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Abstract: In order to study switching transients in an offshore wind farm (OWF) collector system,
we employ modeling methods of the main components in OWFs, including vacuum circuit breakers
(VCBs), submarine cables, and wind turbine transformers (WTTs). In particular, a high frequency (HF)
VCB model that reflects the prestrike characteristics of VCBs was developed. Moreover, a simplified
experimental system of an OWF electric collection system was set up to verify the developed models,
and a typical OWF medium voltage (MV) cable collection system was built in PSCAD/EMTDC based
on the developed models. Finally, we investigated the influences of both the initial closing phase
angle of VCBs and typical system operation scenarios on the amplitude and steepness of transient
overvoltages (TOVs) at the high-voltage side of WTTs.

Keywords: vacuum circuit breaker (VCB); switching transient; prestrikes; high frequency;
PSCAD/EMTDC; offshore wind farm (OWF)

1. Introduction

Wind is an intermittent and random source of energy that causes vacuum circuit breakers (VCBs)
to frequently switch wind turbine generators (WTGs), leading to a high possibility of switching
overvoltages (SOVs) [1]. SOV, which exerts a significant impact on the insulation of electrical equipment
in offshore wind farms (OWFs), is one of the main causes of transformer insulation failures. Therefore,
it is necessary to study SOVs occurring in cable collection systems in OWFs, as this is important for the
selection of appropriate protection measures and for the safety and reliability of OWFs.

There are already many studies that focus on SOVs of OWFs. The authors of [2–4] discussed
the similarities and differences of transient overvoltages (TOVs) occurring in different systems,
namely, OWFs, onshore wind farms, and industrial distribution systems; TOVs produced in
medium voltage (MV) cable collecting systems of OWFs were also analyzed. An OWF experimental
platform was set up in the laboratory [5–7], and, when prestrikes and reignitions occurred in VCBs,
the measured overvoltage waveforms were used to establish simulation models that could reflect the
electrical characteristics of VCBs and the high frequency (HF) characteristics of transformers. In [8],
PSCAD/EMTDC and DigSILENT Power Factory were used to analyze the switching overvoltage in the
MV cable collecting system of OWFs, and the simulation results were compared with measured data in
an actual OWF. It was found that the simulation results can be improved greatly if an appropriate VCB
model was included in PSCAD, whereas little improvement was found in DigSILENT. Based on the
above discoveries, the authors of [9–13] used a PSCAD/EMTDC simulation to calculate TOVs when
VCBs were operated in different configurations, and the results showed that TOVs were affected by
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many factors, such as the operating scenarios of OWFs, the transformer locations, the cable length,
and the wave propagations in the cables.

However, these VCB models assumed a voltage level of 20 kV. The actual operating voltage level
of a VCB is normally 35 kV. In addition, these studies mainly focused on overvoltage amplitude, and a
quantitative analysis of overvoltage steepness was conducted. The quantitative analysis of overvoltage
steepness is particularly important, because the inter-turn insulation of transformers is greatly affected
by overvoltage steepness, and greater overvoltage steepness leads to greater stress imposed on the
turn-to-turn insulation and a higher possibility of insulation failure.

Based on previous research, this paper mainly presents methods for HF models for submarine
cables, wind turbine transformers (WTTs), and VCBs in PSCAD. In addition, an experimental system
for a 35 kV electric collection system of an OWF was set up to verify the proposed models. Following
this, the switching transient characteristics of the collection system of an OWF are studied using these
models, and overvoltage steepness is quantitatively analyzed.

The rest of this paper is organized as follows: The following section presents the typical internal
electrical system of an OWF and the modeling methodology of an OWF’s main components. Section 3
presents the model validation of the main components of an OWT. Section 4 analyzes the transient
characteristics of overvoltages with different initial closing angles and system operation scenarios, and
includes a quantitative analysis of overvoltage amplitude and steepness. Conclusions are drawn in
Section 5.

2. Modeling of the Offshore Wind Farm

2.1. Layout Description of the Investigated Offshore Wind Farm

Figure 1 shows the single-side ring configuration of the investigated OWF, which consisted of
32 WTGs arranged in an array of 4 rows. WTGs were rated at 0.69 kV and connected to feeders by a
0.69/35 kV step-up transformer. The output voltage of the substation was raised to 220 kV, and the
substation was connected to the external grid through submarine cables.

The length of the cable between each radial and the substation platform was 2 km. The distance
between two neighboring wind turbines was 0.64 km. WTT1 was 0.08 km away from VCB11, and
this distance is approximately equal to the height of a tower. Due to limitations of the laboratory
arrangement, only a small section of the OWF was reproduced and is indicated by the dashed lines in
Figure 1.
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2.2. Modeling of Main Electrical Components

We mainly studied the SOVs of an MV collector system in an OWF; thus, the external grid is
represented by a 220 kV ideal voltage source. Additionally, the 220 kV export cable from the substation
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platform is represented by a normal π model, while each 35 kV bus bar is represented by an ideal wire
model. WTGs were not considered in this research.

In order to study the HF characteristics of SOVs, the HF characteristics of submarine cables, VCBs,
and WTTs were fully considered, and these electrical components were modeled in PSCAD.

2.2.1. Modeling of Submarine Cables

Since the frequency-dependent (phase) model available in PSCAD/EMTDC (Manitoba HVDC
Research Centre, Winnipeg, MB, Canada) can reflect the realistic electrical behaviors of submarine
cables at various frequencies, especially the skin effects at HF, this model was used to model 35 kV
submarine cables.

A three-core cable arrangement is depicted in Figure 2. The cable structure is simplified into four
layers—Conductor, Insulation, Sheath, and Insulation—and the radius parameters of the layers are
also shown. Since the armor layer of submarine cables is relatively thick, which prevents the flow of
HF flux and thus prevents voltage loss, the armor is often assumed to be grounded [14]. Since the cable
core conductor is composed of stranded conductors, a hollow conductor layer is utilized. In order
to reduce the wave refraction of the transient surge and make it convenient for theoretical analysis,
the parameters of all 35 kV submarine cables used in this study, including the cross section area (300 mm2),
were the same; the cable parameters and installation conditions are summarized in Table 1 [15].
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Table 1. The cable parameters and installation conditions.

Structural Parameters

r0 (mm) r1 (mm) r2 (mm) r3 (mm) r4 (mm)
3.255 10.3 20.8 22.9 24.9

Electrical Parameters

Resistivity (Ω·m) Relative Dielectric Constant
Conductor Metal Shield Conductor Insulation Shield Insulation
1.92 × 10−8 2.2 × 10−7 2.5 2.3

Installation Conditions

Laying Depth (m) Sea Water Resistivity (Ω·m)
1 1

2.2.2. Modeling of Vacuum Circuit Breakers

Although operations of VCBs are random in nature, a deterministic model of a VCB was built
to study the switching transients in different system operation scenarios. This is because a number
of simulations with the same parameters are required to determine whether a scenario is potentially
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dangerous. Thus, the electrical parameters of VCBs (e.g., the dielectric withstand and the critical
current derivative) are assumed to be constant in this study [16].

When contacts of a VCB close, the dielectric strength (DS) between contacts begins to decrease.
When the transient recovery voltage (TRV) between contacts exceeds the DS, prestrikes occur. Prestrikes
usually occur within the last few millimeters before contacts fully close, while the DS (Ub) between
contacts approximates a linear decrease with closing time, as represented below [17]:

Ub = TRVlimit − A(t − tclose) − B (1)

where TRVlimit is the maximum DS that a VCB can withstand, which is described by Equation (2); A is
the rising rate of the DS, and B is the TRV of a VCB just before current zero crossing; t is the time; tclose
is the moment when a breaker begins to close. According to [16] and the experimental results recorded
in this study, A and B were set at 6.2 × 107 V/s and 0, respectively.

TRVlimit = kafkppE_MAG
√

2/3 (2)

where kaf is an amplitude factor; kpp is the first pole to clear factor; E_MAG is the rated voltage of
a VCB.

When prestrikes occur, HF transient currents flow. The excellent interruption capability of VCBs
promote the extinction of the arc at the current zero crossing, which is described by the value of di/dt
at the current zero crossing. When di/dt is inferior to the critical value, VCBs interrupt HF currents;
otherwise, the current continues to flow. The critical value is related to the VCB structure. Generally,
it is between 100 and 600 A/µs [18]; in our study, we selected an average value (350 A/µs).

As shown in Figure 3, the VCB is equivalent to an ideal switch with parallel branches.
The following parameters were used: RS = 50 Ω, LS = 50 nH, and CS = 200 pF [19]. The DS and
HF current interrupting capabilities of VCBs were defined in a C language program in PSCAD.
By detecting the VCB current (IS) and the voltage at both ends (US, UL), the controllable resistance,
and the equivalent resistance of the VCB, R0 was changed in the program to simulate the opening and
closing of the VCB.
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Figure 3. The vacuum circuit breaker (VCB) model diagram.

The program flow chart is shown in Figure 4. Before the VCBs receive the command to close and
the first prestrikes occur, VCBs are all in State 1, and R0 is 1 MΩ. When the VCBs start to close, Ub
decreases as the gap between contacts decreases. When the voltage difference across the VCB (Vbrk)
exceeds Ub, prestrikes occur, the VCBs are in State 3, and R0 becomes zero. Afterwards, when the HF
current crosses zero and di/dt is under the critical value, the VCBs turns off and are in State 2, and R0

is 1 MΩ. After this, the VCBs will experience State 2 and State 3 alternatively for a long time, until Ub
decreases to zero and contacts of the VCBs are fully in contact—that is, when the VCBs fully close and
are in State 4 and when R0 becomes zero.
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2.2.3. Modeling of Transformers

In this study, the unified magnetic equivalent circuit (UMEC) model embedded in PSCAD was
used to represent the substation transformers and WTTs. The UMEC model uses an I-V curve to
simulate the nonlinear characteristics of an iron core, and it also takes into account the magnetic
coupling relationships among three phases. The parameters of the substation transformers are given
here as follows: rated capacity: 180 MVA; turns ratio: 220/35 kV; connection mode of winding: YNd11;
equivalent leakage inductance: 0.06 per unit. For WTTs, these parameters are 5 MVA, 35/0.69 kV,
Dyn11, and 0.02 per unit, respectively. Furthermore, parallel capacitances were added, including HV
(high voltage)-ground capacitances, LV (low voltage)-ground capacitances, and HV-LV capacitance,
which can reflect the HF characteristics of transformers [20]. The typical values of stray capacitances of
transformers are shown in Table 2 [21].

Table 2. Typical stray capacitances of transformers.

Transformer
Capacity/MVA

HV-Ground
Capacitance/nF

LV-Ground
Capacitance/nF

HV-LV
Capacitance/nF

1 1.2–14 3.1–16 1.2–17
2 1.2–16 3–16 1–18
5 1.2–14 5.5–17 1.1–20

10 4–7 8v18 4–11
25 2.8–4.2 5.2–20 2.5–18
50 4–6.8 3–24 3.4–11
75 3.5–7 2.8–13 5.5–13

3. Model Verification

Simulation models are usually verified through field measurements and laboratory experiments.
Although field measurements are the best source of first-hand information, it is difficult to obtain all
required information, and other factors regarding commerce and risk control should not be overlooked.
Laboratory experiments refer to the building of experimental models in a laboratory, and the difficulty
in such a method, in our case, lies in building an equivalent test system that reflects actual OWF
operations. However, if a simulation model can be built, it then becomes easy to change components
and test parameters to obtain data not readily available in field measurements. Therefore, in this study,
simulation models were developed and verified with laboratory experiments.



Energies 2018, 11, 470 6 of 13

In accordance with the part of Figure 1 marked with a dashed line, a test system was set up
to verify the proposed model, as shown in Figure 5. The test system consisted of a VCB (40.5 kV),
a transformer (TX1) (10/35 kV, 10 MVA), a transformer (TX2) (35/0.69 kV, 2 MVA), a reactor, a 150 kV
high voltage probe (VD), a HF current transformer (TA) and cables. TX1 and TX2 represent the
transformers located at the substation and WTT1 in Figure 1, respectively. Cable1 is the cable between
VCB11 and VCB1 in Figure 1. Cable2 denotes the cable between VCB11 and WTT1 in Figure 1.
The lengths of the two cables were 1 km and 0.08 km, respectively. Since the prestrike phenomenon is
more obvious when VCBs close an inductive load [22], a reactor was adopted to represent an inductive
load in the experimental platform; the reactor’s capacity was about 80% of TX2’s capacity. Due to the
constraints of the experimental site, we only measured the voltage of Phase B at the high voltage side
of TX2 and the current of Phase B at the load side of the VCB.

Energies 2018, 11, x 6 of 13 

 

In accordance with the part of Figure 1 marked with a dashed line, a test system was set up to 
verify the proposed model, as shown in Figure 5. The test system consisted of a VCB (40.5 kV), a 
transformer (TX1) (10/35 kV, 10 MVA), a transformer (TX2) (35/0.69 kV, 2 MVA), a reactor, a 150 kV 
high voltage probe (VD), a HF current transformer (TA) and cables. TX1 and TX2 represent the 
transformers located at the substation and WTT1 in Figure 1, respectively. Cable1 is the cable between 
VCB11 and VCB1 in Figure 1. Cable2 denotes the cable between VCB11 and WTT1 in Figure 1. The 
lengths of the two cables were 1 km and 0.08 km, respectively. Since the prestrike phenomenon is 
more obvious when VCBs close an inductive load [22], a reactor was adopted to represent an 
inductive load in the experimental platform; the reactor’s capacity was about 80% of TX2’s capacity. 
Due to the constraints of the experimental site, we only measured the voltage of Phase B at the high 
voltage side of TX2 and the current of Phase B at the load side of the VCB. 

 
Figure 5. The test system wiring diagram. 

The experimental system shown in Figure 5 was also modeled in PSCAD based on the developed 
models in Section 2, and the simulation results obtained were compared with the experimental results 
in Figure 6. As shown in Figure 6, the first prestrike occurred at 2 ms and the second prestrike 
occurred at 2.3 ms, while the contacts of the VCB first made contact at 3.02 ms. However, the 
fluctuating amplitudes of the experimental waveforms were much larger than those of the simulated 
waveforms at the interval from 3.76 to 5.35 ms. This is because a rebound occurred when the contacts 
closed, and the gap between the contacts changed during the rebounding period, resulting in the 
variation of DS. However, such rebounding was not taken into account in the simulation model, and 
so the voltage fluctuation is not shown in the simulation results. This is because the period of 
rebounding is generally short, and the rebounding has little impact on the short circuit current 
making and on the breaking capabilities of the VCB [23]. 

(a) (b)

Figure 6. Voltage and current waveforms at the high voltage side of TX2: (a) voltages; (b) currents. 

  

Figure 5. The test system wiring diagram.

The experimental system shown in Figure 5 was also modeled in PSCAD based on the developed
models in Section 2, and the simulation results obtained were compared with the experimental results
in Figure 6. As shown in Figure 6, the first prestrike occurred at 2 ms and the second prestrike occurred
at 2.3 ms, while the contacts of the VCB first made contact at 3.02 ms. However, the fluctuating
amplitudes of the experimental waveforms were much larger than those of the simulated waveforms
at the interval from 3.76 to 5.35 ms. This is because a rebound occurred when the contacts closed, and
the gap between the contacts changed during the rebounding period, resulting in the variation of DS.
However, such rebounding was not taken into account in the simulation model, and so the voltage
fluctuation is not shown in the simulation results. This is because the period of rebounding is generally
short, and the rebounding has little impact on the short circuit current making and on the breaking
capabilities of the VCB [23].
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The zoomed-in views of the measurement results for the first prestrike are shown in Figure 7.
One can see that the fronts and amplitudes of the simulation waveforms are in good agreement with
those of the experimental measurements, and this verifies the accuracy of the developed VCB model.
Moreover, the times at which the measured and simulated voltages rise (a2, b2) occur slightly after the
time at which the currents drops (a1, b1), and the time differences are very close to the propagation
time of the waves in the cable; this illustrates the correctness of the wave impedance value in the
cable model.
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4. Simulation of High Frequency Overvoltage in Offshore Wind Farms

The amplitude and steepness of the TOVs are affected by many factors, including the initial
closing angle and the operation modes of the VCBs [24,25]. The following VCB operation scenarios are
considered in this study.

(1) Scenario 1: closing a WTT when there is only one feeder in service, i.e., closing VCB11 when
VCB1 has been closed, VCB12–VCB18 have all been closed, and VCB2–VCB4 have been opened.

(2) Scenario 2: closing a feeder when all the VCBs connected to this feeder have been closed and all
the other feeders are out of service, i.e., closing VCB1 when VCB11–VCB18 have been closed and
VCB2–VCB4 have been opened.

(3) Scenario 3: closing a feeder when all the VCBs connected to this feeder have been closed and some
other feeders (the number is uncertain) are also in service, i.e., closing VCB1 when VCB11–VCB18
have been closed and VCB2 has also been closed.

4.1. Relationship between the Initial Closing Angle and Transient Overvoltages

When prestrikes occur, the steepness of TOVs at the high voltage side of WTTs is closely related
to the current across the phase-ground capacitor, which is described in Equation (3).

du
dt

= − i
CH

(3)

where u is the voltage; i is the current flowing through the phase-ground capacitor; CH is the
phase-ground capacitance.

The simulation results for Scenario 1 are shown in Figure 8. The overvoltage amplitude
(1 p.u. = 28.58 kV) and the overvoltage steepness at the high voltage side of WTT1, along with
the total number of three-phase prestrikes, all take 60◦ as a cycle; we also found that curves of these
indicators are zigzagged. Additionally, for one angle cycle, the overvoltage amplitude and steepness
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rise and drop simultaneously. When the initial phase angle is 15◦, the overvoltage amplitude (1.30 p.u.)
and steepness (142 kV/µs), along with the total number of prestrikes (15), are the largest.
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When the contacts of a VCB are closing, the TRV between the VCB contacts decrease due to the
decreasing DS. A decreasing TRV leads to a decrease in the overvoltage amplitude and steepness at
the high voltage side of the WTTs. Thus, when the first prestrike occurs at the peak voltage point,
the TRV of VCBs is the largest, and the overvoltage amplitude and steepness are also the largest.
This corresponds to the intersection between the DS curve L and the A phase voltage curve (at 90◦) in
Figure 9, and the angle of Point a becomes the initial closing angle; according to Equation (1) and the
TRV curve of the VCBs, it is about 75◦.
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When the DS curve moves along the horizontal axis toward the negative semi-axis, the TRV value
of the intersection, which is equal to the TRV when the first prestrike occurs, decreases continuously.
Additionally, when the DS curve intersects with the A phase curve at 60◦, the TRV value is at its lowest,
thus producing the lowest overvoltage amplitude and steepness. Furthermore, the angle of point
becomes the initial closing angle: about 45◦.

Therefore, as for the A phase, the range of the initial closing angle, which corresponds to the first
prestrike, is from 45◦ to 105◦, that is, the overvoltage amplitude and steepness show a cycle of 60◦,
which is in good agreement with the simulation results in Figure 8.

4.2. Relationship between Transformer Location and Overvoltage

The simulation results for Scenarios 2 and 3 are shown in Figures 10 and 11, respectively.
For Scenario 2, the overvoltage amplitude and steepness increase as the distance from the bus
increases. For Scenario 3, the overvoltage amplitude increases as the distance from the bus increases,
but the opposite is true for the steepness, except for WTT7 and WTT8. This is because in Figure 11b,
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the steepness of TOV at the high side of WTT8 is higher than that of WTT7; that is, the steepness rises
at the end of the feeder.Energies 2018, 11, x 9 of 13 
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4.3. The Relationship between the Number of Running Feeders and Overvoltages

As shown in Figure 12, 2-1 means closing one feeder when two other feeders are running
(Scenario 3, i.e., closing VCB1 when VCB2 and VCB3 have been closed). C refers to the feeder that
is closed, and R refers to the feeders that are running. The overvoltage amplitude and steepness of
Case 1-1 are chosen as the reference values. On the one hand, Figure 12 shows that, as the number of
running feeders increases, the overvoltage amplitude and steepness of the closed feeder increase, while
the overvoltage steepness increases by a factor of (2N/(N + 1)), where N is the number of running
feeders. On the other hand, as the number of running feeders increases, the overvoltage amplitude
and steepness of the running feeders decrease, and the overvoltage steepness decreases by a factor of
(2/(N + 1)).

We also found that the overvoltage steepness of the closed feeders is N times larger than the
steepness of the running feeders; additionally, we found that, regardless of the number of running
feeders, the ratios of the overvoltage steepness of (WTT2–WTT8) transformers (which all have the
same distance to the bus) to the overvoltage steepness of the WTT1 transformer (which is the closest to
the bus when compared with the other transformers) are always constant. For example, the ratio of the
overvoltage steepness of WTT2 to the overvoltage steepness of WTT1 is always equal to a constant
y2; for WTT3 and WTT1, the ratio is always a constant y3. This relationship can be expressed by
Equation (4):
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(du
dt )WTTk

(du
dt )WTT1

= yk (4)

where (du
dt )WTT1 is the overvoltage steepness at the high voltage side of the transformer WTT1;

(du
dt )WTTk is the overvoltage steepness at the high voltage side of the transformer WTTk; k = 2, 3,

4, 5, 6, 7, 8.
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For Scenario 3, the voltage wave across VCB1 is shown in Figure 13. The ratio of transient voltage
waves at both ends of VCB1 when VCB1 closes is calculated by Equations (5) and (6):
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where ∆VRN−1 is the incident voltage wave of the running feeders; ZRN−1 is the wave impedance of the
running feeders; ∆VCN−1 is the incident voltage wave of the closed feeder; Z2 is the wave impedance
of the closed feeder; ∆VC1−1 and ∆VCN−1 are the incident voltage waves of the closed feeder when the
number of running feeders is one and N, respectively; Un is the voltage difference between both ends
of VCB1.

Since the overvoltage steepness at the high voltage side of WTTs is proportional to the incident
voltage wave of the feeders, the overvoltage steepness at the high voltage side of WTTs also satisfies
the relationships in Equations (5) and (6). Thus, the simulation results are in good agreement with the
theoretical analysis.
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5. Conclusions

We have presented here HF modeling methodologies for VCBs, submarine cables, and WTTs.
The prestrike model of the VCB looks at three parameters: the DS, the HF arc extinguishing capability,
and the initial closing angle. For the cable modeling, the frequency-dependent (phase) model was
adopted, and a hollow conductor layer was utilized. The transformer model takes into account the
effect of stray capacitors on TOVs. A laboratory experimental platform for an OWF collection system
was built and was used to verify the performance of the proposed models.

The developed models were used to analyze the effects of the initial closing angle of VCBs, along
with different system operation scenarios on TOV amplitude and steepness. The results show that,
when a feeder is closed when all the VCBs connected to it have also been closed and other feeders are
still in service, as the number of running feeders increases, the overvoltage steepness of the closed
feeder increases and the overvoltage steepness of the running feeders decreases. We also found that,
when a WTT is closed and only one feeder is in service, the initial 15◦ phase angle will produce
the largest overvoltage amplitude and steepness, along with the largest total number of prestrikes,
and more attention should be paid to the impact of this condition on the turn-to-turn insulation of
transformers in the design of electrical systems in OWFs.

This study shows that, in the future, it will be necessary to build an internal winding model for
transformers to study the TOV distribution within the transformer winding. It would be helpful to
study the impact of overvoltage steepness on winding insulation, along with measures that must be
affected in order to suppress the impact.
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Nomenclature

Variables
Ub dielectric strength between contacts of VCBs
TRVlimit maximum DS that a VCB can withstand
A rate of rise of DS
B transient recovery voltage of VCB just before current zero crossing
t time
tclose the moment when a VCB begins to close
kaf amplitude factor
kpp first pole to clear factor
E_MAG rated voltage of VCB
RS parasitic resistance between contacts of VCBs
LS parasitic inductance between contacts of VCBs
CS parasitic capacitance between contacts of VCBs
IS current flowing through VCBs
US voltage at the entrance side of VCB
UL voltage at the exit side of VCB
R0 equivalent resistance of VCB
Vbrk voltage difference across a VCB
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u voltage at the high voltage side of WTTs
i current flowing through the phase-ground capacitor
CH phase-ground capacitance
N the number of running feeders
∆VRN−1 incident voltage wave of running feeders
ZRN−1 wave impedance of running feeders
∆VCN−1 incident voltage wave of the closed feeder
Z2 wave impedance of the closed feeder
∆VC1−1 incident voltage waves of the closed feeder when the number of running feeders is one
∆VCN−1 incident voltage waves of the closed feeder when the number of running feeders is N
Un voltage difference between both ends of VCB1

Abbreviations

VCB vacuum circuit breaker
WTG wind turbine generator
SOV switching overvoltage
OWF offshore wind farm
TOV transient overvoltage
MV medium voltage
HF high frequency
WTT wind turbine transformer
DS dielectric strength
TRV transient recovery voltage
UMEC unified magnetic equivalent circuit
HV high voltage
LV low voltage
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