31
FEM-SVE vs. FEM-SE 14.29 17.05 22.64 18.18 13.33 27.69 40.88 18.63 3291
FEM-SVE vs. FEM-VE 8.24 16.09 16.33 7.95 17.89 17.54 11.96 14.43 19.70
FEM-FVE vs. FEM-FE 19.10 19.05 28.00 17.02 15.12 31.15 31.90 25.71 28.17
FEM-FVE vs. FEM-VE 15.29 21.84 26.53 11.36 23.16 26.32 14.13 19.59 22.73
FEM-SFW vs. FEM-SW 19.10 18.82 16.33 22.92 20.22 25.40 38.89 14.74 24.00
FEM-SFW vs. FEM-FW 16.28 12.66 12.77 18.68 13.41 18.97 23.76 16.49 14.93
FEM-SVW vs. FEM-SW 20.22 20.00 24.49 21.88 19.10 33.33 37.30 16.84 32.00
FEM-SVW vs. FEM-VW 14.46 19.05 22.92 11.76 20.88 23.64 11.24 15.05 19.05
FEM-FVW vs. FEM-FW 23.26 20.25 31.91 21.98 17.07 36.21 26.73 25.77 32.84
FEM-FVW vs. FEM-VW 20.48 25.00 33.33 16.47 25.27 32.73 16.85 22.58 28.57
FEM-SB vs. BP 6.86 7.07 11.29 15.63 9.43 9.46 18.97 14.18 15.31
FEM-FB vs. BP 9.80 10.10 14.52 24.22 13.21 13.51 33.85 19.86 22.45
FEM-VB vs. BP 13.73 6.06 16.13 28.13 7.55 17.57 50.26 25.53 2551
FEM-SE vs. ELM 6.19 7.37 10.17 14.66 11.76 5.80 21.26 13.56 14.13
FEM-FE vs. ELM 8.25 11.58 15.25 18.97 15.69 11.59 33.33 11.02 22.83
FEM-VE vs. ELM 12.37 8.42 16.95 24.14 6.86 17.39 4713 17.80 28.26
FEM-SW vs. WRELM 5.32 4.49 12.50 5.88 3.26 4.55 19.75 9.52 14.77
FEM-FW vs. WRELM 8.51 11.24 16.07 10.78 10.87 12.12 35.67 7.62 23.86
FEM-VW vs. WRELM 11.70 5.62 14.29 16.67 1.09 16.67 43.31 11.43 28.41
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Table 14. Comparison results of experiments III, IV and V in winter.

Comparison of Models

Winter

One-Step Ahead

Two-Step Ahead

Three-Step Ahead

MAE (%) RMSE (%) MAPE (%) MAE (%) RMSE (%) MAPE (%) MAE (%) RMSE (%) MAPE (%)
FEM-SFVB vs. FEM-SFB 28.00 12.86 21.95 15.29 17.50 20.41 15.22 12.77 25.00
FEM-SFVB vs. FEM-SVB 29.87 10.29 15.79 12.20 14.29 13.33 9.30 14.58 20.75
FEM-SFVB vs. FEM-FVB 22.86 6.15 8.57 7.69 8.33 4.88 4.88 2.38 10.64
FEM-SFVE vs. FEM-SFE 49.32 54.41 28.21 17.28 21.79 26.09 20.22 24.18 25.93
FEM-SFVE vs. FEM-SVE 50.00 51.56 20.00 10.67 16.44 19.05 11.25 20.69 16.67
FEM-SFVE vs. FEM-FVE 43.94 47.46 12.50 5.63 8.96 10.53 7.79 12.66 9.09
FEM-SEVW vs. FEM-SFW 60.56 81.54 60.00 26.32 25.00 32.56 27.71 18.75 40.82
FEM-SFVW vs. FEM-SVW 60.00 79.66 54.84 2222 20.59 19.44 22.08 16.67 29.27
FEM-SFVW vs. FEM-FVW 55.56 78.18 51.72 13.85 14.29 14.71 15.49 5.80 30.95
FEM-SFB vs. FEM-SB 8.54 13.58 18.00 11.46 14.89 22.22 23.97 32.37 21.13
FEM-SFB vs. FEM-FB 11.76 10.26 14.58 13.27 11.11 16.95 21.37 25.40 15.15
FEM-SVB vs. FEM-SB 6.10 16.05 24.00 14.58 18.09 28.57 28.93 30.94 25.35
FEM-SVB vs. FEM-VB 7.23 13.92 19.15 11.83 10.47 22.41 17.31 12.73 20.90
FEM-FVB vs. FEM-FB 17.65 16.67 27.08 20.41 20.00 30.51 29.91 33.33 28.79
FEM-FVB vs. FEM-VB 15.66 17.72 25.53 16.13 16.28 29.31 21.15 23.64 29.85
FEM-SFE vs. FEM-SE 6.41 13.92 18.75 11.96 12.36 22.03 17.59 22.88 19.40
FEM-SFE vs. FEM-FE 10.98 9.33 15.22 14.74 9.30 14.81 15.24 20.18 14.29
FEM-SVE vs. FEM-SE 5.13 18.99 27.08 18.48 17.98 28.81 25.93 26.27 28.36
FEM-SVE vs. FEM-VE 7.50 16.88 2222 16.67 13.10 25.00 17.53 14.71 23.81
FEM-FVE vs. FEM-FE 19.51 21.33 30.43 25.26 22.09 29.63 26.67 30.70 30.16
FEM-FVE vs. FEM-VE 17.50 23.38 28.89 21.11 20.24 32.14 20.62 22.55 30.16
FEM-SFW vs. FEM-SW 5.33 15.58 2391 12.64 14.29 23.21 15.31 25.23 20.97
FEM-SFW vs. FEM-FW 10.13 9.72 2222 17.39 13.25 17.31 14.43 25.93 19.67
FEM-SVW vs. FEM-SW 6.67 23.38 32.61 17.24 19.05 35.71 21.43 27.10 33.87
FEM-SVW vs. FEM-VW 7.89 21.33 2791 18.18 17.07 29.41 18.09 19.59 30.51
FEM-FVW vs. FEM-FW 20.25 23.61 35.56 29.35 24.10 34.62 26.80 36.11 31.15
FEM-FVW vs. FEM-VW 17.11 26.67 32.56 26.14 23.17 33.33 2447 28.87 28.81
FEM-SB vs. BP 13.68 16.49 9.09 8.57 7.84 8.70 43.98 32.20 22.83
FEM-FB vs. BP 10.53 19.59 12.73 6.67 11.76 14.49 45.83 38.54 28.26
FEM-VB vs. BP 12.63 18.56 14.55 11.43 15.69 15.94 51.85 46.34 27.17
FEM-SE vs. ELM 14.29 15.05 7.69 8.91 10.10 11.94 38.29 36.56 18.29
FEM-FE vs. ELM 9.89 19.35 11.54 5.94 13.13 19.40 40.00 38.71 23.17
FEM-VE vs. ELM 12.09 17.20 13.46 10.89 15.15 16.42 44.57 45.16 23.17
FEM-SW vs. WRELM 15.73 11.49 6.12 11.22 10.64 8.20 28.47 34.76 18.42
FEM-FW vs. WRELM 11.24 17.24 8.16 6.12 11.70 14.75 29.20 34.15 19.74
FEM-VW vs. WRELM 14.61 13.79 12.24 10.20 12.77 16.39 31.39 40.85 22.37
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5. Conclusions

Accurate wind speed prediction is beneficial for the exploitation and utilization of wind power.
This study develops a novel hybrid strategy based on three-phase signal decomposition (TPSD)
technique, feature extraction (FE) and weighted regularized extreme learning machine (WRELM) for
multi-step ahead wind speed prediction. Firstly, a TPSD framework including seasonal separation
algorithm (SSA), fast ensemble empirical mode decomposition (FEEMD), and variational mode
decomposition (VMD) is developed for the first time to comprehensively handle the complex and
irregular nature of wind speed. In the first phase, the original wind speed signal can be separated
into season and trend components by SSA. In the second phase, the trend component can be
decomposed into a number of intrinsic mode functions (IMFs) and a residual with different frequencies.
For reducing the non-stationarity of the high frequency signal, the highest frequency IMF1 can be
further decomposed into several stationary modes in the third phase. Secondly, a feature extraction
(FE) process including partial autocorrelation function (PACF) and regression analysis is proposed to
capture the useful features of wind speed fluctuations and determine the optimal input features
for a prediction model. Then, an improved extreme learning machine (ELM) named weighted
regularized extreme learning machine (WRELM) is established using these selected features, and the
prediction results of wind speed can be calculated by WRELM. Finally, four real wind speed prediction
cases are used to evaluate the proposed model, experimental results show that: (1) both the TPSD
technique and feature extraction can improve the prediction performance for wind speed; (2) the novel
prediction framework which only establishes a prediction model using these selected features from all
different subseries can increase the prediction accuracy; (3) the proposed model has the best prediction
performance compared with the benchmark models.
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Abbreviations

SSA Seasonal Separation Algorithm

FEEMD Fast Ensemble Empirical Mode Decomposition
VMD Variational Mode Decomposition

DPA Decomposition Prediction Aggregation

TPSD Three-Phase Signal Decomposition

FEM Feature Extraction Method

PACF Partial Autocorrelation Function

BP Back Propagation Neural Network

ELM Extreme Learning Machine

WRELM Weighted Regularized Extreme Learning Machine

The Common Decomposition Prediction Aggregation-based Hybrid Model of Seasonal
DPA-SFVB Separation Algorithm, Fast Ensemble Empirical Mode Decomposition, Variational Mode
Decomposition and Back Propagation Neural Network
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DPA-SFVE

DPA-SFVW

FEM-SB

FEM-FB

FEM-VB

FEM-SFB

FEM-SVB

FEM-FVB

FEM-SFVB

FEM-SE

FEM-FE

FEM-VE

FEM-SFE

FEM-SVE

FEM-FVE

FEM-SFVE

FEM-SW

FEM-FW

FEM-VW

FEM-SFW

FEM-SVW

FEM-FVW

FEM-SFVW

MAE
RMSE
MAPE

The Common Decomposition Prediction Aggregation-based Hybrid Model of Seasonal
Separation Algorithm, Fast Ensemble Empirical Mode Decomposition, Variational Mode
Decomposition and Extreme Learning Machine

The Common Decomposition Prediction Aggregation-based Hybrid Model of Seasonal
Separation Algorithm, Fast Ensemble Empirical Mode Decomposition, Variational Mode
Decomposition and Weighted Regularized Extreme Learning Machine

The Feature Extraction Method-based Hybrid Model of Seasonal Separation Algorithm and Back
Propagation Neural Network

The Feature Extraction Method-based Hybrid Model of Fast Ensemble Empirical Mode
Decomposition and Back Propagation Neural Network

The Feature Extraction Method-based Hybrid Model of Variational Mode Decomposition and
Back Propagation Neural Network

The Feature Extraction Method-based Hybrid Model of Seasonal Separation Algorithm, Fast
Ensemble Empirical Mode Decomposition and Back Propagation Neural Network

The Feature Extraction Method-based Hybrid Model of Seasonal Separation Algorithm,
Variational Mode Decomposition and Back Propagation Neural Network

The Feature Extraction Method-based Hybrid Model of Fast Ensemble Empirical Mode
Decomposition, Variational Mode Decomposition and Back Propagation Neural Network
The Feature Extraction Method-based Hybrid Model of Seasonal Separation Algorithm, Fast
Ensemble Empirical Mode Decomposition, Variational Mode Decomposition and Back
Propagation Neural Network

The Feature Extraction Method-based Hybrid Model of Seasonal Separation Algorithm and
Extreme Learning Machine

The Feature Extraction Method-based Hybrid Model of Fast Ensemble Empirical Mode
Decomposition and Extreme Learning Machine

The Feature Extraction Method-based Hybrid Model of Variational Mode Decomposition and
Extreme Learning Machine

The Feature Extraction Method-based Hybrid Model of Seasonal Separation Algorithm, Fast
Ensemble Empirical Mode Decomposition and Extreme Learning Machine

The Feature Extraction Method-based Hybrid Model of Seasonal Separation Algorithm,
Variational Mode Decomposition and Extreme Learning Machine

The Feature Extraction Method-based Hybrid Model of Fast Ensemble Empirical Mode
Decomposition, Variational Mode Decomposition and Extreme Learning Machine

The Feature Extraction Method-based Hybrid Model of Seasonal Separation Algorithm, Fast
Ensemble Empirical Mode Decomposition, Variational Mode Decomposition and Extreme
Learning Machine

The Feature Extraction Method-based Hybrid Model of Seasonal Separation Algorithm and
Weighted Regularized Extreme Learning Machine

The Feature Extraction Method-based Hybrid Model of Fast Ensemble Empirical Mode
Decomposition and Weighted Regularized Extreme Learning Machine

The Feature Extraction Method-based Hybrid Model of Variational Mode Decomposition and
Weighted Regularized Extreme Learning Machine

The Feature Extraction Method-based Hybrid Model of Seasonal Separation Algorithm, Fast
Ensemble Empirical Mode Decomposition and Weighted Regularized Extreme Learning
Machine

The Feature Extraction Method-based Hybrid Model of Seasonal Separation Algorithm,
Variational Mode Decomposition and Weighted Regularized Extreme Learning Machine
The Feature Extraction Method-based Hybrid Model of Fast Ensemble Empirical Mode
Decomposition, Variational Mode Decomposition and Weighted Regularized Extreme Learning
Machine

The Feature Extraction Method-based Hybrid Model of Seasonal Separation Algorithm, Fast
Ensemble Empirical Mode Decomposition, Variational Mode Decomposition and Weighted
Regularized Extreme Learning Machine

Mean Absolute Error

Root Mean Square Error

Mean Absolute Percentage Error
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