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Abstract: This paper presents a system for the detection of partial discharges (PD) in industrial
applications based on One Class Support Vector Machines (OCSVM). The study stresses the detection
of Partial Discharges (PD) as they represent a major source of information related to degradation in
the equipment. PD measurement is a widely extended technique for condition monitoring of electrical
machines and power cables to avoid catastrophic failures and the consequent blackouts. One of the
most important keystones in the interpretation of partial discharges is their separation from other
signals considered as not-PD especially in low SNR measurements. In this sense, the OCSVM is an
interesting alternative to binary SVMs since it does not need a training set with examples of all the
output classes correctly labelled. On the contrary, the OCSVM learns a model of the signals acquired
when the equipment is in PD-free mode, defined as a state where no degradation mechanism is active,
so one only needs to make sure that the training signals were recorded under this setting. These
default mode signals are easier to characterize and acquire in industrial environments than PD and
lead to more robust detectors that practically do not need domain adaptation to perform in scenarios
prone to different types of PD. In fact, the experimental results show that the performance of the
OCSVM is comparable to that achieved by a binary SVM trained using both noise and PD pulses.
Finally, the method is successfully applied to a more realistic scenario involving the detection of PD
in a damaged distribution power cable.

Keywords: One Class Support Vector Machines (OCSVM); noise characterization; partial discharge
discrimination; electrical asset monitoring; early fault prevention

1. Introduction

While the safety of equipment in power systems (motors, generators, transformers and power
cables) has always been a great need for the majority of electric companies, maintenance was
usually performed on a scheduled basis without further information about the condition of the asset.
Nowadays, the exigencies of new grids, including the improvement of power reliability and quality,
the enhancement of the capacity and efficiency of existing electric power networks, the optimization
of facility utilization and the improvement of the resilience to disruption, makes condition-based
maintenance a key task [1]. Under these assumptions, monitoring systems have become fundamental
tools that allow achieving really smart management of any electrical asset [2]. These systems must
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integrate multiple and distributed sensors for on-line diagnosis of the different components associated
with the power grid and the knowledge of their operating conditions. However, in some cases the
monitoring of a grid to make predictive maintenance is a very challenging task due to the complexity
of gathering and understanding all the different types of signals delivered by sensors, systems and
devices associated with the size of the grid and the different nature of the signals [3,4].

It is widely accepted that there are several testing techniques that can detect many aging
mechanisms before an unexpected failure of electrical assets takes place [5,6]. Among them, the
measurement of partial discharge (PD) activity is the only one that can make diagnosis on-line in any
kind of high-voltage apparatus [7–9]. However, since PD pulses are a consequence of low energy
phenomena, in real industrial environments the signal to noise ratio (SNR) can be low, so the classical
classification techniques, such as phase resolved partial discharge (PRPD) patterns, may not provide a
clear discrimination by themselves, being necessary the application of new techniques to complement
the results. In order to face this issue, high bandwidth detectors, capable of capturing as much
information as possible from each signal for further processing are widely used [7,10,11]. Thus, the
parametrization of pulses has been carried out in order to filter noise and classify the discharge
source [7,11–13]. Following this research trend, several techniques, such as, time-frequency (T-F)
maps [14], wavelet filtering [15] and power ratios (PR) maps [11] have succeeded in grouping the
detected pulses in clusters based on information that is extracted from each signal.

For all the aforementioned, machine learning (ML) techniques can also support PD discrimination.
ML is a discipline that studies algorithms that build data models from examples with the purpose of
making inferences about separate data not available during the training of the model. In a classification
setting the ML algorithm is trained with a set of labelled examples, that is, for these examples the
correct class is known. The so-called training set has to be large and rich enough to include a sufficient
representation of the input domain of the problem. The recent technological advances in computing
sciences, leading to a dramatic increase in the capabilities of storing and processing massive amounts
of data have resulted in ML techniques becoming a core tool in signal processing applications. Within
all the recent machine classification techniques, Support Vector Machines (SVMs) [16,17] arguably
represent the state of the art in PD discrimination. SVMs have been applied for this purpose in
previous works; some of them did not recognize PD in real high-voltage environments and most of
them employed sets of features that obscure the process of gaining insights about the underlying
relation between the decisions output by the machine and the physical processes originating the
different PD. In [18], the authors prepared a test object to measure PD in transformers and inject pulses
with a calibrator. The signals are preprocessed with a wavelet decomposition and use the coefficients
of the levels as one of the features to train a binary SVM. In [19] the rejection of noise is not taken into
account when testing the effectiveness of the algorithms. In a previous work [20], the authors of this
paper systematically addressed the classification of PD with SVM. This work also introduced a kernel
that works with the shape of the power spectrum of the signals, leading to excellent results in terms of
discrimination capability and also interpretability of the classification. One of the main difficulties to
be faced in the development of an SVM PD system for industrial applications is the need of a correctly
labeled dataset (including a representative number of samples of each of the classes involved) and
the on-site training of the SVM. The training of an automatic classifier needs a significant amount of
samples of each one of the classes involved in the problem definition. In the PD classification problem
this means that a training set formed by a representative number of corona, surface and internal
discharges produced in the object under study, should be available beforehand. Moreover, the correct
class of each of these training samples must be assessed by an expert in order to guarantee that the
information provided to the training algorithm is coherent. In industrial applications this compilation
of training information can turn out to be prohibitive, therefore this paper proposes to start with the
characterization of the noise in the object under study and use this characterization to identify the
emergence of PD and as a base to classify the source of those PD.
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For their application, SVMs need a correctly labeled training set that accurately represents the
data distribution of all the classes involved. This fact limits their immediate application in scenarios
where data labeling is hard or expensive. The semisupervised learning paradigm boosts the SVM
performance in such scenarios by enabling to complement the labeled dataset with the use of massive
amounts of unlabeled data [21,22]. Some other applications present an asymmetry in the nature of the
classes; one of the classes (called target class) is well defined or easy to sample and label, while the rest
of the classes are poorly defined or scarce or difficult to sample. Such applications brought in the One
Class SVM (OCSVM) [23–25]. OCSVM aims at learning the distribution support of the target class in
order to decide whether test samples belong or not to the target class.

In this paper, we study the capabilities of the OCSVM as a core technology for the implementation
of detectors of signals related to degradation, mainly related to PD. To the authors’ knowledge, there are
no published works focused on PD identification through one-class SVM comparing its effectiveness
to the binary approach. Particularly, the presented approach focuses on the modeling as target class
the pulses recorded in the electrical asset under study during a state without active degradation or
ageing. To align this work with the PD detection literature, we consider those pulses recorded during
the default mode functioning to be background noise since a PD detector would be sensing noise
pulses in absence of PD. The advantages of our approach in an industrial application are the following:

• Each type of PD is caused by a different physical process, while the nature of the signals of the
default mode across different PD scenarios is more homogeneous. This results in a straightforward
domain adaptation of the detectors for different PD environments. Moreover, the domain
adaptation would just involve signals acquired during default mode, skipping the need of
labelled data of a standard classification method. The detectors could implement an already
trained OCSVM, saving computational burden and time.

• The size of the training sets used is rather small, achieving detection accuracies comparable to
those obtained with a full SVM that is trained with examples of both noise and PD pulses, as it
will be shown later in the experimental section.

• The OCSVM produces sparse models (the detector is expressed in terms of a very reduced set of
training examples). This property, together with the aforementioned kernel based on the shape of
the power density spectra of the signals, enables an interpretation of the outcome of the detector
by human operators, which increases the usability of the method in industrial environments.

• In the most favorable cases, the process to acquire default mode signals in a recently setup
electrical facility is immediate, since the apparition of PD involves imperfections in the materials
that are supposed to appear in the medium to long term. Therefore, in case that some fine tuning
of the detector is needed, this can be made during the setup of the electrical facility. Otherwise,
the target class should be acquired in the same facility but in other equipment ensuring that it is
free of PD with a previous test.

Considering that the accurate assessment of the operating state of insulation through reliable
diagnostic measurements is crucial to achieve a smart maintenance [26], this paper also presents
examples of the application of the proposed technique. In this sense, the experimental section includes
several laboratory situations that illustrate the advantages of exploiting the discrimination between
noise and the different types of partial discharges, as well as a study carried out for a real 12/20 kV
XLPE insulated power cable commonly used in the power distribution and transport networks.

2. One Class SVM with a Kullback-Leibler Based Kernel for Densities

This section reviews the One Class SVM (OCSVM) [23], the core algorithm for the detectors
implemented in this study. The OCSVMs are endowed with a kernel based on the Kullback-Leibler
divergence that is very handy for processing data vectors that behave as discrete probabilities (we
regard vectors of non-negative components that add up to one as discrete probabilities).
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2.1. Review of One Class SVM

The OCSVM was proposed to solve these extreme situations in which some of the classes in a
classification problem are not present at all. The goal of a one-class classification algorithm is to learn
the support of the data distribution of a single class called target class. In other words, the OCSVM
scoring function f (x) will output a highly positive value if x is a clear example of the target class,
and a highly negative value when it is very unlikely that x belongs to the target class. This way, the
classification boundary defined by the scoring function in the input space becomes the contour of the
data support (examples within the boundary are said to belong to the target class).

In the case of electrical asset monitoring, the target class should be signals acquired in the asset
in a” PD-free” regime and the signals caused by partial discharges the outliers that the OCSVM
detector should find. Since PD discrimination is a major topic in the electrical asset maintenance
literature, this paper specifically analyzes the performance of the OCSVM detector under different
PD conditions. Moreover, to align this study with the broad literature on PD discrimination we use
the term background noise to refer to pulses recorded when no stress is applied to the asset since
they would be considered noise from the point of view of the PD detector. This background noise is
always present in PD discrimination problems. Furthermore, unlike the PD pulses, background noise
pulses are easy to measure from the setup of the measuring system, since they do not need a specific
physical phenomenon going on in the electrical insulation. Therefore, a model of the background noise
pulses learned for a particular PD scenario could be transferred onto a new, different PD scenario
and still be expected to yield a good performance if the industrial environment responsible for the
background noise sources has not changed. This situation is quite common in PD monitoring in fixed
electrical assets.

The OCSVM can be regarded as an adaptation of the kernel version of the SVM for classification
to a situation in which there is just one class available. For this purpose, the input data are mapped
into a feature space using a mapping induced by a kernel function [27,28]. According to the kernel
trick [27], this kernel function can be regarded as a scalar product in input space:

k(xi, xj) =
〈
φ(xi),φ(xj)

〉
where 〈·, ·〉 denotes the inner product in a Reproducing Kernel Hilbert Space, k(·, ·) is a Mercer
kernel [27,28] and φ(·) is the mapping from the input space onto feature space. Notice that in general
one does not have access to the mapped points in the feature space since mapping φ(·) is unknown;
the feature space is only accessible through evaluations of kernels. Different choices of the kernel
function lead to different nonlinearities [27], i.e., each kernel will draw a different nonlinear boundary
in the input space. Moreover, a high value of the kernel function for two instances in the input space
means a high dot product for their corresponding mapped vectors in feature space. The key of the
OCSVM is to consider that points outside the support of the data in input space would map to the
zero vector in feature space (this way the scalar product between a mapped sample inside the support
and a mapped outlier is 0) [23]. Then, the OCSVM draws a hyperplane in feature space that separates
the zero from the mapped input vectors with maximum margin. This linear boundary in feature space
would map back into input space as a non-linear curve that delimits the support of the distribution:
The input samples that belong to the target class will end up inside the contour drawn by the projection
of the linear boundary in feature space, while the outliers will end up outside this contour.

Figure 1 displays an example of a model problem in a two-dimensional input space. The plot (a)
shows 20 input data points that are mapped into a feature space induced by a certain kernel function.
The plot (b) shows the mapped input data plus the zero vector in feature space. The linear classifier that
separates mapped data from the zero vector in feature space (plot (a)) is mapped back as a nonlinear
contour englobing the input data (plot (b)).
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zero vector in feature space. 
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Figure 1. Toy example to illustrate OCSVM. The left plot shows the input data points and the nonlinear
learned support of the data. The right plot shows the points mapped in a certain feature space induced
by a kernel function and the linear classifier that separates the mapped points from the zero vector in
feature space.

The procedure to learn the OCSVM is the following: let us consider a target class represented by an
available training set with N independent and identically distributed samples X = {x1 , . . . , xN}. Those
samples are in our case the normalized power spectrum densities of the training pulses. Consider in
addition a Mercer kernel k(xi, xi) that induces a mapping φ(x) into a feature space F. The mapped
training set in F is now Φ(X) = {φ(x1) , . . . ,φ(xN)}. The OCSVM determines the hyperplane that
separates Φ(X) from the null vector of F with maximum margin. This hyperplane becomes a nonlinear
scoring function in input space:

f (x) = 〈w, φ(x)〉 − ρ (1)

where w ∈ F and ρ ∈ R are the weight vector and the bias term defining the hyperplane, respectively.
The samples in Φ(X) and the 0 vector in the feature space lie in different sides of the hyperplane
defined by w and ρ. The optimization problem that determines the values for these parameters is [23]:

min
w,ρ,ξi

{
1
2
‖w‖2 +

1
vN

N

∑
i=1

(ξi − ρ)

}
(2)

〈w,φ(x)〉 ≥ ρ− ξi, i = 1, . . . , N (3)

ξi ≥ 0, i = 1, . . . , N (4)

where the slacks variables ξi allow for some samples to lie on the other side of the hyperplane. The
consideration of these samples as outliers permits smoother scoring functions. In general, the use
of smooth scoring functions in machine learning improves the generalization capability (a machine
generalizes well when its performance in the test set does not decay significantly with respect to its
performance when making inference on the training set) of the resulting machine. The smoothness of
the scoring function is enforced by the regularization term [17,27] 1

2‖w‖
2 included in the optimization

(2). Finally, user defined parameter v establishes a trade-off between regularizing and reducing the
number of outliers.

The problem defined by (2) subject to (3) and (4) is a standard quadratic programming
optimization that can be solved using off-the-shelf methods. In this paper we have used the
LibSVM [29] implementation.
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Constraints (3) are introduced with Lagrange multipliers αi (please refer to [23] for the details
of the complete solution of the optimization problem). The evaluation of the Karush-Kuhn-Tucker
optimality conditions yields that the weight vector turns out to be a linear combination of the training
examples, with the Lagrange multipliers acting as coefficients of the combination:

w =
N

∑
i=1

αiφ(xi) (5)

Usually a large number of the αi become zero. Those xi with a multiplier αi different from zero
are called support vectors (SVs) since they support the definition of the boundary that englobes the
samples of the target class.

2.2. Kullback-Leibler Based Kernel

The OCSVM implemented in this work are endowed with a kernel function based on the
Kullback-Leibler divergence [30]. This kernel can be computed for any two pulses x1 and x2

exponentiating a symmetrization of the discrete Kullback-Leibler (KL) divergence between x1 and x2:

k(x1, x2) = exp{−0.5(KL(x1‖x2) + KL(x2‖x1))/σ} (6)

KL(xi‖xj) =
D

∑
d=1

xd
i log

xd
i

xd
j

(7)

providing that xd
j = 0 implies xd

i = 0 (we observe this constraint forcing a zero d-th term if either

xd
j = 0 or xd

i = 0). Scalars xd
i and xd

j are d-th components of vectors xi and xj, respectively.
The reason to use this kernel is the following: the actual input data to the OCSVM are the

normalized power spectrum densities (PSD) of the pulses. Each PSD is normalized to unit area, i.e.,
the samples of the PSD add up to one (see the following section). These input vectors can therefore
be considered to behave as discrete probabilities, since all their components are positive and add up
to one. A natural measure of divergence among discrete probabilities is the KL divergence. Notice
that the interpretation of Equation (7) when each input vector is a normalized power spectrum is that
each term of the sum compares the proportion of energy each pulse presents at the d-th frequency

(log xd
i

xd
j
) and weights this comparison by the energy in this frequency. This way the KL divergence

focuses the similarity of the pulses on their most relevant parts of the spectrum. Other commonly
used kernels, like the RBF, fail to capture these features as they equally weight all the frequencies or
introduce spurious symmetries in the similarity. However, the KL divergence is not symmetric, and
therefore cannot be considered a proper distance. That is the reason for including the symmetrization
of the KL divergence by averaging KL(x1‖x2) and KL(x2‖x1). Finally, the exponentiation of a distance
becomes a kernel. The parameter σ determines the width of the kernel [31]. This parameter serves
to tune the resolution of the analysis. Remember that the scoring function is a linear combination of
kernels centered on the SVs. Each SV contributes strongly to the prediction of those test samples that
are more similar to it. Thus the parameter σ determines the area of influence of each SV. The larger the
value of σ, the larger the areas of influence will be. Intuitively, the kernel measures how similar are the
PSDs of the SVs with those of the test signals and then the OCSVM classifies as belonging to the target
class those signals whose PSDs are sufficiently similar to the SVs.

3. Experiments

3.1. Experimental Setup

Partial discharges are low-energy ionizations that occur inside the electrical insulation due to high
electric field divergences within small volumes. The charge movement results in small current pulses
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with rise times as short as a few nanoseconds or even hundreds of picoseconds. The most common
measuring techniques are designed to conduct these pulses through known paths where they can be
acquired with high frequency current transformers or voltage dividers [10]. The wires in the setup
commonly filter higher frequencies limiting the band to some tens of megahertz resulting in signals
such as that shown in Figure 2. This figure shows a typical partial discharge pulse plus noise induced
by the environment with similar energy as the PD.
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and split in time windows of 1 μs (sets of 200 samples) because it is not expected to have more than 
one PD pulse in this period. The maximum value of the signal and the time referred to the 

Figure 2. Example of a partial discharge plus noise.

Being partial discharges a stochastic process and the power spectral density strongly dependent
on the layout of the measuring circuit [8,10,27,32], it is preferable and more realistic to create real
events instead of using synthesized signals. Then, all data analyzed with the OCSVM, including
partial discharges and noise have been collected experimentally with a detection circuit based on
the standard IEC 60270 [10]. This setup consists of a 750 VA transformer that applies high voltage
to several test objects where partial discharges are created. A capacitive divider with a high-voltage
capacitor connected in series with a measuring impedance provides a path for the high frequency
currents generated by the PD pulses, see Figure 3.
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Figure 3. Experimental setup for the measurement of PD according IEC 60270.

These transients are measured through a high frequency current transformer (HFCT) with a
bandwidth up to 80 MHz. The measuring impedance gives synchronization to the grid frequency
(50/60 Hz) so PD pulses can be plotted in conventional PRPD patterns. A NI-PXI-5124 digitizer
(National Instrument, Madrid, Spain), with a sampling frequency of 200 MS/s, a resolution of 12-bit
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and a bandwidth of 150 MHz was programmed with Labview to automatize the acquisition of the
pulses. The 50 Hz synchronizing voltage was connected to one of the channels and the other gets the
waveforms of the high-frequency pulses. Every network cycle (20 ms), 4 × 106 samples are acquired
and split in time windows of 1 µs (sets of 200 samples) because it is not expected to have more than one
PD pulse in this period. The maximum value of the signal and the time referred to the synchronizing
signal are stored to plot the PRPD. Finally, the power spectral density of each signal is calculated and
normalized to unit area before the analysis with the OCSVM (Figure 4).
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Figure 4. Average power spectral densities represented by a thick line. The shade corresponds to the
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the partial discharges and the bottom plots are the normalized default modes in the three setups.

More details regarding the acquisition system can be found in [11,20,33]. Five different test objects
were used to generate the training and test sets for the OCSVM:

• Point-plane experimental specimen: A 0.5 mm thick needle was placed above a metallic ground
plane. The distance between the needle and the plane is set to 1 cm. In this test object, typical
corona PD patterns are obtained once the ionization close to the needle tip is reached at 3 kV.

• Insulating sheets immersed in mineral oil: This setup is designed to generate internal discharges
and consists of three insulating sheets of NOMEX paper (polyimide 0.35 mm thick film). The
central paper was pierced with a needle (1.05 mm in diameter) to create an air void inside this
dielectric. The dielectric stack was inserted in a polyethylene envelope to create vacuum inside
and the entire system was immersed in mineral oil to avoid surface discharges at low voltages [11].
In this test object a stable internal discharges activity was found at 4.7 kV.

• A joint test object: with the first two to create corona and internal discharges simultaneously at 4.7
kV. Notice, that placing two test objects in parallel gives a total capacitance which is the sum of
the single capacitances; moreover, in this setup, three capacitive branches will be present for each
high-frequency pulse, compared to the two of the previous experimental setups (measurement
path and capacitance of the test object). All this makes the shape of the pulses different from the
signals obtained with the test objects alone.

• Contaminated ceramic bushing: A 15 kV ceramic bushing has been contaminated by spraying
a solution of salt in water to create ionization paths along the surface. Clear surface partial
discharges were detected above 14 kV.
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• A 12/20kV XLPE insulated power cable 12 m long: The cable was cut to have access to the
main conductor and its insulation and shield was damaged to obtain a stable activity of partial
discharges at its rated voltage.

The first four test objects are controlled insulation systems created specifically to obtain a certain
type of PD and the corresponding background noise (or signals recorded in the default mode when
the PD has not appeared yet). However, the fifth test object represents a faulted cable in which we
expect to have partial discharges that will be classified accordingly to the results from the previous
training sets.

Three measurement sets were done for every test object. One set at low applied voltages and low
trigger levels to record noise only. Another set, increasing the voltage to a value above the partial
discharge inception voltage, where PD activity was found to be stable; the trigger is set high so the
data only contains partial discharges. Finally, another set at high-voltage and low trigger as in the
first set to have PD and background noise simultaneously (an example of their PRPD is presented in
Figure 5, where it is shown the difficulty of making diagnosis from this classical representation).
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After all the process there are three files: the first contains background noise pulses only, the
second, partial discharges only, and the third, PD blended with noise 4). The first two are used to train
the classifiers and the last one is used to test the separation capability of the system. The experimental
setup is carefully maintained invariant so its equivalent capacitance does not change during all the
process and all signals are acquired in the same conditions so we can do a reliable parametrization.
Table 1 summarizes the sizes of the datasets recorded from these experiments.

Table 1. Sizes of the pulses sets used in the experimental work.

Pulse Set
Experiment

Corona Internal Surface Simultaneous Cable

Noise Pulses 581 511 440 1312 521
PD Pulses 864 554 371 2897 -

Test Set 2405 3521 795 4963 1211

As explained before, plotting the pulses in a PRPD graph helps to know by simple visual
inspection if the decisions made by the OCSVM are correct.

With respect to the training of the OCSVMs, we have followed a very standard approach. The
OCSVMs are endowed with the KL-based kernel of Section 2.2, whose width parameter σ is selected in
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a logarithmic scale between 0.5 and 50. The regularization parameter v is also selected in a logarithmic
scale between 0.005 and 0.2 (anyway we checked that the optimum never occurred in the extremes of
the ranges). The tuning of these two parameters is carried out by tenfold cross validation in a grid
search. The bias term of each OCSVM, ρ, was fixed so that all the samples of the target class in the
training set scored a positive number.

3.2. Results

The first set of results illustrates how in fact noise models can be shared across different PD
scenarios. Table 2 displays the efficiency when detecting default mode when the OCSVM is trained
using background noise signals (without PD) recorded in a particular experiment of PD (each row
corresponds to a training set scenario) and tested using default mode signals recorded in a different
PD experiment (diagonal terms are trivial since the training and testing sets are indeed the same set).

Table 2. Classification efficiency (%) of the OCSVM detecting background noise of different
PD scenarios.

Training Noise Test Set PD

Corona Internal Surface Simultaneous

Corona 100 93.93 99.77 26.83
Internal 95.35 100 99.77 97.79
Surface 90.36 86.50 100 10.75

Simultaneous 96.56 99.80 99.55 100

Nine out of the twelve non-diagonal accuracies in Table 2 are above 90%, one is above 86% and
only the cases involving test background noise signals of the experiment with simultaneous PD present
really poor detection rates. Figure 6 shows the normalized histograms (the normalized histogram
is an approximation to the probability density of the output of the OCSVM. The range of values of
the output of the OCSVM is divided into equally sized bins and the histogram value in each bin is
the count of the number of test samples for which the output of the OCVSM falls in that bin. The
values of the bins are then divided by the number of test samples so that they add up to one and
thus this normalized histogram can be used as proxy for the probability density) of the scores of
the OCSVM trained with the different background noise records and tested using files coming from
different experiments that contained either pure background noise (solid lines) or pulses of a single
type of PD (dashed lines). The OCSVM outputs for background noise appear highly overlapped
independently of the particular noise used to train the model and the outputs for PD pulses appear
well separated from the outputs corresponding to noise. In two cases (using the training data from
corona and surface setups) the background noise from simultaneous PD (Simul.Noise in the plots)
appears slightly shifted towards the negative part of the histogram, although clearly separated from
the PD pulses. Notice that being noise, the plots should have entirely been in the positive range of the
histogram. Nevertheless, these lines are clearly separated from the dashed plots corresponding to PD
which supports the suitability of the OCSVM as core algorithm for a detector that is capable of being
adapted to another PD scenario.
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In order to justify the election of the default mode model for domain adaptation we have repeated
the modeling in Table 2, but now using only PD pulses without noise to train the OCSVM. The aim
in this new set of results is to say if a certain pulse is a PD or not. Table 3 presents these results. The
structure of Table 3 is very close to an identity matrix (excepting the tests results for corona and internal
PD when training is made with the simultaneous source), pointing out the fact that each type of PD is
consequence of a different physical process and therefore the shape of the PD pulses is different for
each experiment, which significantly reduces the usability of a one class modeling when the target
class is a particular type of PD source. A good illustration of this fact is the results of internal and
corona when the OCSVM is trained with the Simul. training set: the OCSVM treats both types of PD
as members of a same class. These results from Table 3 are in agreement with previous works [11],
where it is proven that, for the same experimental setup, each PD source has a characteristic frequency
response; Figure 4 shows this situation too.

Table 3. Classification efficiency (%) of the OCSVM detecting different types of PD.

Training Noise Test Set PD

Corona Internal Surface Simultaneous

Corona 100 0 0.27 17.29
Internal 0 100 0 16.78
Surface 0 0 100 22.37

Simultaneous 100 100 3.23 100
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Figure 7 displays the histograms of the OCSVM trained with the different types of PD. In a few of
these cases, the histograms of the outputs corresponding to PD test pulses (dashed lines) show that the
f (x) score could potentially be used to discriminate PD, but in general the OCSVM based on learning
the distributions of PD pulses are more difficult to adapt to other scenario than the models based on
learning the background noise distribution. Moreover, the noise histograms (solid lines) appear again
highly overlapped in the four cases, illustrating the fact that the noise is more homogeneous across
experiments and that a model trained with default mode pulses from a given scenario could be easily
adapted and achieve a good performance in a different scenario.Energies 2018, 11, x FOR PEER REVIEW  12 of 17 
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The next set of results, displayed in Table 4, illustrate the detection capabilities of the OCSVM
trained with a single type of background noise and tested with a set that includes both PD and
noise pulses recorded simultaneously in different PD generation scenarios. The label assigned by the
OCSVM to each pulse is compared with the label that would assign a binary Support Vector Machine
(SVM) trained with a set of pure PD and pure background noise pulses recorded in the same scenario
as the test set. The SVMs are endowed with the same kernel as the OCSVM. According to our past
experience [20] this binary classifier is able to almost perfectly discriminate between PD and noise, so
its label assignments can be perfectly considered as ground truth. Figure 8 shows the identification of
pulses made with binary support vector machines.
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Table 4. Agreement (percentage of times in which both classifications coincide) between the OCSVM
and a binary SVM trained with data collected in the scenario corresponding to the test set. In order
to align the classifications of both methods, we compute as one agreement when either both OCSVM
and SVM classify the same test pulse as noise or when the SVM classifies it as PD and the OCSVM as
not-noise. Any other situation counts as a disagreement. The top number in each cell indicates the
agreement when the bias term of the OCSVM ρ is the output of the optimization of (2) subject to (3)
and (4). The bottom number is the agreement when ρ is further refined using an extra training set of
noise recorded from the same scenario of the test data but not included in the test set. The test data
includes pulses of noise and PD.

Noise to Train the OCSVM
Scenario for the Binary SVM

Corona Internal Surface Simultaneous

Corona
no d.a. 99.96 96.99 97.36 53.56

d.a. 99.96 98.81 98.49 93.29

Internal
no d.a. 98.96 98.72 99.37 97.58

d.a. 98.09 98.72 99.75 99.36

Surface
no d.a. 97.09 96.25 92.83 45.28

d.a. 99.29 98.84 92.83 96.01

Simultaneous
no d.a. 99.21 99.09 99.75 99.15

d.a. 92.47 98.76 99.37 99.15Energies 2018, 11, x FOR PEER REVIEW  13 of 17 
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Table 4 displays indeed two sets of results. For each training set, we have used two strategies to
fix ρ in Equation (1):

• Without domain adaptation (top row for each training set, labeled no d.a.): The value of ρ is
determined after the optimization of (2) subject to (3) and (4). This way all the noise samples in
the training set produce a positive value in the output of OCSVM.

• With domain adaptation (bottom row for each training set, labeled d.a.): The value of ρ obtained
from the optimization of (2) subject to (3) and (4) is refined using a second training set composed
of noise pulses recorded from the same scenario in which the testing set was recorded. The value
of ρ is modified so that all the instances in this second training set produce a positive output in
the OCSVM.

The domain adaptation is the simplest re-calibration that one could introduce in a realistic scenario
in which the initial training set is not rich enough to represent the target class. The OCSVM score relies
on the kernel functions centered on the support vectors and on the bias term ρ. This re-calibration
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involves the use a second training set of background noise pulses to fine tune the value of ρ. Notice
that, like the initial set, this training set is not labelled at all, one just need to ensure that it was recorded
under PD-free conditions, and this requirement is easy to fulfill in an industrial application. This way,
the learning still falls into the one class paradigm as the recalibration does not demand a labelled
data set.

Table 4 shows that the OCSVM with the first strategy makes good predictions in almost all
the experimental setups, excepting some cases with simultaneous discharges (the same with lower
identification capabilities shown in Table 2), while the strategy with domain adaptation achieves a
very good classification in all scenarios.

The final set of results involves the analysis of signals recorded in a very different experiment,
closer to a real-world scenario. This is the case of a portion of an XLPE cable connected to high-voltage
and inducing a source of PD by deteriorating the insulation in one site. The equivalent capacitance
of this setup is remarkably higher than those of the other test objects because the length is 12 m so
high-frequencies of the PD pulses are strongly attenuated.

Table 5 shows the agreement between the labels assigned by the OCSVM models learned in the
previous experiments (using the noise signals termed as Corona, Internal, Surface and Simultaneous)
and the labels assigned by an OCSVM trained using background noise pulses recorded at the cable
experiment. As before, the top row in Table 5 displays results without domain adaptation (the value of
ρ is fixed using the same noise that was used to train the OCSVM), whilst the bottom row displays
results with domain adaptation. This domain adaptation consists in using the same model but refining
ρ for each OCSVM with the set of noise pulses recorded in the cable experiment.

Table 5. Agreement in percentages between OCSVMs trained using default mode signals recorded
at the cable experiment (rows) and OCSVMs trained using background noise recorded at other
experiments (columns). The top row shows results without domain adaptation, while the bottom row
incorporates a domain adaptation consisting in tuning the value of ρ in the OCSVMs learned with
noises of other experiments with the noise pulses recorded at the Cable. The test set includes both PD
and noise recorded at the cable.

Source of Training Noise, Not Cable

Corona Internal Surface Simultaneous

Without domain adaptation 79.27 82.33 79.27 90.17
With domain adaptation 99.67 99.67 99.67 99.67

The results in Table 5 show again that the domain adaptation involving the tuning of ρ works really
well independently of the default mode signals used to construct the OCSVM model. In this particular
case, as the change in equivalent capacitance of the test object has been more pronounced than in the
other cases, the tuning of the parameter ρ is more convenient than in the previous experiments to
obtain a convenient identification. Moreover, the PRPD in Figure 9 shows that the events classified as
noise (with circles) do not have correlation with the phase of the 50 Hz sinusoid whereas black points,
that are not-noise pulses, have a clear correlation appearing only on the negative semi-cycle, which
means that they are PD. This means that the discrimination has been done correctly. It is interesting
to note that some PD (not-noise) pulses have magnitudes similar to noise pulses, which means that
this technique can be quite useful to detect PD signals in testing setups with low signal to noise ratio.
This is very important, since these low-magnitude PDs (events whose probability of occurrence is
higher than high magnitude PDs) could have been discarded if the trigger level had been raised to
reject noise, leading to possible mistakes in the assessment of the status of the power cable.
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Finally, it is worth discussing the capabilities of the OCSVM to deliver data models that are not
difficult to interpret by human operators. The lack of interpretability is one of the main handicaps
that face the introduction of machine learning techniques in industrial applications. In the problem
under study, the OCSVM models are a linear combination of kernel functions centered on some of
the training instances (the SVs). It turns out that the obtained models are very sparse in terms of the
number of training examples that end up taking part in the OCSVM. Table 6 displays the size of the
models in terms of data examples. In most of the cases the size of the detector is quite small. Therefore,
the analysis of the classification of a test signal xt in terms of the linear combination in f (xt) would first
bring out which SVs are more similar to xt under the metric defined by the kernel. Then the human
operator could approximate the outcome of the OCSVM as a combination of the expected output for
each of these more similar SVs. Moreover, since the kernel captures similarities in the shapes of the
PSDs, those frequency bands in which the shapes of the test signal and of the SVs PSDs are closer
would become the key to the interpretation of the classifications.

Table 6. Size of the OCSVM detectors in terms of the number of training instances that define f (x). The
top row shows the size of the models trained with background noise signals. The bottom row shows
the size of the models trained with PD signals.

Training Pulses PD Scenario
Corona Internal Surface Simult. Cable

Noise 10 8 25 133 5
PD 12 8 6 16 -

4. Conclusions

This paper has presented a method to detect the presence of partial discharges in an electrical
asset using an OCSVM that learns a model for the background noise. The PD-noise separation using
default mode signals as target class is more reliable than the one based on learning the distribution of
the PD pulses. This is due to the fact that background noise is more homogeneous across different PD
generation scenarios.

The characterization of the background noise in a given PD scenario by means of OCSVM is
possible, arriving at classification accuracies in the detection of the PD comparable to those obtained
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with a binary SVM. Moreover, the OCSVM learned with background noise registered in a given PD
generation scenario can be successfully adapted to achieve performances close to those of a binary SVM
by just adjusting the value of the bias parameter ρ with a small set of default mode pulses registered in
the new PD scenario.

The use of OCSVM in discriminating noise from PD could be applied in the condition-based
monitoring of electrical assets. The existence of signals that were classified as not-noise (even with
amplitudes below noise) would activate a flag so the piece of equipment could be monitored more
closely and, eventually, put out of service to check the insulation status. This would dramatically
increase the reliability of the system and reduce costs of maintenance. Since signal recognition is
made through its power spectral density, it is clear that changes in the measurement setups would
require new training data for PD detection. However, once the instrumentation system is completely
installed, noise characterization in many real high voltage facilities could be easily characterized before
connection to the power grid. Afterwards, pulses not classified as background noise could be analyzed
in the corresponding PRPD patterns to study if any aging mechanisms may be active in the electrical
machine or power cable.

Ongoing research includes the development of new kernels that focus on specific parts of the
spectrum. The kernel used in this work treats equally all the frequencies and our intuition is that
there are frequencies more relevant for the characterization of the PD and the noise. The interest of
these kernels lies in the facilitation of the interpretation of the results in industrial applications by
pointing out these most discriminative parts of the spectrum, and in a reduction of the computational
complexity of the system since it does not need to deal with the complete spectrum.

Another line studies the characterization of the different classes of PD building on this work.
Notice that an OCSVM trained with background noise as target class is not able to determine which
type of PD is occurring in the monitored electrical asset. However, the good results achieved in the
domain adaptation (refining ρ) encourage to extend the domain adaptation setting to situations in
which a large set of non-labeled noise signals acquired in the monitored asset could be combined with
a reduced set of labeled PD signals recorded outside the asset to come up with a system able to not
only detect the presence of PD, but to identify its type.
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