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Abstract: An innovative solution to provide a demand response for power system is proposed in
this paper by considering the feasibility of two-way direct load control (TWDLC) of central air
conditioning chiller system for wide-area in real-time manner. Particularly, the proposed TWDLC
scheme is designed to tackle the load shedding ratio optimization problem for all under-controlled
customers, aiming to satisfy the target load curtailment defined in each scheduling step. Another
notable contribution of this work is the utilization of constraint loosening concept on actual load,
curtailed to overcome the uncertainties of load reduction during TWDLC. Given the presence of
fuzzy constraints, the proposed load shedding ratio optimization problem can be tackled using fuzzy
linear programming. A delicate strategy is then formulated to transform the proposed fuzzy linear
programming problem into a regular linear programming problem. A selection scheme used to obtain
the feasible candidates set for load shedding at every sampling interval of TWDLC is also designed
along with the fuzzy linear programming.

Keywords: fuzzy linear programming; direct load control; scheduling optimization; chillers;
air condition; demand response

1. Introduction

The rapid development of smart grid [1–3], integrated with advanced metering infrastructure
(AMI) and two-way communication capability offers a new opportunity for utility company to
revolutionize the existing electrical systems. The emergence of these cyber-infrastructures allows
for utility to exploit demand side capability of electricity users in order to achieve certain grid-level
operation objectives, such as the reduction of peak demand and forced outage [4]. Utilities tend to
deploy different demand response (DR) programs to fully realize the benefits of smart grid. On one
hand, DR programs are considered by the electric system planners or utility operators as resource
options to achieve electricity supply and demand balance. On the other hands, DR programs allow for
the electricity user to have more active participation in the demand side of electric grid by reducing or
shifting their electricity consumption during the peak periods. Existing DR programs are categorized
into two types, namely the price-based and incentive-based schemes [5,6]. For latter schemes, electricity
users are incentivized by utility or curtail service provider (CSP) for being able to reduce their energy
consumption for a certain periods of time upon request.

Direct load control (DLC) is one common incentive-based DR program that is used by utility or
CSP to reshape load profile by scheduling the operation cycles of customer’s high-power appliances.
Central air conditioning chillers of industrial and commercial customers are the excellent candidates
to achieve a cost effective DLC because the potential load reduction capacity delivered can reach up
to several hundred kilowatts. Given the impressive strides that have been made in metering and
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intelligent control technologies in facilitating a continuous bidirectional communication between
the utility or CSP and its customers [7,8], a two-way direct load control (TWDLC) scheme for
central air-conditioning chiller systems can further be envisioned as an emergency demand response
mechanism with real-time load shedding effect. In particular, the utility or CSP can transmit the load
shedding signals to its controlled customers, while monitoring the load shedding results continuously
via the Internet. The TWDLC of central chillers can even serve as an ancillary service if a huge
amount of central chiller loads are aggregated, monitored, and managed effectively under smart grid
environment [9,10]. A successful load shedding program can reduce the cost of electricity in wholesale
market and this leads to lower electricity retail prices. Furthermore, these load shedding programs
also have the potential to help a utility company in achieving cost saving via peak demand reductions
and defer the necessity of constructing the new power plants that reserved for use during peak times.

Computational intelligence approach has gained popularity in recent years to solve complex
DLC scheduling problems. An iterative deepening search strategy was incorporated into genetic
algorithm [11] and genetic programming [12] to produce a DLC schedule of air conditioning load that
is capable of meeting the target load shed profile with minimum cost. A DLC scheduling problem with
multiobjective framework was solved from different perspectives using an interactive evolutionary
algorithm [13,14]. An optimal DLC dispatch of air-conditioning loads was proposed in [15] using
an imperialist competitive algorithm to optimize the actual target load shed profile to ensure that
it can be as close as possible to the predefined target profile. An innovative modelling of DLC
for air-conditioning loads was coordinated along with unit commitment in [16] using distributed
imperialist competitive algorithm to minimize system operational cost. In [17], the operational cost of a
micro-grid with high penetration of solar power and air conditioning loads was successfully minimized
by using the differential evolution. A hierarchical DLC framework for large-scale air conditioning load
dispatch was proposed in [18] using differential evolution algorithm to minimize the operational cost.
With a two-way communication platform, the load curtailment of central air-conditioning systems
can be achieved in real-time using linear programming [19]. By considering the uncertainties of
electricity prices and ambient temperature change, a DLC of air-conditioning loads was solved in [20]
by mixed-integer linear programming to enhance wind power utilization level and minimize the
system operational cost. By considering the transmission system reliability, an optimal DLC schedule
of air conditioning loads was obtained in [21] by a fuzzy DR to attain a tradeoff between peak load
and system operation cost reduction. In [22], a nonlinear programming approach was formulated
by considering DLC as a part of integrated resource planning to minimize the investment cost of a
microgrid. A DLC union was formed for the retailer and residential users in [23] using cooperative
game to minimize the regulation cost of retailer by providing users an indirect access into balance
market to improve market efficiency. A model estimator controller was designed in [24] using Markov
chain model to coordinate aggregation of air-conditioning loads in order to address energy imbalance
issue in power systems. Both of the distributed load shedding and micro-generator dispatching was
coordinated in [25] using a probabilistic method to provide an emergency DR. A novel DLC scheme
was proposed using queuing system model to control the air-conditioning loads without comprising
users’ cooling comfort [26].

Most existing DLC scheduling strategies have not, to the authors’ best knowledge, considered the
uncertainties of demand reduction provided by air-conditioning loads. The previous works assumed
the target load shed to be met are fixed and crisp optimization constraints were formulated to guarantee
the actual curtailment produced does not violate the target profile. In practical scenarios, the load
reduction that is produced by central chiller systems in large-scale geographical area is affected by
different factors, including the ambient temperature, number of people in the cooling environment,
communication network signal strength, etc. [27]. The optimality of DLC schedules produced without
taking these uncertainties into account is hence questionable. The main contribution of this paper is
to propose an innovative approach based on fuzzy linear programming [28] to tackle the TWDLC
optimization of central chiller systems in greater flexibility manner. Particularly, a fuzzy inference
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system is designed to model the uncertainties of load reduction by allowing for a certain degree of
constraint loosening to obtain an optimal TWDLC schedule of central chiller systems. With these
optimization flexibilities, a soft curtailment for the TWDLC of central air conditioning systems is
achieved. With the proposed approach, a tolerance range of load reduction uncertainty is provided to
the aggregators as they negotiate DR capacity and purchase prices with CSPs [29,30].

The rest of this paper is organized as follows. In Section 2, the problem formulation for TWDLC
of central air-conditioning chiller systems are described. An optimization approach used to determine
the best set of candidates for load curtailment throughout the control intervals is then explained in
Section 3. The implementation of fuzzy linear programming for TWDLC is described in Section 4.
Extensive simulation studies used to verify the performance of the proposed scheduling optimization
approach are demonstrated in Section 5. Finally, some concluding remarks are drawn in Section 6.

2. Problem Formulation for TWDLC of Central Chiller

Consider that a total of N customers are recruited by utility company or CSP to participate the
TWDLC program and Ci chillers at every i-th customers are under control, i = 1, . . . , N. In this study,
a scheduling optimization scheme is formulated to achieve TWDLC of central chiller systems in
real-time. At any time period t, let the operational status of the j-th central chiller unit belonging to the
building of i-th customer be denoted as λij(t). The running status of the j-th chiller owned by the i-th
customer is assigned as λij(t) = 1 if it is turned on during time period t and λij(t) = 0 for otherwise, j = 1,
. . . , Ci, i = 1, . . . , N. From technical point of view, the load curtailment for a centrifugal compressor
can be achieved through partial load reduction instead of turning the equipment off. Chiller energy
efficiency is measured using the coefficient of performance (COP), which varies with chiller’s load
ratio. It is noteworthy that the majority of central chillers suffers with drastic COP drops when its load
ratio is 50% or lesser, leading to poor energy efficiency. In order to prevent the chiller from having
undesirably low COP due to the partial load reduction for DLC, it is necessary to define the lower
boundary of chiller’s load ratio. Denote W f

ij and Wc
ij(t) as chiller’s capacity and the load measured at

time t, respectively, and νij as the lower bound of the load ratio for the j-th chiller of the i-th customer.
Let Wi

a(·) be the controllable load available for each i-th customer and it refers to the total controllable
load among all of the chillers belonging to that customer, i.e.,:

Wi
a(t) =

Ci

∑
j=1

λij(t)Wc
ij(t) (1)

where the controllable load for the j-th chiller of the i-th customer Wa
ij(t) is defined as:

Wa
ij(t) =

Wc
ij(t)− νijW

f
ij , if Wc

ij(t) ≥ νijW
f

ij

0, otherwise
(2)

For customers that are willing to participate in the curtailed service program or similar DR
programs, a set of load management facility consisting of gateway and chiller control network will
be installed into their buildings by the utility company or curtailed service provider. Once the load
curtailment signal is received by gateway through the Internet over the broadband network from the
control center at time t, the gateway needs to determine the required load curtailment for each central
chiller, followed by the activation of load curtailment through the chiller control network. Define Tc

as the overall control interval of TWDLC, while Ts refers to the sampling interval that is set by the
control center to perform TWDLC. Then, the total number of evaluations throughout the entire control
interval of TWDLC is defined as M = Tc/Ts.

The computer server in control center reviews available customers for load control during
the k-th scheduling step kTs, k = 1, . . . , M. As long as the customer is available for control,
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the average controllable load is measured at every sampling interval. Denote Wi
a(kTs) as the average

controllable load for the i-th available customer at kTs and Tm as the averaging interval for calculating
Wa(kTs). Then,

Wi
a(kTs) =

1
Tm

∫ kTs

kTs−Tm
Wi

a(t)dt (3)

As soon as reviewing all of the available customers for control, the computer server in control
center selects certain number of available customers for load shedding by sending out load shedding
commands through the Internet to the gateway at customer site. Figure 1 shows the load variation of a
typical chiller starts shedding load to a certain ratio, maintains the load ratio for certain period of time
and restores the load back to the original load before shedding. It is shown in Figure 1 that a period of
time is required for a chiller to conduct load shedding and load restoration. For customers that are
chosen for load shedding, the actual load reduction delivered by a chiller is measured by gateway and

reverted to computer server in control center through internet. Denote Wi
b(kTs) as the average load

after load shedding for the i-th available customer and Tw as the time interval to wait until the chiller
finishes load shedding. Then,

Wi
b(kTs) =

1
Tm

∫ kTs+Tw+Tm

kTs+Tw
Wi

a(t)dt (4)

With the average loads defined in (3) and (4), the average shed load Wi
d(kTs) is defined as:

Wi
d(kTs) = max

((
Wi

a(kTs)−Wi
b(kTs)

)
, 0
)

(5)

The average controllable load available for each under-controlled customer,Wi
a(·), i = 1, . . . , N,

at each scheduling step is measured and revert to control center through the Internet by the gateway
installed at customer’s site. A real-time optimization scheme is then formulated in this paper for
determining the combination of load shedding ratios for all of the customers at every time step through

the entire control interval Tc based on the received average controllable load Wi
a(·), i = 1, . . . , N.

Let ηi(·) be the expected load shedding ratio computed by the computer server in control center for
each i-th customer. The calculated load shedding ratio ηi(·) is defined as the ratio of expected load
curtailed with respect to average controllable load of customer i. The proposed optimization approach
aims to find the best combination of load shedding ratio of each central chiller unit in real time so that
the overall target shed load is individually satisfied at every scheduling period. The overall target
shed load is the total load that is required to curtail by the direct control of entire set of central chillers.

Denote P(·) as the overall target shed load based on the load forecast, while J(·) is a set consisting
of all customers available for TWDLC. The utility aims to minimize the load curtailment produced by
TWDLC in order to minimize utility’s electricity sale loss while satisfy overall and regional target shed
load. When considering that the target shed load is derived by referring to load forecast, it is necessary
to facilitate certain degree of precision tolerance corresponds to weather, temperature, control timing,
customer conditions, etc. Particularly, the constraint for the calculated shed load to be greater than the
overall target load curtailment allows for a certain degree of loosening. With this constraint loosening,
more calculation flexibility is allocated to tackle the TWDLC scheduling optimization using fuzzy
linear programming. The fuzzy linear programming categorized as linear programming with fuzzy
resources is defined as:

min
ηi(kTs)∈[0,1],i∈J(kTs)

 ∑
ηi(kTs),i∈J(kTs)

ηi(kTs)W
i
a(kTs)

 (6)

subject to
0.1 ≤ ηi(kTs) ≤ 1, if ηi(kTs) > 0, i ∈ J(kTs) (7)
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and

∑
ηi(kTs),i∈J(kTs)

ηi(kTs)W
i
a(kTs)≥̃P(kTs) (8)

The expected shedding ratios ηi(·) range between 0 and 1. However, if the calculated ηi(·) is too
small, then the required shed load at the corresponding customer might be barely greater than the
disturbance, leading to insignificant shedding contribution to the entire load reduction. Even though
some of the calculated shedding ratios are insignificantly small, the control center still needs to
send these ratios one by one to the corresponding gateways at customer sites, leading to inefficient
communication efforts. To avoid obtaining insignificantly small values, a lower bound is assigned to
the shedding ratio. Therefore, the calculated shedding ratio in the optimization is constrained between
0.1 and 1, as in (7). The sign “≥̃” in (8) symbolizes that the inequality is in essence with fuzziness.
The load curtailment due to TWDLC in (8) could be considered as a soft curtailment because the load
shed quantity is allowed to vary within a soft range. The fuzzy constraint of (8) is described by the
membership function µ(·), as illustrated in Figure 2, where the tolerance for the fuzzy constraint is
represented using two coefficients v1, v2 ∈ [0, 1]. Denote Ψ(kTs) as the calculated shed load, that is,

Ψ(kTs) = ∑
ηi(kTs),i∈J(kTs)

ηi(kTs)W
i
a(kTs) (9)

Mathematically, the fuzzy constraint described by the membership function µ(·) in Figure 2 is
given as:

µ(η(kTs)) =


1, if Ψ(kTs) > (1 + v2)P(kTs)

Ψ(kTs)−(1−v1)P(kTs)
(v1+v2)P(kTs)

, if (1− v1)P(kTs) ≤ Ψ(kTs) ≤ (1 + v2)P(kTs)

0, if Ψ(kTs) < (1− v1)P(kTs)

(10)
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3. Mechanism of Candidates Selection for TWDLC

The monitoring and control of every chiller for the computer server is achieved through the
gateway installed at the building of each customer. To ease the computational and communication
effort, the computer server calculates the load to be curtailed and sends the shedding control commands
in customer by customer basis instead of in chiller by chiller basis. The customer determination for
shedding at each scheduling step is to fulfill the target shedding capacity P(·) and to level off the
contribution to the entire load shedding for every customer. A coefficient denoted as η̂i(·) is introduced
as shedding contribution ratio to measure the load curtailment contributed by each i-th customers.
Mathematically, η̂i(·) is defined as a ratio between the average actual curtailed load to the average
controllable load as follows:

η̂i(kTs) =
Wi

d(kTs)

Wi
a(kTs)

(11)

For each customer, the respective accumulated time of under-controlled status is recorded by the
computer server. This information is considered as one of the reference indices to select the customer
for load shedding at every scheduling period. Let τuc

i (kTs) and τoc
i (kTs) be the effective accumulated

time of under-controlled and off-controlled status for each i-th customer up to the k-th scheduling
step, respectively. Practically, these effective accumulated times can be calculated by adding up the
time intervals of under-controlled and off-controlled status for each i-th customer. The shedding
contribution ratios are also taken into account. For instance, the customers assigned with higher
shedding contribution ratios tend to experience more cooling comfort losses than those with lower
shedding contribution ratios. Therefore, the effective increments of the accumulated times under
control are considered to be longer than the ones for customers with lower shedding contribution
ratios. An adjustment scheme for the accumulated time under control and off control is then proposed
by referring to the previous experience of load shedding control as well as the feedback collected
from customers. Accordingly, no adjustment is needed for the customers with shedding contribution
ratios η̂i(·) greater than 0.75. For the customer with η̂i(·) smaller than 0.15, the associated equivalent
shedding intervals are reduced to 1/3 in order to reflect the lesser loss of cooling comfort experienced
by these customers during of shedding control period of TWDLC. As for the customers with η̂i(·) fall
between 0.15 and 0.75, a linear function is formulated to adjust their equivalent shedding intervals
between 1/3 to 1, based on η̂i(·). Denote ξ(·) as the adjustment coefficient of each i-th customer, then:

ξi(·) =


1
3 , if 0 < η̂(·) ≤ 0.15

1
3 + 10

9 (η̂(·)− 0.15), if 0.15 < η̂(·) ≤ 0.75
1, if η̂(·) > 0.75 or η̂(·) = 0

(12)

Let si(kTs) ∈ {0, 1} be a binary variable indicates the control status of every i-th customer during
the k-th scheduling step. Specifically, si(kTs) = 1 is assigned for the under-controlled costumers,
while si(kTs) = 0 is assigned for those either in off-controlled status or just restored from being
controlled. τuc

i (·) and τoc
i (·) are effectively adjusted with reference to ξi(·) as follows:

τuc
i (kTs) = (τuc

i ((k− 1)Ts) + si(kT)s × ξi(kTs − Ts)× Ts)× si(kTs) (13)

τoc
i (kT)s = (τoc

i ((k− 1)Ts) + si(kTs)× (1− ξi(kTs − Ts) + 1/3)× Ts)× si(kTs) (14)

∀i = 1, . . . , N and k = 1, . . . , M, where τuc
i (0) = 0 and τoc

i (0) = 0.
Notably, the variable si(·) shown in both (13) and (14) is the complement of si(·). It is also shown

in (13) and (14) that the variables τuc
i (·) and τoc

i (·) are reset to zero once the control status si(·) changes.
From (12) to (14), customers with larger η̂i(·) in the previous scheduling period have effectively more
accumulated τuc

i (·) and vice versa. The accumulated time under control needs an upper limit in order
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not to affect too much cooling comfort due to load shedding. Denote Tuc
i as the maximum allowable

time for the i-th customer to perform continuous shedding control, then:

τuc
i (kTs) ≤ Tuc

i , ∀i = 1, . . . , N, k = 1, . . . , M (15)

For a customer with off-controlled status, it means that the customer is restored from the previous
shedding control. It takes time for the building to regain cooling comfort before it is controlled again.
Let Toc

i be the least time the i-th customer needs to stay off-controlled, then

τoc
i (kTs) ≥ Toc

i , ∀i = 1, . . . , N, k = 1, . . . , M (16)

Every i-th customer becomes a candidate for load shedding if both constraints in (15) and (16)
are satisfied. On the contrary, if the constraint in either (15) or (16) is violated, the i-th customer is
removed from the candidate list for load curtailment in the next scheduling period. Therefore,

si((k + 1)Ts) = 0, if τuc
i (kTs) > Tuc

i , or τoc
i (kTs) < Toc

i (17)

Every customer’s shedding contribution ratio is accumulated and recorded in the computer server
at the control center. Let Ωi(kTs) and Ωi(kTs) represent the accumulated shedding contribution ratio
and its average value, respectively, for the i-th customer building at the k-th time step, then

Ωi(kTs) = Ωi(kTs − Ts) + η̂i(kTs) (18)

Ω(kTs) =
1
N

N

∑
i=1

Ωi(kTs) (19)

where the initial value Ωi(0) = 0. As the TWDLC is conducted day by day, the load shedding
control fairness needs to be watched because it is a long-term change in cooling comforts for
customers. The computer server in the control center monitors and compares the accumulated
shedding contribution of each customer with the average contribution among all of the customers to
avoid certain customers from being controlled too frequent and lead to the biasing of load shedding
fairness. For the i-th customer, if Ωi(kTs) ≥ Ωi(kTs), the customer can be removed from the candidate
list for load curtailment in the next scheduling period. Therefore,

si((k + 1)Ts) = 0, if Ωi(kTs) > Ω(kTs) (20)

Conversely, if Ωi(kTs) < Ωi(kTs), it is expected that more contribution to the TWDLC is required
and the customer is taken as a candidate for load curtailment. Let J((k + 1)Ts) be the set of candidates
available for load curtailment at the (k + 1)-th scheduling period based on the records calculated up to
the k-th scheduling period. Referring to (15), (16), and (20), J((k + 1)Ts) is defined as:

J((k + 1)Ts) =
{

i|i ∈ {1, . . . , N}, τuc
i (kTs) ≤ Tuc

i , τoc
i (kTs) ≥ Toc

i , Ωi(kTs) ≤ Ωi(kTs), k = 1, . . . , (M− 1)
}

(21)

Referring to (6), a set consisting of optimization decision variables denoted as J(·), is shown in (21).

4. Fuzzy Linear Programming

The optimization in (6) with of the crisp constraint (7) and the fuzzy constraint (8) described
by the membership function in (10), can be addressed by first converting it into two standard linear
programming problems shown, as follows:
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min

ηi(kTs)∈[0,1],i∈J(kTs)
∑

ηi(kTs),i∈J(kTs)
ηi(kTs)W

i
a(kTs)

subject to 0.1 ≤ ηi(kTs) ≤ 1, if ηi(kTs) > 0, i ∈ J(kTs)

∑
ηi(kTs),i∈J(kTs)

ηi(kTs)W
i
a(kTs) ≥ (1 + v2)P(kTs)

(22)


min

ηi(kTs)∈[0,1],i∈J(kTs)
∑

ηi(kTs),i∈J(kTs)
ηi(kTs)W

i
a(kTs)

subject to 0.1 ≤ ηi(kTs) ≤ 1, if ηi(kTs) > 0, i ∈ J(kTs)

∑
ηi(kTs),i∈J(kTs)

ηi(kTs)W
i
a(kTs) ≥ (1− v1)P(kTs)

(23)

where v1 and v2 are defined in the membership function in (8). Assume that the optimal solution of
(19) and (20) are η0

i (kTs) and η1
i (kTs), respectively. Denote the shed load corresponding to η0

i (kTs) and
η1

i (kTs) as Ψ0(kTs) and Ψ1(kTs), respectively, i.e.,

Ψ0(kTs) = ∑
η0

i (kTs),i∈J(kTs)

η0
i (kTs)W

i
a(kTs) (24)

Ψ1(kTs) = ∑
η1

i (kTs),i∈J(kTs)

η1
i (kTs)W

i
a(kTs) (25)

The degree of optimality is described using the following membership function µ0(·) illusrated in
Figure 3 based on Ψ0(kTs) and Ψ1(kTs) as following:

µ0(η(kTs)) =


1, if Ψ(kTs) < Ψ1(kTs)

Ψ0(kTs)−Ψ(kTs)

Ψ0(kTs)−Ψ1(kTs)
, if Ψ1(kTs) ≤ Ψ(kTs) ≤ Ψ0(kTs)

0, if Ψ(kTs) > Ψ0(kTs)

(26)
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Given that the fuzzy constraint is converted into the membership function µ in (10) and the
objective function associated with the fuzzy constraint is converted into the membership function µ0

in (26), the max-min approach can then be used to solve the optimization in (6)–(8), as follows: max
ηi(kTs)∈[0,1],i∈J(kTs)

min(µ0(η(kTs)), µ(η(kTs)))

subject to 0.1 ≤ ηi(Ts) ≤ 1, if ηi(kTs) > 0, i ∈ J(kTs)
(27)

Without loss of generality, the constrained max-min optimization problem described in (27) can
be rewritten into standard linear programming problem as follow:

max
α∈[0,1],ηi(kTs)∈[0,1],i∈J(kTs)

α (28)

subject to 0.1 ≤ ηi(kTs) ≤ 1, if ηi(kTs) > 0 (29)

µ0(η(kTs)) ≥ α (30)

µ(η(kTs)) ≥ α (31)

where ηi(kTs) ∈ [0, i], i ∈ J(kTs).
Substituting (26) into (30) to produce an equivalent constraint of (30) known as:

∑
ηi(kTs)∈[0,1],i∈J(kTs)

ηi(kTs)W
i
a(kTs) ≤ (1− α)Ψ0(kTs) + αΨ1(kTs) (32)

Similarly, substituting (10) into (31), to produce an equivalent constraint of (31) known as:

∑
ηi(kTs)∈[0,1],i∈J(kTs)

ηi(kTs)W
i
a(kTs) ≤ (1− v1)P(kTs) + α(v1 + v2)P(kTs) (33)

Note that the constraint in (29) is not in expressed as the standard format of linear programming.
To overcome this issue, the surplus decision variable of γi(kTs) ∈ {0, 1} for i ∈ J(kTs) is first defined,
followed by a large constant of Q >> 1. To this end, the constraint in (29) can be expressed in the
standard format of:

ηi(kTs) ≤ γi(kTs)×Q (34)

0.1× γi(kTs) ≤ ηi(kTs), γi(kTs) ∈ {0, 1}, i ∈ J(kTs) (35)

Therefore, the fuzzy linear programming in (6)–(8) can be easily addressed by solving the
equivalent linear programming problem in (28) with constraints in (32)–(35).

5. Computer Simulation

A total of 30 customers are selected in this section to evaluate the load shedding performance
of the proposed TWDLC algorithm using fuzzy linear programming. The overall load shedding was
conducted for five consecutive days, started from 10:00 to 17:00 each day. The sampling interval of
computer server to retrieve the controllable load of every customer and to conduct load curtailment
through gateway are both set as Ts = 15 min, as recommended by most previous studies, such as
those in [11,12,19,20,22,26]. The averaging interval Tm in (3) and the waiting interval Tw in (4) for the
gateway to calculate the average controllable load before and after every sampling time are both set
as three minutes. Other simulation parameters including the actual capacity, maximum controllable
load and the time constraints to remain under-controlled and off-controlled status for each customer
throughout five consecutive days of load shedding are provided in Table 1.



Energies 2018, 11, 492 10 of 15

Table 1. Simulation parameters including the actual capacity, maximum controllable load and the time
constraints to remain in under-controlled and off-controlled status for each customer.

i Capacity
(kW)

Max (Wi
d(kTs))

(kW)
Tuc

j
(min)

Toc
j

(min)

1 250 109 15 30
2 350 219 30 15
3 750 296 30 15
4 800 466 30 15
5 1000 585 30 15
6 1150 727 30 15
7 1350 772 30 15
8 1430 930 30 15
9 1800 1093 30 30
10 2100 1194 30 15
11 250 140 30 15
12 500 237 15 30
13 800 347 15 30
14 800 494 30 30
15 1100 698 30 15
16 1300 727 15 16
17 1380 846 30 17
18 1550 1018 30 18
19 2000 1083 15 19
20 2400 1198 30 20
21 320 193 15 21
22 530 253 30 22
23 800 461 30 23
24 930 510 30 24
25 1100 669 30 25
26 1320 740 30 26
27 1400 905 30 27
28 1720 1045 30 28
29 2100 1131 30 29
30 2400 1427 30 30

Recall that v1 and v2 in association with the membership function µ(·) in (10) represent the fuzzy
constraint in (8) that the calculated load shed greater than or equal to the target load P(·) to a certain
degree of precision tolerance. Both coefficients v1 and v2 could be either constants or time-varying
functions since the degree of precision tolerance for the fuzzy constraint in (8) can vary with the
temperature, load in regional power system, or time of a day, etc. In this paper, the variations of v1 and
v2 are both set as time-varying functions, as shown in Figures 4 and 5, respectively. Using the proposed
optimal real-time scheduling approach based on fuzzy linear programming, the calculated load shed,
Ψ(kTs), is illustrated in Figure 6. Both of the upper and lower boundaries of fuzzy constraints in (8),
denoted as (1− v1)P(kTs) and (1 + v2)P(kTs), respectively, as well as the target load shedding profile
P(kTs) are also compared with Ψ(kTs) in Figure 6. In Figure 6, it is shown that the optimized load
shed Ψ(kTs) matches the target load P(kTs) well in response to the variations in target load tolerance.
Meanwhile, Figure 7a,b illustrate the optimized shedding ratios and the controllable load of customer
with the largest capacity.
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largest capacity. (b) Variation of controllable load profile for customer with the largest capacity.

Different customers are assigned with different shedding times as well as load shedding ratios
due to different capacity and time constrains assigned. In order to show the effectiveness of the filtering
scheme defined in (20), a metric used to consider the standard deviation ofs accumulated shedding
contribution ratios at every k-th scheduling step is formulated as:

σ(kTs) =

√√√√ 1
N

N

∑
i=1

(
Ωi(kT)s −Ω(kTs)

)2 (36)

Note that the accumulated shedding contribution ratio of the i-th customer Ωi(·) is defined in
(18), while the average accumulated shedding contribution ratio Ω(·) can be obtained from (19). The
variation profiles of σ(·) with and without the filtering scheme in (20) are both shown in Figure 8a,b,
respectively. From Figure 8a, it is observed that the variation of accumulated shedding contribution
ratios is relatively insignificant as times goes on when the filtering scheme in (20) is applied. This
shows that the filtering scheme levels off the contribution of each customer that is participating in load
shedding, hence guaranteeing the load shedding fairness. Conversely, if the filtering scheme in (20)
is removed from the customer selection process, Figure 8b illustrates that the accumulated shedding
contribution ratios tend to increased drastically with time.
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Figure 8. Changes of standard deviation of shedding contribution ratios (a) with (b) without
considering the filtering scheme in defined (20).

6. Conclusions

A real-time two-way direct lad control (TWDLC) optimization scheme is proposed as an effective
demand response approach by scheduling the load shedding of the central air-conditioning chiller
systems in wide area. The proposed TWDLC works well through the broadband network with gateway
installed at the building of every customer. Fuzzy linear programming is utilized to solve the DLC
optimization in more flexible manner because it allows for a certain degree of precision tolerance for
shed load constraints. It is shown in simulation that the load shedding performance delivered by the
proposed TWDLC scheme is promising, hence feasible for real-time optimization and time-varying
precision tolerance in response to variable target load profile.

For future work, the degree of precision tolerance for the fuzzy constraints can be linked
with weather condition, regional load, time of a day, etc., depending on the application scenario.
Delicate modeling can be designed to automatically adjust the precision tolerance in response to
environmental changes. Type-2 membership functions can also be used to define precision tolerance of
constraints for future work.
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