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Abstract: Air pollution and climate change are some of the main problems that humankind is
currently facing. The electrification of the transport sector will help to reduce these problems, but one
of the major barriers for the massive adoption of electric vehicles is their limited range. The energy
consumption in these vehicles is affected, among other variables, by the driving behavior, making
range a value that must be personalized to each driver and each type of electric vehicle. In this
paper we offer a way to estimate a personalized energy consumption model by the use of the vehicle
dynamics and the driving events detected by the use of the smartphone inertial sensors, allowing
an easy and non-intrusive manner to predict the correct range for each user. This paper proposes,
for the classification of events, a deep neural network (Long-Short Time Memory) which has been
trained with more than 22,000 car trips, and the application to improve the consumption model taking
into account the driver behavior captured across different trips, allowing a personalized prediction.
Results and validation in real cases show that errors in the predicted consumption values are halved
when abrupt events are considered in the model.
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1. Introduction

The technology behind the design of electric vehicles is continuously improving and the European
Union (E.U.) predicts that these vehicles could be in mass production by 2020 [1,2]. By developing
a completely new way of using information from location and smartphone sensors, refined models
of energy consumption can be simulated enabling further studies on the impact of user behavior
on mobility and, subsequently, on other main topics related to electrical mobility and electricity
distribution networks.

The aim of this paper was the characterization of the behavior of drivers using only the sensors
in a smartphone, avoiding the installation of additional hardware and allowing the prediction of
the energy consumption of the user considering the captured driving style. Although most driver
monitoring methods make use of extra in-vehicle hardware, connected to the vehicle Electronic Control
Unit, typically known as On-Board Diagnostics (OBD) devices, systems that replace this capture
on-board approach with a simple smartphone are becoming ever more frequent. Since smartphones
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are easily accessible, widely available and low cost, these devices can be used to collect, process and
analyze driving data as well as detect maneuvers and classify aggressive driving behaviors.

In this work, users’ driving habits are characterized on the basis of the Drivies application
(Figure 1) from PhoneDrive S.L. [3] a successful spin-off of Telefonica, the main telecommunications
provider in Spain. This app, which can be freely installed in devices with Android and IOS operating
systems, allows the capture of this sensor data (in particular, accelerometer and gyroscopes) and
provides information about how and where you drive. Exploiting this sensor data to model driving
behavior requires some sophisticated algorithmic processing and machine learning techniques to cope
with phone orientation changes, different type of phone sensor characteristics, road type, and more.
A deep learning framework (neural networks) is used in this work, due to the good performance
that it has demonstrated in this kind of activities and for this kind of signals [4]. This approach has
also two main advantages. Firstly, it avoids the time-intensive process of designing handcrafted
features, as convolution filters are trained during supervised training of the model. The second
advantage is its higher accuracy compared to the common approach of inputting engineered features
into a discriminative classifier (i.e., Support Vector Machines). Another key benefit of using this
kind of algorithm is related to the signals that are generated by the sensors on mobile devices.
These measurements are very noisy, being hard to find a distribution able to model, in practice,
with high accuracy that noise. Neural networks have proven to be extremely effective to accommodate
diverse sensor noise patterns [5].
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For modelling the energy consumption, a model was developed, considering the prediction of
energy consumption with different variables intervening in the vehicle dynamics, and adding the effect
of the driving behavior derived from smartphone sensors, captured using the Drivies app. In particular,
it takes into account the type of driving maneuver (turns, accelerations and braking) and whether
they are abrupt or not. The model has developed a completely new, and highly detailed, time-space
approach based on the use of vast quantities of data from the location and smartphone sensors.

Global Navigation Satellite Systems (GNSS) and Inertial Measurements Units (IMU) are two key
features of smartphones that have been increasing in use in the last years. These are two essential
innovations for Location-Based Services (LBS) and user activity monitoring applications. The most
developed domain is the analysis of driving behavior for insurance telematics, obtaining data from
smartphone sensors [6,7].
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However, these systems still show performance problems, specially related to the battery
consumption. The high battery cost of activating geopositional systems such as Global Positioning
System (GPS) is the main challenge identified in [6]. The authors in [8] proposed an intelligent
procedure to reduce battery cost of geolocation systems based on triggering the location with regard to
specific activities, by using tridimensional accelerometer data.

One of the existing solutions, proposed in [9], suggests enabling smartphone accelerometer signals
in order to manage the activation of geolocation depending on the activity of the user. Another solution,
following the same direction, is proposed in [10], taking into account the motion/rest condition of the
device to activate (or not) the geolocation system.

To improve the accuracy of the model, as a smartphone can be freely installed inside a vehicle,
not only in a random position but in a non-fixed position, an orientation correction is compulsory.
Thus, the device could be placed anywhere inside the vehicle, and the position can even change during
the recordings without interfering with the result. Basir et al. [11] proposed a method to correct the
orientation of a freely installed device with accelerometers in a vehicle in two steps. Firstly, obtaining
a gravity vector with the vehicle stopped and, secondly, obtaining a driving directional vector and
correcting it by a Principal Component Analysis (PCA) approach. Other authors try to use a fixed
Inertial Measurement Unit on the vehicle [12] or they use a smartphone in a fixed and calculated
position in [13,14].

A solution to possible changes of position of the device during the records is presented in [15],
where manipulation events are detected in order to restart the procedure. In addition, an algorithm
to detect and classify acceleration and turn driving events based on smartphone accelerometer and
gyroscope signals is described. In our experiments, the model will be based on this patent.

Other works have tried to characterize the behavior of drivers using smartphones [16], correlating
driving style with fuel consumption. In [17] its authors developed an algorithm to characterize
driver aggressiveness and calculate the consumption and environmental impact in diesel vehicles
using a set of specific features obtained from the vehicle Electronic Control Unit (ECU). Nevertheless,
smartphones are used to provide real-time information, but needing additional hardware such as
the OBD to provide information regarding speed, acceleration, revolutions per minute or intake air
temperature, among others.

Several models of battery consumption for electric vehicles have been published in the literature,
considering the longitudinal dynamic model (LDM) of the car [18–21]. A sensitivity analysis for this
dynamic model is presented in [21], providing a parameter prioritization that allows quantifying their
impact on the accuracy of the energy demand estimation. The two most critical parameters that affect
this energy estimation are the uncertainty in the rolling friction coefficient and the uncertainty of
vehicle efficiency. A combined dynamic generic model with some high-level technical specifications
of the main components of the electric vehicle has been used in [22] to estimate the vehicle’s energy
demand. The authors proposed a variable speed-dependent regeneration factor. Unfortunately,
the proposed model is only validated comparing its results with the results obtained from a more
complex simulation model (called Future Automotive Systems Technology Simulator-FASTSim, which
is a high-level vehicle powertrain model developed by National Renewable Energy Laboratory [23]
over different driving cycles (no over real data provided by a GPS).

A similar LDM is presented in [24], where a variable speed-dependent regeneration factor
and constant load-efficiency curve are used. The variable regenerative factor is assumed to be an
exponential function of the negative acceleration and, again, the validation is done using different
types of driving cycles.

Calibration using real world data instead of standard driving cycles have been also proposed in
the literature. In [25] a LDMs of three different electric quadricycles, which are calibrated using real
world data (speed, acceleration and slope), sampled at 1 Hz rate is proposed. In this case, authors
evaluate the vehicle specific power (an estimation of the power per mass unit), assuming constant
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rolling resistance and no regeneration factor. Zhang and Yao [26] also proposed a second-by-second
LDM model, calibrated with real data, but they included a variable-speed regeneration factor.

Big Data modeling has been used to estimate the driving range of an electric vehicle (EV) more
accurately, based on battery pack data and EV operating data. With this information it was possible
to estimate the long-term battery performance and degradation and the estimated range and driving
behavior [27].

The reminder of this paper is organized as follows: Section 2 presents the electric vehicle model
used for the consumption calculations. In Section 3 we present the data validation procedure to extract
the needed measures. In Section 4, results are described with conclusions presented in Section 5.

2. Electric Vehicle Consumption Model

This section describes the modeling of the electric vehicle (EV) developed to estimate its energy
consumption. The model is based on the direct application of the Newton’s second law for the
longitudinal dynamics of the vehicle, as it is shown in Figure 2.
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According to the principle of force balance presented in Equation (1), the traction force, Ft,
generated by the electric motor, must overcome the sum of all resistive forces acting on the vehicle:
the rolling resistance force of the wheels, Frr; the hill climbing force, Fhc (which is the component of
the vehicle weight, Fg, that acts along the slope); the aerodynamic drag, Faero and the inertial force, Fi:

Ft = Fi + Fhc + Frr + Faero (1)

The aerodynamic drag is given by Equation (2):

Faero = sign(v + vwind)
1
2

ρACd(v + vwind)
2 (2)

where A is the front area of the vehicle (in m2), Cd is the aerodynamic drag coefficient, ρ is the air
density of dry air (in kg/m3) and v and vwind are the velocity of the vehicle and the headwind speed
respectively [20]. In this work, it is assumed that wind speed is negligible compared to the vehicle’s
speed, therefore, vwind = 0 as it was also proposed in other previous works [21–25].

The rolling resistance forces are acting in all tires, as it is shown on the left side of Figure 2.
The resultant rolling resistance force, Frr = Frr_front + Frr_rear, is given in Equation (3):

Frr = sign(v)
(

Mcar + Mp
)

g cos(α)crr (3)
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where crr defined the tire rolling resistance coefficient, Mcar is the mass of the vehicle, Mp is the mass of
the people in the vehicle (driver plus passengers), g is the gravity acceleration (9.81 m/s2) and α is the
angle of the driving surface (in rad). The rolling resistance coefficient depends on the tire pressure,
the road surface type, the road conditions, the vehicle tire type and the linear velocity. In this work,
this coefficient is approximated by Equation (4) according to [24]:

crr = 0.01
(

1 +
v

100

)
(4)

Equation (5) defines the hill climbing force which represents the force required to drive the vehicle
up the slope:

Fhc =
(

Mcar + Mp
)

g sin(α) (5)

Finally, Equation (6) represents the inertial force of the vehicle, representing the force required to
accelerate the vehicle, where a is its linear acceleration. An additional correction factor, Ci0, must be
included in this equation to consider the force needed to provide angular acceleration to the rotating
parts. In this work, this value is 0.05 as it is suggested in other similar references [18–20]:

Fi = Ci0
(

Mcar + Mp
)
a (6)

The mechanical tractive power at the wheels, Pt, required to drive the vehicle at speed v is given
by Equation (7):

Pt = Ftv (7)

The output power of the battery is computed as:

Pbat =
Pt

ηgear·ηmotor
+ Paux (8)

where Paux represents the variable auxiliary loads (heating, air conditioning, radio, lights, etc.), ηgear is
the driveline efficiency and ηmotor is the electric controller-motor efficiency [18,19,27].

This output power of the battery is evaluated at each time step. During normal forward driving
(traction mode), Pt > 0 and Pbat > 0 during a time interval ∆t and the energy (defined by Pbat·∆t) is
extracted from the battery, flowing to the wheels.

During the breaking process, EVs recover a significant fraction of the breaking energy, recharging
the battery. The input power injected in the battery, Pbat < 0, during this period will depend on the
regenerative braking factor, k, as follows:

Pbat = kηgear·ηmotorPt + Paux (9)

Note that, in this braking mode, Pt < 0 and:∣∣kηgear·ηmotorPt
∣∣ > |Paux| → Pbat < 0 (10)

The regeneration factor, k, which determines the percentage of the total braking power which can
be practically recovered is speed-dependent function as it is shown in the following equation [22,24]:

k =

{
0.5·v v < 5m/s

0.5 + 0.015(v− 5) v ≥ 5m/s
(11)

The total energy demand of a trip can by computed by:

Etrip =
1

ηbat

∫ tend

t0

Pbat·dt (12)
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where ηbat is the battery efficiency and t0–tend are the initial and final times of the trip. In this work,
the input data for the model are vehicle trajectories (second-by-second vehicle speed and position that
were recorded by the GPS receiver installed in the smartphone), therefore Equation (12) is discretized
as follows:

Etrip =
1

ηbat

N

∑
k=1

Pbat[k]·∆t (13)

where ∆t is the time span between two consecutive position samples and N is the number of recorded
position samples.

The model under study is a Nissan Leaf (2016 version). This vehicle is powered by an 80 kW
synchronous motor with a nominal 30 kWh lithium ion battery pack. The values of the main parameters
of this model are summarized in Table 1.

Table 1. Vehicle characteristics.

Description Symbol Value

Cross sectional area (m2) A 2.3316
Curb weight (kg) Mcar 1521

Driver and passengers’ weight (kg) Mp 160 (1 driv. + 1 pass.)–230 (1 drv. + 2 pass.)
Nominal battery capacity (kWh) Cnom 30

Driveline efficiency (%) ηgear 0.95
Controller and motor efficiency (%) ηmotor 0.98

Battery efficiency (%) ηvat 0.98
Auxiliary power load (kW) Paux 0.2

Model Extension to Include Significant Driving Events

In order to derive a more accurate consumption model, small variations in the previous
longitudinal dynamics model (defined by Equations (1)–(13)) are proposed. Two available inertial
sensors in the smartphones are used in this work: accelerometers and gyroscopes. The first type of
sensor measures linear acceleration of movements along the x, y and z axes (including gravity), while
the gyroscope measures the rotational velocity (the rate of rotation) around the x, y and z axes.

The linear acceleration is directly used in the longitudinal dynamics model through Equation (6),
but the information provided by the gyroscopes is not directly included in the previous model.
This information is critical to evaluate different driving behaviors and it will have a direct influence in
the energy demanded by the EV. For that reason, in this work the modification of Equations (4) and (6)
to include this effect is proposed.

When the vehicle is subjected to abrupt turns, the friction between the tire and the road increases,
therefore, it is proposed to modify the weight of the rolling resistance coefficient defined in Equation (4),
weighting it by the energy content included in the rotation signal, named E[event] and a constant
coefficient K1 which it is calibrated using Least Squares Method (LSM). The more energetic the turn is,
the more friction will occur, increasing the losses:

crr_mod =
[
0.01

(
1 +

v
100

)]
K1E[event] (14)

Similarly, when making abrupt movements with the vehicle, the effective moment of inertia of
the vehicle will change, increasing the effort to be rotated and increasing the inertial force. This effect
will be included by the modification of the additional correction factor, Ci0 in Equation (6), weighting
it by the energy content of the rotational signal and a constant coefficient K2:

Ci = K2Ci0E[event] (15)
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3. Data Acquisition, Detection, Classification and Validation

3.1. Data Acquisition and Preprocessing

This method relies on inertial sensors signals, such as accelerometer signals or gyroscope signals.
These sensors are obtained from a smartphone, which can be placed anywhere inside the vehicle and
may change its position during the recordings with no impact on the accuracy of the results as it will
be explained later.

As the hardware for each device is different, we will follow the recommendations given in [15] in
order to sample inertial signals at 5 Hz. The devices installed in smartphones are very heterogeneous,
therefore, signals could have empty samples. To overcome this limitation, signals are linearly
interpolated. These signals are low-passed filtered by using a third order Butterworth filter, in order
to erase spurious samples or high-frequency samples not related to driving maneuvers. In this
filtering, accelerometer signals are filtered using a cutoff frequency of 1 Hz, whereas gyroscope
signals are filtered using a cutoff frequency of 0.25 Hz since with gyroscopes we are less interested in
fast variations.

Accelerometer data is affected by Earth’s gravity force. This effect is estimated and removed from
the signals, as explained in [15], by applying a decomposition of the 3-dimensional signal into a vertical
projection, where the effect of the gravity is estimated, and another projection onto the horizontal
plane, where signals must be affected only by driving events. These two projections are presented
in Figure 3 for a given segment. In the upper plot, the vertical projection is shown, where the signal
represents the vertical force as, for instance, the gravity force. It is remarkable that the signal has an
offset at 9.8 m/s2 because gravity force is constant, variations around this offset represent the incidence
of other vertical forces (potholes, bumps, etc.). In the bottom plot, the horizontal plane projection is
represented, where all forces related to driving events are present. On this horizontal plane projection
there in no offset because no constant force affects the device measurement.
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3.2. Events Detection

As smartphone devices are not in a fixed position, manipulations of the devices are possible.
These manipulations could mask the signals referring to simple driving events. In order to clean
these from the signal, manipulations are detected when the gyroscope signal is too strong to be a
driving maneuver. These uncontrolled movements are removed from the signal and, then, the system
is recalibrated since the position of the device has changed, and the projections depicted in previous
section are obtained again.

For gyroscopes, once the manipulation events have been removed, and after verifying that there
are no stationary signals affecting them, the sum of the filtered energy is obtained as representative of
driving behavior.

Once the signal is clean, it is assumable that all high energy events are related to driving events
so a threshold over the driving noise level, being this noise level the signal when the car is moving
straight without accelerating nor braking, is set up. The calculation of noise threshold has been made by
means of the median. This threshold is selected in both horizontal plane projections of accelerometers
and total energy of gyroscopes, as explained in [15]. Once the horizontal plane projection signal of
accelerometer or the total energy of gyroscopes exceed the threshold, an event has been detected.

3.3. Events Classification

To categorize the driving style, we discover the existence of maneuvers, then we establish what
kind of maneuvers are performed and, finally, if these maneuvers are abrupt or not. Every event
detected is classified according four main categories: left turns, right turns, accelerations and braking;
although the types of maneuvers could be divided into more subcategories.

Other classification techniques could be used, but neural networks have proved to be one of the
most useful tools to classify activities with sensors. One of the important decisions for the training
of the network is to decide which input signals are to be used, selecting those ones coming from
the smartphone sensors, with the exception of GPS signal because it could increase considerably the
battery consumption of the device. To translate one driving event into one of the four maneuvers
mentioned above, we decided to simplify the model and use only six input signals; the components
[X, Y, Z] of the accelerometers and the components [X, Y, Z] of the gyroscope.

In Figure 4 an example of a driving maneuver is presented. The upper plot depicts the
accelerometer signals and the lower plot the gyroscope signals. The Z axis on accelerometer signals
represents the vertical component, besides integrating the offset from the gravity force. The X and
Y axes define the horizontal plane, thus variations of the signal on this place imply that there is a
driving event to be taken into account. The lower plot shows a variation on the Z axis of the gyroscope,
meaning that the car is turning around the vertical axis: a turn event is taking place.

First of all, we will begin with a database of signals previously labeled as left and right turns,
accelerations and braking. This database will be used as training input for a neural network of some
dense layers, with a fully connected layer and a softmax regression layer to the output to return
probabilities of the four previously mentioned categories.

For the training of the network, as “ground truth”, we use data from a set of car trips with
additional information from an OBD device installed in the car. This tool accurately recreates a vehicle
trip and analyzes user’s driving incidents measuring precisely accelerations to notify of drivers’ harsh
braking, acceleration and turn events. With this event information coming from the OBD, we have
been able to correctly classify and synchronize the maneuvers detected by means of the analysis
of signals from the smartphone, determining events of different length and type, according to the
aforementioned categories.

Between the different neural network options, we have decided to use a recurrent neural network
(RNN), in particular a Long-Short Time Memory (LSTM). These types of networks are appropriate for
time series modeling as is the case of accelerometer signals.
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Figure 4. (a) Example of a turn maneuver in a real driving detention. (b) Top plot represents signals
from accelerometer sensor. (c) Bottom plot represents signals from gyroscope sensor.

One of the main differences between a LSTM networks and a standard RNN, is that the nodes
of the LSTM networks are memory cells. The memory cells have self-recurrent connections and
three control gates: input gate (to write), output gate (to read) and forget gate (to reset). These gates are
the ones that will allow updating cell states in each step of time, storing possible temporal relationships
along time.

Therefore, detected maneuvers, from the analysis of smartphone sensor data (see example
Figure 5), will be introduced into the LSTM network as inputs in raw data, without any type of
preprocessing. In every time step t, a new input will be received to the network, at, and the memory
will be updated, st. Each input, at, will be captured at the same time instant, t, along six channels,
three coming from the accelerometers and three from the gyroscope. The memory will be updated
through the cell state, by aggregating the old memory (forget gate) and the new memory (input gate):
i.e., the forget gate will control what information will be kept (remembered) and what information will
be skipped (forgotten), whereas the input gate will control what information of the input signal (in
this time t) will be added. Finally, the output gate will decide what information will pass to the next
time step (t + 1). In summary, in each time t, an output of the network will be provided, calculated
upon the current input and previously processed information.

We have chosen an LSTM network of two stacked layers, with the output sequence of one layer
forming the input sequence for the next. Each LSTM layer has 64 neurons. When a large amount of
data is available, the results can be greatly improved when the number of stacked layers is increased.
However, this significantly increases the number of parameters and consequently the memory and
processing capacity required. Therefore, although we have performed the processing on a computer
equipped with a Nvidia Tesla K80 graphic card (instead of the smartphone), for practical reasons the
layers have been limited to two and the neurons by layer to 64, offering good results with reasonable
resource requirements. At the output of the recurrent network, there will be a fully connected feed
forward-layer to classify the input maneuvers into our four classes (left turns, right turns, accelerations
and braking) and a softmax layer, providing the probability in each time instant. To build the neural
network we have used the open source software library TensorFlowTM with Python.

To validate the results, cross-validation tests have been performed to ensure that the results are
independent of the partition between training and testing. In particular, a k-fold cross-validation was
performed, with a k = 3. Data in each iteration are divided into three subsets, using each subset as



Energies 2018, 11, 412 10 of 23

testing and others as training successively; and the final error will be the average of the errors obtained.
The number of drivers, routes and maneuvers used for such training is shown below (Table 2).Energies 2018, 11, x FOR PEER REVIEW  10 of 24 
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Figure 5. Smartphone sensor signals will be input of a neural network with a fully connected layer and
a softmax layer like outputs to provide probabilities associated to each maneuver.

Table 2. Training database.

Description Value

Drivers 68
Routes 22,194

Total maneuvers 16,029
Total left turn maneuvers 4649

Total right turn maneuvers 4907
Total braking maneuvers 3498

Total acceleration maneuvers 2975

With a total of 68 different drivers and an average of 326 routes by driver, we have considered that
it is a heterogeneous database for the tests. The final model uses an Adam optimizer for minimizing
the cross-entropy loss function, backpropagating the gradients from the softmax layer through to the
input layers. Finally, the validation accuracy has been around 79%.

Therefore, the raw signals coming from the sensors of mobile device will be captured, by means of
the process of detection of events suggested in the previous section we will capture events susceptible
of being turns (left or right) or accelerations or braking, being braking an acceleration event but with an
opposite sign. With the trained database we will evaluate what kind a maneuver is. However, not all
maneuvers are equally useful when mapping them in the model of energy consumption. Therefore,
we are going to focus on the abruptness of the events without making any difference between left and
right turns, and between accelerating or braking events. To categorize the maneuvers according to
their abruptness a value of abruptness is given obtained from the maximum of accelerometer energy
inside the event.
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3.4. Events Validation

In order to adjust the proposed mathematical model, several trips during 3 weeks where recorded
using a 2016 Nissan Leaf. In Figure 6 it is shown the installation of a Bluetooth On-Board Diagnosis II
(OBDII) scanner which was plugged into the Leaf’s OBD port to register several pieces of information
available from the CAR-CAN bus. A special software named LeafSpy Pro was used to analyze the
data read from the vehicle and store it in a .CSV file. The main registered variables were the following:

1. “Date/Time”
2. “Latitude and Longitude” in the following format: dd mm.yyyy
3. “Elv” Elevation in meters.
4. “Speed” in the km/h.
5. “Gids”, which indicates the energy in the Nissan Leaf battery (current capacity = 80 Wh.Gids)
6. “SoC” State of Charge (SoC) of the Traction Battery.
7. AHr” Capacity of the Traction Battery.
8. “Pack Volts” Traction Battery voltage
9. “Pack Amps” Traction Battery amperage, which is positive when the current is extracted from

battery (during driving), or negative when Regen or charging.
10. “Odo (km)” Odometer reading in kilometers.
11. “SOH” The State of Health of the Battery in percent.
12. “epoch time”, where one sample represents the time in seconds from 1 January 1970.
13. “Motor Pwr (100 w)” Drive motor power.
14. “Aux Pwr (100 w)” Power used by the auxiliary equipment (Lights, Radio, Navigation system,

rear defroster . . . ).
15. ”A/C Pwr (250 w)” Power used by the Air Conditioning System power.
16. “Gear” “7” Gear position (0 = not read yet; 1 = Park; 2 = Reverse; 3 = Neutral; 4 = Drive;

7 = B/Eco)
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4. Results

The main results of this work are included in this section. Initially, a model validation based on
one specific driving cycles: the EPA Urban Dynamometer Driving Schedule (UDDS) is presented.

Then, all registered trips were classified using a k-means scheme, splitting them in three different
categories representing: (1) smooth driving, (2) aggressive driving and (3) mild driving styles.
The consumption results of three representative trips (one for each cluster) are also shown (selected as
the closest trip to the cluster centroid).

4.1. Initial Model Validation

According to the official data [28], the nominal range of this vehicle is up to 107 miles (172.2 km)
under the 2017 LA4 driving cycle. The estimated range by the proposed model under the same driving
cycle is 170 km. The driving profile of the first two cycles and the initial evolution of the State of
Charge (SoC) are presented in Figure 7.
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4.2. Real Trip Validation

To validate the results with real conditions, we performed a total of 50 trips, and classified them
using a simple clustering scheme (k-means clustering) which can lead to three different categories:
smooth driving, including a reduced number of events (cluster 1); aggressive driving including a high
number of events (cluster 2); and mild driving, including an average number of events (cluster 3).

All trips were done using the same driving setup in the car to avoid driving biases. These trips
were made on the same circuit of 24 km (mix of city and roadways), varying the conditions of the
vehicle (increasing the weight) and the driving style.

After the clustering, we selected representative candidates of the clusters by selecting the ones
with closest distance to the centroid cluster, and comparing the model with real results. Then, we
selected three different representative trips of the clusters. These three trips were made consecutively,
on the same 24 km circuit, varying the conditions of the vehicle (increasing the weight) and the
driving style.

In order to evaluate only the influence of the driving behavior on the proposed model, the total
consumption and the consumption of all auxiliary loads have been recorded. Then the power used to
propel the vehicle has been obtained (subtracting the consumption of all auxiliary loads to the total
consumption).
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Figure 8a shows the total auxiliary loads during these three consecutive trips. This consumption
has two different components, the first one is due to the conventional auxiliary loads (navigation
systems, radio, etc.) and it remained almost constant at around 0.2 kW. The second component is
due to the HVAC System. This system was disconnected during the experiment at it is observed in
the figure, but the air conditioning was suddenly connected/disconnected during the second trip to
register this event, which is observed as a 0.25 kW peak at 3018 s.

Figure 8b shows the traction power and the total auxiliary loads. It is observed that the traction
power is variable depending on the driving conditions.
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Figure 8. (a) Total auxiliary loads (b) Traction power and Auxiliary power (in [kW]) for the three
consecutive trips.
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Figure 9 presents the different events detected by the app. Blue stems represents acceleration/braking
events, orange-brown stems indicate turn events (to the left or to the right) and finally, green stairs
shows the stop periods. All stems signals are weighted by their total energy, therefore, the longer the
stem, the greater the contained energy and the higher their abruptness.
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4.2.1. Cluster 1 (Smooth Ride) Representative Trip

This initial trip was performed with a driver and a single passenger (Mp = 160 kg). Figure 10
shows the detected events (Figure 10a) and the speed and elevation profile (Figure 10b) for this first trip.Energies 2018, 11, x FOR PEER REVIEW  15 of 23 
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Figure 10. (a) Detected events during Trip #1 (b) Speed and elevation profiles during Trip #1.

The results are presented in Figure 11, where the elevation profile is considered in both simulations.
Figure 11a presents the result of the first simulation scenario, where the driving events were not initially
considered in the model. It is observed that the energy consumed by the simulation model is 2.497 kWh
while the real energy consumption registered was 2.5575 kWh. The average consumption simulated
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was 102.9539 Wh/km, while the average consumption registered was 105.4008 Wh/km. The mean
square error was 0.4182.

Figure 11b presents the result of the simulation considers both driving events (acceleration and
turning events). It is observed that the energy consumed by the simulation model is 2.588 kWh while
the real energy consumption registered was 2.5575 kWh. The average consumption simulated was
106.6572 Wh/km, while the average consumption registered was 105.4008 Wh/km. The mean square
error was 0.191.
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4.2.2. Cluster 2 (Aggressive Driving) Representative Trip

This trip included an additional passenger (incrementing the total weight of the car compared
to the former trip, Mp = 230 kg). Figure 12 shows the detected events (Figure 12a) and the speed and
elevation profile (Figure 12b) for this second trip).
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Figure 12. (a) Detected events during Trip #2 (b) Speed and elevation profiles during Trip #2.

The results are presented in Figure 13, where again, the elevation profile has been considered
in both simulations. Figure 13a presents the results of the first simulation scenario, which does not
include the driving events, and it is observed that the energy consumed by the simulation model is
3.0054 kWh while the real energy consumption registered was 3.565 kWh. The average consumption
simulated was 123.389 Wh/km, while the average consumption registered was 146.3635 Wh/km.
The mean square error was 0.44229.

Figure 13b shown the response of the proposed consumption model during the second simulation
scenario (including all detected driving events, shown in Figure 12a). It is observed that the energy
consumed by the simulation model is 3.391 kWh while the real energy consumption registered was
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3.565 kWh. The average consumption simulated was 139.22 Wh/km, while the average consumption
registered was 146.3635 Wh/km. The mean square error was 0.4422.
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4.2.3. Cluster 3 (Mild Driving) Representative Trip

The initial condition of this trip is equal to the previous one, with the same number of passengers
(one driver and two passengers, Mp = 230 kg). Figure 14 shows the detected events (Figure 14a) and
the speed and elevation profile (Figure 14b) for this third trip).
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Figure 14. (a) Detected events during Trip #3 (b) Speed and elevation profiles during Trip #3.

The final results are presented in Figure 15, where both simulation scenarios include the elevation
profile. In Figure 15a the driving events have not been considered, while in Figure 15b all driving
events for the third trip are included in the model. It is observed, in the first scenario (without
driving events), the energy consumed by the simulation model is 2.7758 kWh while the real energy
consumption registered was 3.1775 kWh. The average consumption simulated was 113.0258 Wh/km,
while the average consumption registered was 129.3805 Wh/km. The mean square error was 0.4731.

During the second scenario (considering all driving events shown in Figure 14a), the energy
consumed by the simulation model is 2.9812 kWh while the real energy consumption registered
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was 3.1775 kWh. The average consumption simulated was 121.3863 Wh/km, while the average
consumption registered was 129.3805 Wh/km. The mean square error was 0.12482.
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5. Conclusions

Climate change is currently one of the main challenges facing the international community.
It is a phenomenon whose environmental, economic and social causes and consequences, intimately
linked with the current model of economic development, require new solutions that allow a better
management of energy. The progressive introduction of electric vehicles is one of the key factors in the
change of the energy model, and accurate information on consumption and use models, is essential to
correctly assess its impact. Moreover, the application of Big Data techniques to this field leads to a
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better comprehension of the context, so the acquisition of the greatest amount of information is a key
process and smartphones are a perfect fit for this purpose.

The use of smartphones sensors has resulted in a simple way to obtain info from the vehicle,
including abrupt driver behavior events which are useful to improve the consumption model of
electrical vehicles, and allow a personalized estimation of range without involving intrusive systems.
They allow the solution to be universalized without being linked to specific hardware that represents a
barrier to entry.

Thus, an accurate, and efficient energy consumption model has been implemented providing
information for real-time eco-driving systems that can enhance the energy efficiency of EVs.
The proposed model can be easily integrated into richer modeling frameworks including different
levels of transport electrification and traffic simulation.

With the presented application and the training of the neural networks with more than 22,000 trips
it was demonstrated that it is possible to classify abrupt events into left-right turn events, acceleration
events and braking events. A value of abruptness can be also assigned to each event, which is useful
for such personalized energy consumption models. In any case, it opens the field for future research
regarding the impact of these kind of events and driving behaviors on the traffic flow. Concerning
the validation with the real consumption, representative trips were chosen to be simulated by the
proposed model.

The results show that including the driving behavior in this model can improve the accuracy
by up to 50%. Three different scenarios were simulated, corresponding to three driving behaviors.
In the first scenario (smooth ride), the total error between the simulated consumption and the real
registered was reduced from 2.36% (if the abrupt events were not considered) to 1% (if the events were
considered). In the second scenario (aggressive ride), the total error was reduced from 15.7% to 4.8%.
Finally, in the last scenario (mild ride), the total error was reduced from 12.6% to 6.17%. The accuracy
of the model is reduced when the driving style become more aggressive. Even in this more aggressive
condition, the simulation that includes the events modeling provides a better response than the model
that does not include such events.
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