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Abstract: Energy produced from plant residue composting has stimulated great interest in heat
recovery and utilization. Composting is an exothermic process often controlled through temperature
measurements. However, energy analysis of the overall composting system, especially the rotary
bioreactors, is generally not well known and very limited. This study presents detailed energy
analysis in a laboratory-scale, batch-operated, rotary bioreactor used for composting tomato plant
residues. The bioreactor was considered as a thermodynamic system operating under unsteady state
conditions. The composting process was described, the input generated and lost energy terms as well
as the relative importance of each term were quantitatively evaluated, and the composting phases
were clearly identified. Results showed that the compost temperature peaked at 72 h of operation
reaching 66.7 ◦C with a heat generation rate of 9.3 W·kg−1 of organic matter. During the composting
process, the accumulated heat generation was 1.9 MJ·kg−1 of organic matter; only 4% of this heat
was gained by the composting material, and 96% was lost outside the bioreactor. Contributions
of thermal radiation, aeration, cylindrical, and side-walls surfaces of the reactor on the total heat
loss were 1%, 2%, 69%, and 28%, respectively. The information obtained is applicable in the design,
management, and control of composting operations and in improvement of bioreactor effectiveness
and productivity.
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1. Introduction

In Saudi Arabia, tomato crop represents 15.5% of the total cultivated area, producing about
0.5 million tons per year, and greenhouse production represents 58% of the greenhouse total vegetable
production, with a production area of 1550 hectares, yielding about 0.2 million tons per year [1]. Typical
vegetable greenhouse operations produce 40–60 tons of organic residues per hectare per year [2].
Accordingly, the greenhouse industry in Saudi Arabia currently produces over than 0.3 million tons
of organic wastes per year [2]. There is a considerable amount of tomato plant residue, as a result
of trimming and harvesting the crop that must be disposed-off properly [2,3]. Composting of plant
residues is considered to be the most desirable organic waste management method [3]. Traditional
composting systems are open, include agitated (windrow) and static solids beds; they require a large
space and longtime of composting process (i.e., 1–2 years, on average) [4]. Enclosed or in-vessel
systems use fixed or rotary bioreactors for composting have been developed. These systems can
process large amounts of waste without taking up much space, and they offer good control of the
environmental conditions such as temperature, moisture content, and airflow rate [5]. Rotary drum
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bioreactors are considered to be an efficient and promising technology, as this type of composters are
enclosed, provide agitation, aeriation, and compost mixing, and produce a consistent and uniform end
product without any odor or leachate related problems [6]. In which the composting time is drastically
reduced to 2–3 weeks [7]. The majority of agricultural residues are generated at the end of the season at
once. In addition, in a continuous system, the possibility of mixing fresh material with composted one
can occur. Therefore, in agricultural practice, a batch operating systems is preferred to insure product
hygiene [2]. Previous studies used rotary drum bioreactors, and the drums were turned manually
from time to time during composting process. Therefore, the effect of turning frequency (6, 12, 18,
and 24 h interval times between two turning operations) on the stability of compost and composting
performance was examined [8]. However, the composting performance of a continuously rotating
bioreactor (at low speeds) has never been evaluated in previous studies.

Organic waste composting produces a considerable amount of heat due to heat liberation from
microbial metabolic activity, and an elevated temperature of the system (70–90 ◦C) may be achieved
during composting of municipal solid waste [9,10]. Therefore, understanding and exploring energy
generation and transfer phenomena during composting is essential for controlling, managing and
optimizing the composting processes. On the other hand, Rodriguez, L. et al., (2012) [11] reported
that by optimizing the operating conditions during the thermophilic stage, the process could be sped
up and useful compost could be provided in less time; therefore, it is important to optimize the
operating conditions to reduce the composting time as much as possible [11]. Moreover, temperatures
from 52 to 60 ◦C are considered to maintain the greatest thermophilic activity in composting systems;
this range of temperatures reduces weed seed viability and suppresses pathogens activity during
composting [7,8]. Accordingly, quantifying the generated and lost energy terms during composting is
the key factor for managing and improving bioreactor performance. In the previous literature, a limited
number of studies have investigated the potential energy content of compost. All focused on the
in-vessel fixed bioreactors, and some of them have calculated the generated heat during composting.
For example, the heat produced during composting of wheat straw was calculated to be 17.06 MJ·kg−1

of organic substances [12], during composting of poultry droppings was 12.8 MJ·kg−1 of organic
substances [13], during composting of tomato plant residues-wood shavings-municipal solid mixture
was 570 kJ·kg−1 of degraded dry mass [14], during composting of poultry manure-wood shavings
mixture was 16–19 MJ·kg−1 of volatile solid of mixture [15], during composting of municipal waste
was 1.136 MJ·kg−1 of degraded matter [16], and during composting of green waste, industrial sludge,
liquid waste, and sewage was in the range from 7 to 10 MJ·kg−1 of organic matter degraded [17].
Even though previous studies have focused on estimating the heat generation in fixed bioreactors,
the heat losses during the composting process have not received much attention. Bach et al. [18]
reported that, the heat loss from the reactor walls was the largest term in the laboratory-scale bioreactor,
while heat removal by water evaporation was the largest in the commercial bioreactor. Ghaly et al. [14]
reported that the heat losses from the side walls of bioreactors were accounted to be 30–90% of the
total heat generated based on the insulation effectiveness of the bioreactor. The heat generation rate
during the composting process is a function of chemical, physical, and biological properties of the
composted material; therefore, the previous studies reported wide variations in the amount of heat
(0.5–20 MJ·kg−1) released from organic material decomposition. Also, wide variations in the amount
of heat losses (30–90% of heat generation) were reported [14–23]. Moreover, previous studies dealt
with fixed or manually rotated (from time to time) drum composters to account for the amount of heat
generation and/or losses during composting process. However, information on the heat generation
and losses during the composting process of a continuously rotating (at low speed) bioreactor are still
missing. Such information is essential to maintain the composting process at optimum temperature and
to evaporate moisture from solid reactants to produce compost at low moisture content. In addition,
quantifying the energy terms during the reaction process of this type of composter is necessary to
reduce the heat losses and to increase the production rate of compost within a short time.
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Accordingly, the objective of this study is to provide thermal analysis of composting tomato
plant residues in a laboratory-scale rotary drum bioreactor (i.e., continuously rotating at low speed of
3 rpm) and to evaluate the relative importance of each energy term relating to the total generated heat.
The analysis will be performed in unsteady state conditions. Such information will be helpful in the
proper design and optimum operation of rotary drum bioreactors.

2. Materials and Methods

2.1. Plant Residues

Greenhouse tomato fresh plant residues (leaves, stems, and some green and damaged fruits)
were collected from various fields in Riyadh, Saudi Arabia. The average moisture content (MC) of
the collected residues was about 90%. Then, they were spread out on the ground to dry for three
days (MC 60%). The residues were chopped using a gas motor–powered shredder (model FYS-76
Shredder, Mainland, Zhejiang, China) to promote better aeration and moisture control. Grinding was
performed to decrease the particle size to about 1 cm in order to boost the microbial degradation
process. The grinded residues were left to dry out for an additional two consecutive days on the floor
(MC 15%), then transported to the Biological Lab at the Research Station, Agricultural Engineering
Department, King Saud University, Riyadh, and placed inside a refrigerator at 4 ◦C until used.

2.2. Experimental Apparatus

Three identical pilot scale rotary drum bioreactors (each with a volume of 200 L) were constructed
in the laboratory at the Research Station, Agricultural Engineering Department, King Saud University,
(Riyadh, Saudi Arabia, 46◦ 47′ E, longitude and 24◦ 39′ N, latitude). Each bioreactor was designed
to provide a space for 50 kg (wet bases) of compost mixture plus 25% of the volume as a head space.
Each bioreactor is a steel barrel with an inner diameter of 585.0 mm, length of 914.4 mm, and wall
thickness of 0.9 mm. In each bioreactor, an opening door of 50× 40.5 cm was made for loading, unloading,
sampling, and cleaning purposes. A rubber gasket lining was fixed on the inner side of each opening door
to keep it tight and to prevent any leakage. The outer surfaces of each reactor were insulated with a layer
of 25 mm-thick glass wool blanket. Each reactor rotates horizontally around a fixed axis (a steel tube,
50 mm outer diameter) at 3 rpm by using a 0.25 HP electric motor (model no. 220-380-3, Zhejiang, China).
The perimeter of the tube in each reactor includes on-line holes distributed longitudinally in the upper
surface of the tube for aeration purposes. Layout dimensions for the constructed rotary drum reactor,
installed on a steel-angle frame with the rotating system, are illustrated, not to scale, in Figure 1.
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Figure 1. Schematic diagram showing two views of the constructed rotary drum bioreactor system;
dimensions in cm, not to scale.
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2.3. Experimental Procedure and Measurements

For aeration in each reactor, compressed air was supplied continuously at a flow rate of 0.005 m3·min−1

from a reservoir (10 bar, 0.2 m3 volume) connected with an air compressor (Airmac, CRM203, 2.2 kW,
Parkinson, Australia). The compressed air was supplied to the horizontal tube that the reactor rotates
around. The compressed air passes through a flow meter that can regulate the flow rate of air in the range
of 0.001–0.025 m3·min−1, and then to the compost via on-line holes that were made in the upper side of the
horizontal tube (Figure 2a). The temperature of the compost (Tc) was measured using four thermocouple
sensors fixed longitudinally at four locations below the horizontal tube (see Figure 2b). In the tube, the holes
for aeration were on the upper side, while the thermocouple sensors were fixed on the lower side to be
far enough from the inlet air to minimize the negative influence of air on the measured temperature.
Temperatures of the outer surface of insulation (Ts) and the outer and inner surfaces of the barrel (To and
Ti) were measured using thermocouple sensors attached properly to the surfaces. The thermocouples used
were copper-constantan, (type-T, Cole Parmer, Chicago, IL, USA). The wires of the four sensors used to
measure Tc were passed inside the tube to the outside and connected to a portable data logger (Testo 177-T4
V01-02), fixed at the end of the tube, to record the measured temperatures. The wires of the thermocouple
sensors used to measure Ti, To, and Ts were connected to another portable data logger (Testo 177-T4
V01-02) fixed at the outer surface of the reactor. The ambient temperature (Tam) and relative humidity
(RHam) were measured using Thermo-hygrometer DMA033 (LSI-Lastem, Milano, Italy). The measured
parameters were recorded every 10 seconds, averaged every 10 min, and saved in the data loggers.
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Figure 2. Cross sectional views of the bioreactor showing: (a) the air inlet and outlet ports, the horizontal
tube including the aeration ports and the thermocouples supports, and the energy terms cross the
suggested control volume, and (b) thermocouple sensor locations in the bio-reactor.

Tomato residues and chicken manure (20% dry weight) were mixed properly. At the beginning
of the experiment, moisture content of the mixture was adjusted to be about 60–65% and C/N ratio
at about 30:1. After that, the mixture was transferred to the three bioreactors (each was filled up
to 75% of the total volume) initiating the active phase of the composting process. The active phase
continued until the bioreactor average temperature dropped below 35 ◦C. Compost materials were then
transferred outside the bioreactors and left for curing for an additional 30–60 days. During the curing
phase, only moisture content was monitored to ensure the completion of the degradation process.

2.4. Energy Analysis

The bioreactor was considered as an open thermodynamic system in the un-steady state condition;
the compost-humid air mixture in the bioreactor enclosed by a control volume suggested being the size
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of the space inside the bioreactor (Figure 2a). To describe the energy exchange between the different
components of the bioreactor and to quantify the different energy terms, energy balance was applied
to the control volume under the unsteady-state condition, assuming the following: (i) The moist air
and the compost inside the reactor are well mixed and characterized by an average temperature, Tc.
(ii) The thermophysical properties of the compost and moist air are equivalent properties independent
of temperature, and the pressure inside the bioreactor is the atmospheric pressure. The air enters
the bioreactor at the atmospheric conditions (Tam, RHam) and exits nearly saturated (Tc, RH ~0.95).
(iii) Parameters in the upcoming analysis are time dependent and to simplify the expressions, time t is
omitted from all the symbols hereafter.

The energy balance equation that describes the different mode of energy crossing the boundary of
the control volume (Figure 2a) is given by

Ein + Qgn − Eout =
d
dt
(IEc) (1)

where Ein is the rate of energy input to the control volume (W), Qgn is the generated energy rate due
to the metabolic activity of compost (W), Eout is the rate of outlet energy leaving the control volume
(W), and IEc is the internal energy of compost, gained or lost (W). Descriptions of the energy terms in
Equation (1) are as follows:

Ein =
.

ma Iam and Eout =
.

ma Ie + Qloss (2)

where Iam is the enthalpy of the ambient air (kJ·kg−1),
.

ma is the flow rate of ambient air entering
and leaving the bioreactor (i.e., used for aeration in kg·s−1), and Ie is the enthalpy of moist air
(kJ·kg−1), nearly saturated, exiting from the reactor at an equivalent temperature equal to the compost
temperature (Tc). The enthalpy of air at inlet and exit of the bioreactor (i.e., estimated at Tam and Tc) is
reported by Abdel-Ghany et al. [24] as

I = (1.007T − 0.026) + ω(2501− 1.84T), T in◦C (3)

In Equation (3), the absolute humidity (ω) in kg of water vapor per kg of dry air is given by

ω = 0.623
e

(101.325− e)
, and e = RH × es,T (4)

where e and es,T are the partial pressure of water vapor in the air and in the saturated air (kPa), both at
a certain temperature T (◦C) and at the atmospheric pressure. Value of es,T (in kPa) is reported by
Abdel-Ghany et al. [24] as

es,T = Exp
(

16.78T − 116.9
T + 273.3

)
(5)

The rate of change of the internal energy of compost, d/dt[IEc], in Equation (1) over a small time
interval, ∆t, is given by

d
dt
(IEc) = mcCpc

dTc

dt
= mcCpc

∆Tc

∆t
(6)

where mc is the mass of compost (kg), and Cpc is the specific heat of compost at constant pressure
(J·kg−1·◦C−1). The convective-radiative heat loss (Qloss in W) from the outer surface of the bioreactor
to the surrounding air (Equation (2)) is given by

Qloss = Qcylinder + Qsid−wall = Ucy Acy(Tc − Tam) + Usw Asw(Tc − Tam) (7)

where Acy and Asw are the areas of the outer surfaces of the cylindrical part and of the side walls
of the bioreactor (m2) and Ucy and Usw are the overall heat loss coefficient (W·m−2·◦C−1) of the
cylindrical part and of the side walls. Ucy and Usw are equal to the inverse of the equivalent heat
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transfer resistances (1/Req-cy and 1/Req-sw) between the compost having a temperature, Tc and the
outside ambient air having a temperature, Tam.

The heat transfer resistances between the compost and the ambient air (Figure 3) include (i) the
thermal radiation resistance (Rr) between the outer surface of the bioreactor and the ambient air, (ii) the
convective resistance (Rco) between the outer surface of the bioreactor and the ambient air, (iii) the
conductive resistance (Rs) through the insulation thickness, (iv) the conductive resistance (Ro) through
the drum steel-wall thickness, and (v) the convective resistance (Rci) between the compost-air mixture
and the inner surface of the bioreactor. Diagrams of the resistances networks for the cylindrical part
and side walls part are illustrated in Figure 3a,b. Diagrams for the elevation and side view cross
sections to show the dimensions layout, radii, and length of each part in the bioreactor are illustrated
in Figure 2a,b. The thermal resistances for the cylindrical part in Figure 3a are defined as follows:

Rr =
1

hr(2πrsL)
, Rco =

1
hco(2πrsL)

, Rci =
1

hci(2πriL)
(8a)

Ro =
ln(ro/ri)

2πKsL
, Rs =

ln(rs/ro)

2πKbL
(8b)

In Equation (8a), hr, hci, and hco are the radiation heat transfer coefficient between the outer surface
of the bioreactor and ambient air, the convective coefficient between the compost-moist air mixture
and the inner surface of the bioreactor, and the convective coefficient between the outer surface of
the bioreactor and ambient air (W·m−2·◦C−1), respectively. The measured temperatures, Ti and Tc,
were almost similar during the experiment; therefore, the convective resistance at the inner surface of
the bioreactor can be neglected (Rci = 0 and Rwi = 0, Figure 3a,b). In Equation (8-b), Ks and Kb are the
thermal conductivity of the drum material (steel) and of the insulation (glass wool) in W·m−1·◦C−1.
The dimensions ri, ro, rs, and L are illustrated in Figure 2a,b.
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compost-moist air mixture and the outside ambient air (a) through the cylindrical part and (b) through
vertical circular side walls.

The outer surface of the reactor exchanges thermal radiation with the inside surfaces of the
laboratory building; by assuming these surfaces are at ambient temperature, Tam, the radiation heat
transfer coefficient, hr in Equation (8a), is given by Reference [25] as
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hr = εsσ(Ts + Tam)
(

T2
s + T2

am

)
(9)

where εs and σ are the emissivity of the outer surface of the bioreactor and Stefan-Boltzmann constant
(5.6696 × 10−8 W·m−2·K−4), respectively. On the outer surface of a rotating bioreactor, a mixed
convection mechanism (natural and forced convection) is expected. Several correlations are reported
in the literature to determine the convective coefficient (hco) on the outer surface of high speed rotating
cylinders, which are not suitable for a bioreactor rotating at low speeds. The most suitable correlation
is reported by Guen et al. [26] and used to estimate hco on the outer surface of a rotary drum reactor
used for asphalt materials production; this correlation is in the following form:

Nu =
hcoLc

Kair
= 0.135

[
0.5Re2

Ω + Re2
∞ + Gr

]1/3
(10)

where Lc is the circumferential length on the reactor surface (Lc = 2π·rs) in meter. In the laboratory,
the air stream velocity is very low, and the free stream Reynolds number, Re∞ in Equation (10)
was assumed to equal zero. The rotational Reynolds number is ReΩ = 2Ωr2

s /υ, in which Ω is the
angular velocity of the bioreactor and υ is the kinematic viscosity of air. Gr is Grashof number on
the outer surface of bioreactor, estimated at the mean temperature (Tam + Ts)/2. To examine the
suitability of Equation (10) to be used for estimating hco in the present analysis, values of hco were
estimated, during the experiment, by using Equation (10) and compared with those estimated by using
correlations for a stationary reactor, reported in Reference [14] as

hco = 1.32
(

Ts − Tam

πD

)0.25
(11)

where D is the bioreactor diameter (2rs, m). Equation (11) is for the convective coefficient on the outer
surface of the horizontal cylindrical part of the bioreactor. During the composting process, the time
course of hco values estimated by using Equation (10), at different rotational speed of reactor (i.e., 5, 10,
30, and 50 rpm), are illustrated in Figure 4 in comparison with those estimated from Equation (11) for
the fixed reactor (rpm = 0). Results in Figure 4 indicated that Equation (10) is valid only for bioreactors
rotating at a speed of ≥50 rpm. However, for bioreactors operating at low speed (rpm <50), the natural
convection relation (Equation (11)) is recommended to estimate hco. This is because the mixed or
forced convection mechanism should always result in hco values being much higher than that of the
natural convection mechanism. To this end, Qcylinder can be determined by calculating Ucy as 1/Req-cy

(Figure 3a). To determine the convective-radiative heat loss from the side walls (Qside-wall), the value of
Usw was calculated as 1/Req-sw and the resistance diagram is illustrated in Figure 3b. As in Equation (11),
the convective coefficient at the outer surface of the side walls is given by Reference [14] as

hwo = 1.42
(

Ts − Tam

D

)0.25
(12)

The bioreactor energy balance, Equation (1), is rearranged to be in the form

Qgn = ∆IEc + Qloss + Qair (13)

where Qloss is the heat losses by radiation and convection (from the cylindrical surface and circular
vertical side walls of the bioreactor), (Qloss = Qside-wall + Qcylinder). The heat loss with the exhausted air
during the aeration process (Qair) was estimated as

.
ma(Ie − Iam) and the radiation heat loss (Qrad) can

be separately estimated as Qrad = hr (Asw + Acy)·(Ts − Tam); ∆IEc is the rate of change of internal energy
of compost. The energy terms in Equation (12) were calculated at each time interval by substituting the
relevant energy terms in Equations (2)–(11) into Equation (13). The input parameters to the calculation
were the measured values of Tam, Tc, Ts, RHam, and the bioreactor dimensions and the thermophysical
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properties of air, compost, insulation, and bioreactor materials. The thermophysical properties were
assumed to be constant values independent of temperatures. This information is listed in Table 1.
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Figure 4. Convective heat transfer coefficient at the outer surface of the reactor cylinder, hco (W·m−2·◦C−1)
estimated for the mixed convection (Equation (10)) and natural convection (Equation (11)) mechanisms.

Table 1. Parameters used in the calculation of energy terms.

Parameter Value Unit

Blanket insulation
thickness, (rs − ro) 0.025 m

thermal conductivity, Kb 0.04 W m−1 ◦C−1

width, L 1.0 m
Steel drum

diameter, 2ro 0.585 m
Length 0.914 m

thickness, (ro − ri) 0.007 m
specific heat, Cps 490 J·kg−1·◦C−1

thermal conductivity, Ks 46.0 W·m−1·◦C−1

Compost material
mass, mc 51.3 kg

specific heat, Cpc 1600 J·kg−1·◦C−1

Aeration
mass flow rate,

.
ma 0.005 m3·min−1

specific heat, Cpa 1007 J·kg−1·◦C−1

density, ρ 1.177 Kg·m−3

kinematic viscosity, γ 1.57 × 10−5 m2·s−1

thermal conductivity, Ka 0.0265 W·m−1·◦C−1

3. Results and Discussions

3.1. Temperatures Profile

The source of heat in the bioreactor is generated due to the compost metabolic reactions. This in
turn increases the temperatures of the bioreactor components. The time course of the measured
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temperatures in the bioreactor (i.e., compost, Tc, inner surface of bioreactor, Ti, outer surface of
insulation, Ts, and ambient, Tam) are illustrated in Figure 5. The temperature of compost started to
increase rapidly after the creation of composting conditions. Because of the fast breakdown of the
available organic matters and nitrogenous compounds throughout microbial activities, the temperature
of compost (Tc) speedily increased to about 53 ◦C on the first two days and reached its maximum value
(66.7 ◦C) after 72 h of operation. Then, it continued at higher than 60 ◦C for more than 12 h. This result
was in accordance with results reported by Ghaly et al. [14] and Petric [27] for composting tomato plant
residues. In Figure 5, the inner surface temperature of the bioreactor (Ti) is nearly equal to Tc during
the first four days of operation, and after that, the maximum difference was about 4 ◦C at the end of
operation. Accordingly, the internal heat transfer resistance, at the inner surface of the bioreactor (Rci,
in Equation (8a)) was neglected without jeopardizing the accuracy of the present analysis.
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inner surface of reactor (Ti) and compost (Tc) during the composting process.

3.2. Heat Generation and Losses

The rate of heat generated during the composting process (W·kg−1 of compost) and the
accumulated heat (kJ·kg−1) are illustrated in Figure 6 during the 107 h of composting time. As the heat
was generated, the compost temperature (Tc) increased reaching 66.8 ◦C at the peak time. The peak of
heat generation rate was 9.3 W·kg−1 of organic matter reached after 72 h of the composting process.
In total, an amount of heat totaling 1.9 MJ per kg organic matter was generated during composting.
Evolution of heat generation in Figure 6 depends on several parameters controlling the reaction
process such as: aeration effectiveness, the humidity distribution in the compost, oxygen and nitrogen
concentration, and so on. In Figure 6, reduction in the heat generation rate was observed after 18 and
after 48 h of operation and the drastic reduction was observed after the temperature of compost
(Tc) reached 66.8 ◦C (cooling phase). This limit of temperature may have exceeded the optimum
temperature for thermophilic microorganisms; therefore, microbial growth and activity declined.
As a result, the heat production rate as well as the compost temperature drastically decreased. Another
reason would be that the consumption of bioavailable nutrients by the microorganisms reduced the
metabolic reaction [14].
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According to Clark et al. [28] and Miller [29], the heat losses in laboratory-scale bioreactors are
expected to be high due to the higher surface area to volume ratio. The convective-radiative heat loss
from the outer surface of bioreactors was accounted to be in the range of 60–90% of the total heat
losses [13,14,30]. For the present analysis, the time course of different modes of energy rate loss from
inside to outside the reactor is illustrated in Figure 7. This figure showed about 96% of the generated
heat was lost to outside the bioreactor via convection, radiation, and aeration processes. Due to the
high surface to volume ratio, most of the heat loss (97% of the total loss) was lost by convection
from the outer surface of the bioreactor (69% via cylindrical body and 28% via vertical side walls).
However, only 2% of the total heat loss was lost with the exhausted gas during the aeration process.
The minor thermal radiation loss (1% of the total loss) is because the bioreactor’s surroundings were
the laboratory walls with an assumed equivalent temperature equal to the ambient air temperature
(Tam). However, for bioreactors operating outdoors, the outer surface of the bioreactor would exchange
thermal radiation with the sky dome (with an equivalent temperature, Tsky, which is much lower
than the ambient temperature, Tam). In this case, the contribution of thermal radiation loss would
be much higher than the radiation loss from the indoor operated bioreactors. During composting
process, the rate of change of the internal energy of compost (∆IEc = mcCpc(dTc/dt)) was linked
to the heat generation rate (Qgn) and is illustrated in Figure 8. The rate of change of the internal
energy strongly depends on the variation of heat generation as well as the compost temperature.
During the temperature raise period (the active phase), the internal energy of compost increased
(energy gain, positive, +ve), while in the cooling phase period, the internal energy decreased (negative,
–ve). Therefore, the heat gained by the compost accounted for only 4% in the form of internal energy.
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3.3. Composting Phases

Under optimal conditions, beyond the lag period, composting proceeds from the initial state
(∼=10 h) through three phases as illustrated in Figure 9. These phases are (i) the moderate-temperature
phase, (Tc = 25–45 ◦C), which lasted for about one day, (ii) the high-temperature (thermophilic) phase,
which lasted for two days, and (iii) the cooling and maturation phase, which lasts from one day in
the bioreactor (the cooling phase in the present experiment) to several days outside the bioreactor
for maturation process. Results in Figure 9 show that time consumed in the high-temperature phase
could be significantly reduced to about two days compared to several days or even several months in
other composting methods. However, during the thermophilic phase the temperature remained above
55 ◦C for a period of 36 h that may enough to satisfy the regularity requirement for the destruction
of pathogens. This is because compost temperatures from 52–60 ◦C are able to maintain the greatest
thermophilic activity in composting systems and reduce weed seed viability and suppression of
pathogens activity [7,8].
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4. Conclusions and Recommendation

Thermal analysis was applied to batch-operated, laboratory-scale rotary drum bioreactors used for
composting tomato plant residues. The analysis was performed with a control volume, suggested to be
on the inner surfaces of the bioreactor containing the compost material-moist air mixture, under unsteady
state thermal conditions. The heat generated from the degradation of the organic matter raised the
compost temperature, Tc. According to the evolution of Tc, the three main phases encountered in the
composting process (lag, active, and maturation phase) could be clearly identified. The maximum
heat production rate (at Tc = 66.7 ◦C) was 9.3 W·kg−1 of organic matter; the rate of heat production
drastically decreased after the temperature, Tc, had reached 66.7 ◦C due to the decline in microbial
growth and activity. The total amount of heat generated during the composting process was 1.9 MJ
per kg organic matter; 94% of this heat was lost to outside the bioreactor, and only 4% gained by the
compost material in the form of internal energy stored. The bioreactor was operated inside the laboratory.
Therefore, the radiation loss was negligible (1% of the total heat loss). However, for bioreactors operating
outdoors, radiation loss to the sky dome would be much higher and cannot be neglected. The heat
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loss with the exhaust gas accounted for 2% of the total heat loss because the aeration rate was low.
Therefore, the aeration system needs to be improved to provide proper aeriation, which stimulates
microbial breakdown of organic matter. This, in turn, would significantly reduce the production period.
For a continually rotating drum (as in the present case), natural aeriation is suggested by making holes of
appropriate size on the drum surface. The pressure difference between inside and outside the rotating
drum will induced aeriation. The heat losses via convective from the outer surface of the bioreactor was
extremely high (94% of the total heat generated). These losses can be reduced significantly by increasing
the insulation effectiveness—for example, by applying reflective painting to the inner and outer surfaces
of the drum, and by using radiation shields with insulation blanket. This would quickly increase the
compost temperature (Tc) raise and significantly reduce the production time. Optimization is needed to
keep Tc over 55 ◦C as long as possible to enhance the reaction process and to suppress pathogens activity.
Moreover, instead of the constant rotating speed (3 rpm) used in the present study, the effect of different
speed on the composting process should be examined.
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